徐秀麗
(棗莊科技職業(yè)學(xué)院高級(jí)技工部,山東棗莊 277500)
一個(gè)離散可積族的可積耦合及其H am ilton結(jié)構(gòu)
徐秀麗
(棗莊科技職業(yè)學(xué)院高級(jí)技工部,山東棗莊 277500)
由位移算子通過(guò)二次型恒等式直接得到離散可積族的耦合及其Hamilton結(jié)構(gòu).這種方法具有普遍性,可應(yīng)用于其他離散方程族.
可積耦合;二次型恒等式;Hamilton結(jié)構(gòu)
近年來(lái),Lattice可積族成為可積系統(tǒng)理論研究的焦點(diǎn),備受關(guān)注.許多非線性Lattice可積族[1-8]及其哈密頓結(jié)構(gòu)的離散路徑已經(jīng)建立[8],同時(shí)很多離散可積族的可積耦合的建立方法已被提到[9-14].然而,如何建立一些離散可積族的哈密頓結(jié)構(gòu)仍是非常重要和有趣的課題.郭??淌诤蛷堄穹褰淌谔岢隽硕涡秃愕仁剑?5-16],為建立連續(xù)可積耦合的Hamilton結(jié)構(gòu)提供了理論依據(jù).由于不存在換位運(yùn)算,我們無(wú)法直接通過(guò)二次型恒等式直接得到離散可積耦合的Hamilton結(jié)構(gòu)[15].基于以上問(wèn)題,我們盡力利用位移算子構(gòu)建類(lèi)似于連續(xù)可積族的換位運(yùn)算,從而利用二次型恒等式得到離散可積族的Hamilton結(jié)構(gòu).
及其靜態(tài)零曲率方程
若Γ1和ΓV2(3)同階解滿足Γ1=γΓ2,[a,b]T=aTR(b),a,b∈,對(duì)稱(chēng)矩陣F=(fij)S×S,要求滿足:
由二次型恒等式
構(gòu)造李代數(shù)
其中
易證G滿足矩陣乘法具有封閉性[10].a=(a1,a2,…,a8)T,b=(b1,b2,…,b8)T.定義交換算子為
本文通過(guò)構(gòu)造新的loop代數(shù),借助于二次型恒等式得到了離散可積族的可積耦合及其哈密頓結(jié)構(gòu),這種方法非常新穎,可廣泛應(yīng)用于其他離散可積族.
設(shè)計(jì)對(duì)等譜問(wèn)題
得遞推關(guān)系
易證
也就是說(shuō)(9)中的第三個(gè)方程可由其他的推出來(lái).
定義
方程(8)可以寫(xiě)成
直接計(jì)算得
取Γ(m)=Γ(m)+,由零曲率方程Unt-(EΓ(m))Un+UnΓ(m)=0直接計(jì)算得
從(6)可得
利用二次型恒等式,我們可求得對(duì)稱(chēng)矩陣
為建立(11)的哈密頓結(jié)構(gòu),規(guī)定
其中
因此,利用二次型恒等式
得
其中
為確定常數(shù)γ,在上式兩端令,n=0得γ=0,于是有
(11)可寫(xiě)成
其中
因此,(18)可寫(xiě)成Hamiltonian形式
族(21)中的第一個(gè)非線性Lattice方程為
[1]Ablowitz Mark,Ladik.Nonlinear differential-difference equations[J].J.Math.Phys.,1975(16):598-603.
[2]Bogoyavlensky Oleg.Integrable discretizations of the KdV equation[J].J.Phys.Lett.A,1988,134(1):34-38.
[3]MaWenxiu,Xu Xixiang.Positive and negative hierarchies of integrable latticemodels associated with a Hamiltonian pair[J].J.Internat Theoret.Phys.,2004,43(1):219-236.
[4]Narita Kazuaki.Soliton solutions for the coupled discrete KdV equations under nonvanishing boundary conditions at infinity[J].J.Phys.Soc.Japan,2002,71(10):2401-2405.
[5]Xu Xixiang.A hierarchy of discrete Hamiltonian equations and its binary nonlinearization by symmetry constraint[J].J.Phys.Lett.A,2004,326(3-4):199-210.
[6]Xu Xixiang,Zhang Yufeng.A hierarchy of Lax integrable lattice equations,Liouville integrability and a new integrable symplectic map[J].J.Commun Theor.Phys.,2004,41(3):321-328.
[7]Tu Guizhang.A trace identity and itsapplication to the theory of discrete integrable systems[J].J.Phys.A:Math.Gen.,1990(23):3903-3922.
[8]Xu Xixiang,Yang Hongxiang,Ding Haiyong.A Liouville integrable lattice soliton equation,infinitelymany conservation laws and integrable coupling systems[J].J.Phys.Lett.A,2006,349(1-4):153-163.
[9]Zhang Yufeng,F(xiàn)an Engui,Zhang Yongqing.Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations[J].J.Phys.Lett.A,2006,357(6):454-461.
[10]Ma Wen-Xiu,Xu Xi-Xiang,Zhang Yufeng.Semidirect sums of Lie algebras and discrete integrable couplings[J].J.Math.Phys.,2006,47(5):053501.
[11]Sun Ye-peng,Chen Deng-yuan,Xu Xi-xiang.Positive and negative hierarchies of nonlinear integrable latticemodels and three integrable coupling systems associated with a discrete spectral problem[J].J.Nonlinear Anal.,2006,64(11):2604-2618.
[12]Xia Tiecheng,You Fucai,Chen Dengyuan.A generalized cubic Volterra lattice hierarchy and its integrable couplings system[J].J.Chaos Solitons Fractals,2006,27(1):153-158.
[13]Ding Hai-Yong,Sun Ye-Peng,Xu Xi-Xiang.A hierarchy of nonlinear lattice soliton equations,its integrable coupling systems and infinitelymany conservation laws[J].J.Chaos Solitons Fractals,2006,30(1):227-234.
[14]Guo Fukui,Zhang Yufeng.The quadratic-form identity for constructing the Hamiltonian structure of integrable systems[J].J.Phys.A,2005,38(40):8537-8548.
[15]Guo Fukui,Zhang Yufeng.Expansion of the Lie algebra and its applications[J].J.Chaos Solitons Fractals,2006,27(4):1048-1055.
[16]Zhang Yufeng,Yan Wang.A higher-dimensional Lie algebra and its decomposed subalgebras[J].J.Phys.Lett.A,2006,360(1):92-98.
The Integrable Couplings of a Discrete Integrable Hierarchy and Its Hamiltonian Structure
XU Xiu-li
(Department of Senior Technology,Zaozhuang Vocational College of Science and Technology,Zaozhuang,277500,China)
The integrable couplings of a discrete integrable hierarchy and its Hamiltonian structure are obtained by the quadratic-form identity with shift operator.Thismethod can be used to produce the Hamiltonian structure of the other discrete integrable couplings.
integrable couplings;quadratic-form identity;Hamiltonian structure
O175.8
A
1672-2590(2015)03-0011-07
2015-03-27
徐秀麗(1982-),女,山東棗莊人,棗莊科技職業(yè)學(xué)院高級(jí)技工部講師.