• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple Endmember Hyperspectral Sparse Unmixing Based on Improved OMP Algorithm

    2015-07-24 17:34:42,,

    ,,

    (College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)

    Multiple Endmember Hyperspectral Sparse Unmixing Based on Improved OMP Algorithm

    Chunhui Zhao?,Haifeng Zhu,Shiling Cui and Bin Qi

    (College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)

    In conventional linear spectral mixture analysis model,a class is represented by a single endmember. However,the intra-class spectral variability is usually very large,which makes it difficult to represent a class,and in this case,it leads to incorrect unmixing results.Some proposed algorithms play a positive role in overcoming the endmember variability,but there are shortcomings on computation intensive,unsatisfactory unmixing results and so on.Recently,sparse regression has been applied to unmixing,assuming each mixed pixel can be expressed as a linear combination of only a few spectra in a spectral library.It is essentially the same as multiple endmember spectral unmixing.OMP(orthogonal matching pursuit),a sparse reconstruction algorithm,has advantages of simple structure and high efficiency.However,it does not take into account the constraints of abundance non-negativity and abundance sum-to-one(ANC and ASC),leading to undesirable unmixing results.In order to solve these issues,this paper presents an improved OMP algorithm(fully constraint OMP,F(xiàn)OMP)for multiple endmember hyperspectral sparse unmixing.The proposed algorithm overcomes the shortcomings of OMP,and on the other hand,it solves the problem of endmember variability. The ANC and ASC constraints are firstly added into the OMP algorithm,and then the endmember set is refined by the relative increase in root-mean-square-error(RMSE)to avoid over-fitting,finally pixels are unmixed by their optimal endmember set.The simulated and real hyperspectral data experiments show that FOPM unmixing results are ideally comparable and abundance RMSE reduces much lower than OMP and simple spectral mixture analysis(sSMA),and has a strong anti-noise performance.It proves that multiple endmember spectral mixture analysis is more reasonable.

    hyperspectral image;sparse representation;multiple endmember spectral unmixing;OMP;ANC and ASC

    1 Introduction

    In recent years,hyperspectral remote sensing technology develops rapidly.It has been used successfully in food safety,quality control,and forensic application[1-3].Mixed pixels are widespread in hyperspectral images due to the diversity and complexity of ground and the limitations of the sensor’s spatial resolution.Mixed pixels have a serious impact on the accuracy of subsequent hyperspectral image processing.Therefore,how to solve mixed pixels effectively is one of the most important problems in hyperspectral image analysis[4].Simple linear spectral mixture analysis(sSMA)[5]models a mixed spectrum as a linear combination of pure spectral signatures,weighted by their sub-pixel fractional cover.Once the endmembers have been extracted,sub-pixel cover distribution maps can be generated using approaches like singular value decomposition,Gramm-Schmidt orthogonalization,maximum likelihood or least-squares regression analysis.

    However,the lack of ability to account for sufficient temporal and spatial variability between and among endmember spectra has been acknowledged as a major shortcoming of sSMA approach with fixed endmembers.Over the past decades numerous efforts have been made to circumvent this issue[6].

    One of the first attempts to address endmember variability is Multiple Endmember Spectral Mixture Analysis(MESMA)[7-8]model,which is an iterative mixture analysis algorithm.Monte Carlo spectral unmixing model(AutoMCU)[9]and Bayesian Spectral Mixture Analysis model(BSMA)[10]is in parallel withMESMA.These iterative mixture analysis techniques explore all possible endmember combinations in search for the best solutions and the high number of iterations strongly slows down the analysis.Different spectral feature selections and spectral transformations algorithms have also been proposed to reduce the effect of endmember variability[11-12],for example AutoSWIR and Stable Zone Unmixing(SZU).The SZU has been proved to be good,but the parameters variability affects the unmixing accuracy greatly.For spectral transformations,there are Normalized Spectral Mixture Analysis(NSMA)and Derivative Spectral Unmixing(DSU)in which second derivative endmember spectra are used as inputs into SMA to emphasize the inter-class variability,while reducing the intra-class variability.The physical meaning of these two algorithms is not clear and the unmixing results are unsatisfactory.The other one to reduce the effect of endmember variability is Weighted Spectral Mixture Analysis(wSMA),prioritizing spectral bands less sensitive to endmember variability[13].

    The above spectral unmixing methods have played a positive role in reducing the effect of endmember variability,but there are always limitations.In recent years,with the development of sparse representation theory,scholars have a more profound understanding of sparse unmixing.Beginning in 2009,some scholars try to add sparse constraint to the sSMA,and have achieved certain results,but to our best knowledge,there are almost no studies of adding sparse constraint to multiple endmember spectral mixture analysis. Moreover,most sparse unmixing methods are based on convex relaxation methods,while little attention has been paid to the use of greedy algorithms(GAs). OMP[14-15]is one of the representatives of GAs,with a simple structure and high efficiency,which finds the best matches for each pixel by iteration from the existing library.When applying OMP in hyperspectral image unmixing,every pixel can get its optimal endmember set and their corresponding abundance. Obviously,it is essentially the same as multiple endmember spectral unmixing which iteratively produces the optimization for each pixel.However,there are big drawbacks about OMP that the abundance does not satisfy the ANC and ASC,besides the optimal endmember set is always larger than real situation,leading to accurate unmixing results.

    Given the shortcomings of the above overcoming intra-class spectral variability algorithms and the consistency of the iterative multiple endmember spectral unmixing and the OMP unmixing,this paper presents an improved OMP algorithm(called fully constraint OMP,F(xiàn)OMP)in multiple endmember spectral unmixing,which adds two constraints to the original OMP algorithm,and then finds the optimal number of endmembers for each pixel by the relative increase in RMSE to prevent over-fitting and increase the unmixing accuracy.

    2 OMP Sparse Unmixing of Hyperspectral Image

    Spectral unmixing aims at estimating the fractional abundances of pure spectral signatures in each mixed pixel.The linear mixing model assumes that the observed spectrum of a pixel can be expressed as a linear combination of the spectra of the endmembers presented in the respective pixel[16-17].It can be expressed mathematically as follows:

    whereyis an observation mixed pixel;Ais the endmember collection and the total amount isM;xis the corresponding fractional abundance,andnrepresents the error term.ANC and ASC are usually applied to the abundance.

    The linear sparse unmixing model[18-19]assumes that the observed spectrum of a mixed pixel can be expressed as a linear combination of only a few spectral signatures selected from a library known in advance.As the number of endmembers involved in a mixed pixel is usually very small compared with the dimensionality of the spectral library,the vector of fractional abundancesxis sparse.

    Without considering the two constraints in Eqs.(4)and(5),the optimization problem of sparse unmixing is then:

    Three kinds of methods can solve this problem,namely,greedy algorithms(GAs),convex relaxation methods,and sparse Bayesian methods.Convex relaxation methods and sparse Bayesian methods are far more complicated than the GAs.OMP,a typical GA,has been utilized to solve theP0problem.OMP is simple,with high efficiency,making it more practical in real applications.OMP iteratively selects at each step the member in the spectral library best correlated with the residual part of the mixed pixel.Then,it produces a new approximation by projecting the spectral vector of the mixed pixel onto the potential endmembers which have already been selected.

    3 Fully Constraint OMP Algorithm

    In this section,we firstly propose the concrete mathematical expression of linear multiple endmember spectral mixture analysis model,and then analyze the unmixing process in detail.The endmember matrix in the sSMA is fixed,however,in fact,the number and types of endmember are allowed to vary for different pixels.If we unmix the pixels by fixed endmember set,the unmixing abundance results are inaccurate. Apparently multiple endmember spectral mixture analysis is more reasonable.

    The linear multiple endmember spectral mixture analysis is as follows:

    wherenis the total number of hyperspectral image pixels andqdenotes a constant,whereq=1 denotes the endmember belongs to the pixel,otherwiseq=0 denotes the endmember does not belong to the pixel;is thek-th pixel andMis the total number of endmembers;Nidenotes the number of spectra in thei-th intra-class;ei,jdenotes thej-th spectrum in thei-th intra-class;denotes the spectral abundance of thej-th endmember in thei-th intra-class,andεkdenotes an additive perturbation.

    OMP iteratively selects at each step the member in the spectral library best correlated with the residual part of the mixed pixel.It finds the optimal set of endmember for each pixel from the spectral library,and then unmixes each pixel by the endmember set. We can see that it is the same as the multiple endmember spectral mixture analysis.So we combine the two algorithms.However,OMP does not take into account the two constraints,which leads to negative abundance.

    The unmixing residuals can be written as Eq.(8):

    Then,Eq.(8)can be restated as Eq.(10):

    Eq.(9)is unconstrained least squares abundance inversion,which leads to negative abundance. According to convex geometry theory,the mixed pixels locate inside the simplex composed of the related endmembers.If a mixed pixel is inside the simplex, unconstrained least squares and fully constraint least squares get the same optimal solution.The opposite condition,if a mixed pixel lives outside the simplex,unconstrained least squares will get unreasonable consequence compared to fully constraint least squares. So we take full constraint least squares instead.By doing so,residuals will not orthogonal to the selected set of endmembers,to solve which,we project the residuals to the orthogonal subspace of the already selected set of endmembers.

    Eq.(8)can be rewritten as follows:

    However,OMP often leads to more endmembers than actually present within a pixel.If more endmembers are used than required,the RMSE values may indeed be smaller,yet the fractional error will be higher.To deal with this,we refine the endmember set by calculating the relative increase in RMSE,reducing the number of endmembers by one.For each pixel,K-,(K-1)-,…,2-and 1-endmember reconstruction RMSE are compared[20-21].The relative increase in RMSE by going fromK-to(K-1)-endmember and from 2-to 1-endmember are calculated as follows Eqs.(14)and(15):

    whereRMSE(k-1_EM)is the reconstruction RMSE of(k-1)-endmember andRMSE(k_EM)is the reconstruction RMSE ofk-endmember;Lis the number of bands;yiis a pixel andis its estimation.If theΔRMSEis less than a predefined threshold,it means that the extra endmember makes little contribution to the pixel,so the less endmembers are selected to unmix the corresponding pixels,otherwise,the more endmembers are selected.

    FOMP algorithm procedure is as follows:

    Input:

    Dictionary:A=[a1,a2,…,aM]

    Signals to represent:y

    Sparsity:K

    Initialization:

    Residual:r0=y(tǒng)

    Iteration counter:k=1;

    Procedure:

    Iteration,in thekth cycle,run the following 1)-6).

    If the maximum occurs for multiple indices,break the tie deterministically.

    2)Augment the index set:

    3)Update residuals:

    Of which hyperFcls means fully constraint least squares abundance inversion.

    The orthogonal subspace of the selected endmember is as follows:

    4)ComputeΔRMSEfor each pixel.

    5)Find the optimal number of endmembers byΔRMSEkfor each pixel.

    6)Incrementk=k+1,and return to Step 1)ifk<K.

    Output:

    Index set:Λ

    Sparse coefficient:α=hyperFcls(E,y)

    4 Experiments

    4.1 Experiments of Simulated Hyperspectral Data

    In order to verify the effectiveness of the algorithm,two experiments are made in this section. We select five mineral spectra from the United States Geological Survey(USGS)library to form simulated hyperspectral data.These spectra are Almandine WS477(A1),Almandine WS478(A2),Nontronite GDS41(N3),Buddingtonite GDS85 D-206(B4)and Buddingtonite NHB2301(B5)and the dictionary is the USGS library.

    4.1.1 The first experiment

    The first set of experimental data is constituted randomly of the fiver mineral spectra above and the numbers is 10 000.Besides,35 dB Gaussian white noise is added.

    Table 1 gives a quantitative evaluation about the abundance RMSE of the five endmembers.We can find that the RMSE of FOMP is the lowest among all,besides,F(xiàn)OMP and OMP perform beyond the sSMA,which means they can address the endmember variability issue to some degree.

    Fig.1 gives the abundance error histograms of the three methods at 35 dBSNR sceneries.It gives a direct comparison between these three methods.FOMP algorithm abundance error is mostly clustered around the value 0,while the other algorithms error distributions are scattered.

    Table 1 Unmixing abundance RMSE contrast

    Fig.1 Histograms of abundance error

    4.1.2 The second experiment

    In thesecond experiment,we form 3 000 mixed pixels in which the 1 th-1 000 th pixels are made up ofA1andN3by random proportion satisfying the ANC and ASC.The 1 001th-2 000th pixels are constituted byA1andB5and the remaining pixels are composed byA2,N3andB4in which the random proportion is made in the same manner as the former.In order to verify theanti-noise performance,30-55 dB Gaussian white noise are added.

    Table 2 gives a quantitative evaluation of the RMSE for the five endmembers between the real endmember abundance and the estimated endmember abundance at different SNR(signal to noise ratio). Longitudinal view,we can find that the RMSE of FOMP is the lowest among all,where abundance RMSE is reduced about 90%and 40%compared to sSMA and OMP,besides,F(xiàn)OMP and OMP perform beyond the sSMA,which means they can address the endmember variability issue to some degree.Lateral view,the abundance error ofN3is much smaller than the others,we know that synthetic data only involve one spectrum of this mineral class,so we can get that intra-class spectral variability indeed affect the accuracy of unmixing results.

    Table 2 Unmixing abundance RMSE contrast at different SNR

    Fig.2 intuitively shows the average unmixing abundance RMSE as a function of SNR.As shown,all the algorithms get worse performance with the SNR getting lower,but our proposed algorithm can obtain the best estimation of the average abundance at different noise scenarios among all the methods. However,when introducing the random noise,although the accuracy of FOMP decreases,its curve is the most flat one,meaning that it possesses the best anti-noise performance.Meanwhile,OMP and sSMA are sensitive to noise.

    Fig.3 gives the abundance error histograms of the three methods at 30 dB,40 dB,50 dB SNR sceneries. It gives a direct comparison between these three methods.FOMP algorithm abundance error is mostly clustered around the value 0,while the error distributions of the other algorithms are scattered.With the decline of SNR,all these methods’number of pixels deviation gradually from 0 value increases,but FOMP algorithm is always better than the other algorithms.

    Fig.2 Average unmixing abundance RMSE as a function of SNR

    Fig.3 Histograms of abundance error

    4.2 Experiments of Real Hyperspectral Data

    Our proposed method has been applied to a hyperspectral image taken over northwest Indiana’s Indian Pine Test Site shown in Fig.4.The data consist of 145×145 pixels with 220 bands which are initially reduced to 200 by removing bands,covering water absorption as well as noisy bands and the total number of endmember class is 16.Three typical types of crops:hong-windrowed,woods and corn,respectively 489,1 294,834 sample points are chosen because they can best verify the effectiveness of the improved algorithm. Their spatial distribution of the label figures are shown in Fig.5(a).We randomly select ten spectra from the total sixteen classes to form the dictionary.So the dictionary contains 160 spectra.

    Table 3 gives a quantitative evaluation about the abundance RMSE of the ten endmembers for the three crops.It can be seen that FOMP performs the lowest RMSE compared with others.In the unmixing distribution maps,the brighter gray represents the abundance of the corresponding categories in the mixed pixels the greater,and vice versa.

    Fig.4 Pseudocolor composed map

    Table 3 Unmixing abundance RMSE contrast

    Fig.5 shows a more intuitive representation.FOMP algorithm represents the three crops better,and the unmixing results are much closer to the true spatialdistribution.Meanwhile,the other algorithms unmixing results are vague and cannot distinguish different crops effectively.However,F(xiàn)OMP and OMP are better than the sSMA in both the average RMSE and the unmixing distribution maps.Above all,except for sSMA,they all have played a positive role in overcoming the intra-class spectral variability and implying multiple endmember spectral mixture analysis is more reasonable.

    Fig.6 shows the abundance error histograms of the three methods.It gives a direct comparison between these three methods.FOMP algorithm abundance errors are mostly clustered around the value 0,while the error distribution of other algorithms is scattered.

    4.3 Analysis of Unmixing Results

    By comparing the experimental results above,we can get that FOMP algorithm is better than the other algorithms in unmixing abundance error,which takes ANC and ASC into account and adoptsΔRMSEto refine the optimal endmember set to avoid over-fitting where the number of endmembers is greater than the actual number in each pixel.sSMA gets the worst unmixing results without considering the intra-class spectral variability.OMP algorithm does not consider ANC and ASC,causing negative abundance,besides,the iterative optimization process of OMP results in over-fitting.Although the reconstruction error is cut down,the unmixing abundance error increases.OMP may not accurately unmix some signals with low SNR or measured insufficiently.Besides,it is strict to build a dictionary because of its use of orthogonalization.

    Fig.5 Unmixing distribution maps of hong-windrowed,woods and corn

    5 Conclusions

    This paper has proposed a multiple endmember hyperspectral sparse unmixingmethod based on the improved OMP algorithm.It firstly adds ANC and ASC to the OMP algorithm to receive reasonable abundance,and then finds the optimal number of endmembers for each pixel by the relative increase in RMSE to avoid over-fitting.The simulated and real hyperspectral image data experimental results have showed that FOMP is superior to the other two and is effective in overcoming intra-class spectral variability.We can see that multiple endmember spectral mixture analysis is more reasonable.Since the introduction of fully least squares abundance inversion,the computation is large,how to improve its efficiency is the focus of our future work.

    [1]Zhao Chunhui,Cheng Baozhi,Yang Weichao.Algorithm for hyperspectral unmixing using constrained nonnegative matrix factorization.Journal of Harbin EngineeringUniversity,2012,33(3):377-382.(in Chinese)

    [2]Cheng Baozhi,Zhao Chunhui.A particle swarm optimization clustering-based approach for hyperspectral image anomaly targets detection.Journal of Optoelectronics Laser,2013,24(10):2047-2054.(in Chinese)

    [3]Wang Liguo,Zhang Jing.An improved spectral unmixing modeling based on linear spectral mixing modeling.Journal of Optoelectronics Laser,2010,21(8):1222-1226.(in Chinese)

    [4]Zhang Bing,Gao Lianru.Hyperspectral Image Classification and Target Detection.Beijing:Science Press,2011.201-213.(in Chinese)

    [5]WangLiguo,Liu Danfeng,Wang Qunming.Geometric method of fully constrained least squares linear spectral mixture analysis.IEEE Transactions on Geoscience And Remote Sensing,2013,51(6):3558-3566.

    [6]Wang Liguo,Zhao Chunhui.Processing Techniques of Hyperspectral Imagery.Beijing:National Defense Industry Press,2013.13-17.(in Chinese)

    [7]SomersB,Asner G P,Tits L,et al.Endmember variability in spectral mixture analysis:a review.Remote Sensing of Environment,2011,115(7):1603-1616.

    [8]Roberts D A,Gardner M.Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models.Remote Sensing of Environment,1998,65(3):267-279.

    [9]Asner G P,Lobell D B.A biogeophysical approach for automated SWIR unmixing of soils and vegetation.Remote Sensing of Environment,2000,74(1):99-112.

    [10]Rao Yuhan,Chen Jin,Chen Xuehong.Quantitative assessment of the different methods addressing the endmember variability.IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Piscataway:IEEE,2013.3317-3320.

    [11]Somers B,Delalieux S,Verstraeten W W.An automated waveband selection technique for optimized hyperspectral mixture analysis.International Journal of Remote Sensing,2010,20(31):5549-5568.

    [12]ShiChen,Wang Le.Incorporating spatial information in spectral unmixing:A review.Remote Sensing Environment,2014,149:70-87.

    [13]Song Meiping,Zhang Yongrong,An Jubai,et al.Effective endmember based bilinear unmixing mode.Spectroscopy and Spectral Analysis,2014,34(1):196-200.(in Chinese)

    [14]Raksuntorn N,Du Qian,Younan N,et al.Orthogonal matching pursuit for nonlinear unmixing of hyperspectral imagery.2014 IEEE China Summit&International Conference on Signal and Information Processing(ChinaSIP).Piscataway:IEEE,2014,7:157-161.

    [15]IordacheM D,Bioucas-Dias J M,Plaza A.Sparse unmixing of hyperspectral data.IEEE Transactions on Geoscience And Remote Sensing,2011,49(6):2014-2039.

    [16]Ding Haiyong,Shi Wenzhong.Fast N-FINDR algorithm for endmember extraction based on chi-square distribution. Journal of Remote Sensing,2013,17(1):130-137.(in Chinese)

    [17]ZareA,Ho K C.Endmember variability in hyperspectral analysis.IEEE Signal Processing magazine,2014,31(1):95-104.

    [18]Gharavi-Alkhansari M,Huang T S.A Fast orthogonal matching pursuit algorithm.IEEE International Conference on Speech and Signal Processing,1998,3,1389-1392.

    [19]Shi Zhenwei,Tang Wei,Duren Zhana,et al.Subspace matching pursuit for sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience And Remote Sensing,2014(52):3256-3274.

    [20]Wu Bo,Zhou Xiaocheng,Zhao Yindi.Study on the relationships between endmember variance and decomposition accuracy of mixture pixel.Remote Sensing Information,2007(3):3-7.(in Chinese).

    [21]Demarchi L,Canters F,Chan J C-W,et al.Mapping sealed surfaces from CHRIS/Proba data:a multiple endmember unmixing approach.Hyperspectral Image and Signal Processing:Evolution in Remote Sensing(WHISPERS),2010.1-4.

    TN911.73

    :1005-9113(2015)05-0097-08

    10.11916/j.issn.1005-9113.2015.05.015

    2014-07-07.

    Sponsored by the National Natural Science Foundation of China(Grant No.61405041,61571145),the Key Program of Heilongjiang Natural Science Foundation(Grant No.ZD201216),the Program Excellent Academic Leaders of Harbin(Grant No.RC2013XK009003),the China Postdoctoral Science Foundation(Grant No.2014M551221)and the Heilongjiang Postdoctoral Science Found(Grant No.LBH-Z13057).

    ?Corresponding author.E-mail:zhaochunhui@hrbeu.edu.cn.

    美女 人体艺术 gogo| 亚洲专区中文字幕在线| 在线免费观看的www视频| 欧美激情高清一区二区三区| 少妇的丰满在线观看| 丁香六月欧美| 国产高清视频在线播放一区| 捣出白浆h1v1| 中文欧美无线码| 高清在线国产一区| 亚洲五月色婷婷综合| 在线观看免费视频网站a站| 亚洲av日韩精品久久久久久密| 捣出白浆h1v1| 亚洲av第一区精品v没综合| 色精品久久人妻99蜜桃| 老司机午夜十八禁免费视频| 免费久久久久久久精品成人欧美视频| 久久国产乱子伦精品免费另类| 天天影视国产精品| videosex国产| 夜夜夜夜夜久久久久| 一级毛片女人18水好多| 亚洲午夜精品一区,二区,三区| 曰老女人黄片| 一a级毛片在线观看| 免费女性裸体啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 精品国产国语对白av| 国产亚洲av高清不卡| 在线观看免费视频网站a站| 久久久久精品人妻al黑| 精品久久久久久久毛片微露脸| 国产av又大| 国产日韩一区二区三区精品不卡| 一二三四在线观看免费中文在| 久久国产乱子伦精品免费另类| 老汉色av国产亚洲站长工具| 免费观看a级毛片全部| 国产成人av激情在线播放| 亚洲欧美日韩另类电影网站| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 一级毛片精品| 精品亚洲成a人片在线观看| 午夜福利在线免费观看网站| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| 国产男靠女视频免费网站| 露出奶头的视频| 美女 人体艺术 gogo| 色播在线永久视频| 在线观看一区二区三区激情| 在线看a的网站| 亚洲第一欧美日韩一区二区三区| 丝袜美足系列| 亚洲av成人不卡在线观看播放网| 国产成人精品在线电影| 99热网站在线观看| 国产精品国产高清国产av | 国产一区二区激情短视频| 夜夜爽天天搞| 国产在线精品亚洲第一网站| 悠悠久久av| 99re6热这里在线精品视频| 亚洲人成电影观看| 国产成人啪精品午夜网站| 黄色丝袜av网址大全| 少妇猛男粗大的猛烈进出视频| av电影中文网址| 大型黄色视频在线免费观看| 香蕉丝袜av| 色婷婷av一区二区三区视频| 亚洲自偷自拍图片 自拍| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 男人舔女人的私密视频| 999精品在线视频| 亚洲片人在线观看| 美女高潮到喷水免费观看| 高清黄色对白视频在线免费看| 老司机影院毛片| 国产精品 国内视频| 久久久久国内视频| 亚洲免费av在线视频| 精品少妇久久久久久888优播| 在线国产一区二区在线| 成年版毛片免费区| 女人被躁到高潮嗷嗷叫费观| 午夜福利视频在线观看免费| 精品人妻熟女毛片av久久网站| 捣出白浆h1v1| av超薄肉色丝袜交足视频| av福利片在线| svipshipincom国产片| 国产成人精品久久二区二区免费| 美国免费a级毛片| 999精品在线视频| 国产欧美日韩精品亚洲av| 一区在线观看完整版| 制服人妻中文乱码| 亚洲全国av大片| 午夜福利免费观看在线| 老司机福利观看| 欧美国产精品va在线观看不卡| 人人妻,人人澡人人爽秒播| 91成年电影在线观看| 美女 人体艺术 gogo| 香蕉久久夜色| 亚洲国产看品久久| 亚洲av欧美aⅴ国产| 夫妻午夜视频| 欧美亚洲日本最大视频资源| 大陆偷拍与自拍| 国产成人欧美在线观看 | 久久中文字幕一级| 日韩欧美在线二视频 | 男人的好看免费观看在线视频 | 亚洲专区国产一区二区| 免费在线观看完整版高清| 久久午夜亚洲精品久久| 在线观看舔阴道视频| 波多野结衣av一区二区av| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图| 麻豆成人av在线观看| 亚洲第一青青草原| 久久这里只有精品19| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 色婷婷av一区二区三区视频| 丝袜美足系列| 国产av一区二区精品久久| 高清毛片免费观看视频网站 | 国产成人免费无遮挡视频| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 婷婷丁香在线五月| 不卡一级毛片| 国产精品99久久99久久久不卡| 在线观看66精品国产| 久久天堂一区二区三区四区| 视频区图区小说| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 一区二区三区精品91| 99精品在免费线老司机午夜| 国产xxxxx性猛交| 又大又爽又粗| 一级毛片高清免费大全| 99国产极品粉嫩在线观看| 香蕉丝袜av| 国产精品久久电影中文字幕 | 久久中文字幕人妻熟女| av一本久久久久| 亚洲欧美日韩另类电影网站| 一个人免费在线观看的高清视频| 18禁裸乳无遮挡动漫免费视频| av电影中文网址| 日韩欧美一区视频在线观看| 国产成人一区二区三区免费视频网站| 成人精品一区二区免费| 他把我摸到了高潮在线观看| 99热网站在线观看| 在线观看www视频免费| 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| a级毛片黄视频| 亚洲,欧美精品.| 欧美人与性动交α欧美精品济南到| 高潮久久久久久久久久久不卡| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 国产高清国产精品国产三级| 亚洲专区中文字幕在线| 久久亚洲真实| 脱女人内裤的视频| 欧美在线黄色| 国产欧美日韩一区二区精品| 亚洲午夜精品一区,二区,三区| 一区二区日韩欧美中文字幕| 99热国产这里只有精品6| 亚洲一区二区三区不卡视频| 深夜精品福利| 欧美丝袜亚洲另类 | 在线播放国产精品三级| www日本在线高清视频| 最新美女视频免费是黄的| 午夜久久久在线观看| 久久人妻av系列| 麻豆成人av在线观看| 欧美激情 高清一区二区三区| 成人免费观看视频高清| 中文字幕人妻丝袜制服| 免费在线观看亚洲国产| 看免费av毛片| 亚洲精品中文字幕在线视频| 天堂动漫精品| 夜夜爽天天搞| 欧美另类亚洲清纯唯美| www日本在线高清视频| 亚洲成人免费av在线播放| 国产男女超爽视频在线观看| 成人国语在线视频| 美女福利国产在线| 国产精品综合久久久久久久免费 | 一区福利在线观看| 极品教师在线免费播放| 久久精品国产99精品国产亚洲性色 | 久久天躁狠狠躁夜夜2o2o| 自拍欧美九色日韩亚洲蝌蚪91| 国产1区2区3区精品| 亚洲三区欧美一区| 精品国产美女av久久久久小说| 午夜福利在线免费观看网站| 亚洲人成伊人成综合网2020| 日日爽夜夜爽网站| 亚洲专区国产一区二区| 一a级毛片在线观看| 叶爱在线成人免费视频播放| 女警被强在线播放| 国产精品免费大片| 久久国产亚洲av麻豆专区| 中文亚洲av片在线观看爽 | 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久男人| 在线天堂中文资源库| 嫁个100分男人电影在线观看| 国产麻豆69| 精品久久久久久久久久免费视频 | 成人手机av| av一本久久久久| 欧美精品亚洲一区二区| 丁香欧美五月| 国产成人精品久久二区二区91| 国产区一区二久久| 91在线观看av| 三级毛片av免费| 熟女少妇亚洲综合色aaa.| 9191精品国产免费久久| 12—13女人毛片做爰片一| 欧美黄色片欧美黄色片| 久久午夜亚洲精品久久| 免费在线观看日本一区| 婷婷成人精品国产| 久久精品国产亚洲av香蕉五月 | 如日韩欧美国产精品一区二区三区| 黄片大片在线免费观看| 亚洲欧洲精品一区二区精品久久久| 老司机福利观看| xxx96com| 999精品在线视频| 久久精品人人爽人人爽视色| 电影成人av| 日韩欧美在线二视频 | 啦啦啦 在线观看视频| 久久久久久久精品吃奶| 青草久久国产| 精品久久蜜臀av无| a级毛片黄视频| 久热这里只有精品99| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 手机成人av网站| 两个人免费观看高清视频| 老鸭窝网址在线观看| 久久久久国产一级毛片高清牌| 精品欧美一区二区三区在线| 免费日韩欧美在线观看| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡免费网站照片 | 欧美色视频一区免费| 美女国产高潮福利片在线看| 久久中文字幕一级| 丝袜美足系列| 日本精品一区二区三区蜜桃| 欧美大码av| 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器 | 久9热在线精品视频| 一本综合久久免费| 成人亚洲精品一区在线观看| 人妻丰满熟妇av一区二区三区 | 国产精品秋霞免费鲁丝片| 欧美成人午夜精品| 亚洲精华国产精华精| 亚洲一区二区三区不卡视频| 久久国产精品大桥未久av| 精品国产乱子伦一区二区三区| 午夜免费成人在线视频| 午夜精品久久久久久毛片777| 中文字幕精品免费在线观看视频| 国产三级黄色录像| 成人影院久久| 国产精品久久久av美女十八| 亚洲欧美激情综合另类| 国产欧美日韩一区二区三区在线| a级毛片在线看网站| 搡老熟女国产l中国老女人| www.999成人在线观看| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 超色免费av| 岛国在线观看网站| av有码第一页| 久久久久视频综合| 99国产精品一区二区三区| www.自偷自拍.com| 亚洲精品粉嫩美女一区| 亚洲色图 男人天堂 中文字幕| 中出人妻视频一区二区| 我的亚洲天堂| 亚洲成人免费电影在线观看| 黄色女人牲交| 啪啪无遮挡十八禁网站| 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 免费观看人在逋| 老司机福利观看| 侵犯人妻中文字幕一二三四区| 亚洲精品久久成人aⅴ小说| 一区二区三区精品91| 窝窝影院91人妻| 村上凉子中文字幕在线| cao死你这个sao货| 两个人看的免费小视频| 12—13女人毛片做爰片一| 天天添夜夜摸| 国产精品欧美亚洲77777| 日本黄色视频三级网站网址 | 9色porny在线观看| 好男人电影高清在线观看| 国产成人精品久久二区二区91| 大片电影免费在线观看免费| 久久香蕉精品热| 国产午夜精品久久久久久| 亚洲成国产人片在线观看| 精品一区二区三区视频在线观看免费 | 久久精品aⅴ一区二区三区四区| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 一级,二级,三级黄色视频| 欧美人与性动交α欧美软件| 久久人妻福利社区极品人妻图片| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 日日夜夜操网爽| 悠悠久久av| 久久精品91无色码中文字幕| 757午夜福利合集在线观看| 精品国产一区二区三区久久久樱花| 国产aⅴ精品一区二区三区波| 国产在线一区二区三区精| 中文欧美无线码| 午夜两性在线视频| 黄片大片在线免费观看| 超碰成人久久| 啦啦啦 在线观看视频| 午夜免费鲁丝| 久久天堂一区二区三区四区| 夜夜夜夜夜久久久久| 久久久久久久久久久久大奶| 成年版毛片免费区| 午夜福利在线观看吧| 精品福利观看| 久久亚洲真实| 又紧又爽又黄一区二区| 1024视频免费在线观看| 国产精品亚洲一级av第二区| 欧美日韩成人在线一区二区| 动漫黄色视频在线观看| 亚洲熟女精品中文字幕| 国产精品综合久久久久久久免费 | 国产精品国产av在线观看| 高清av免费在线| 午夜福利视频在线观看免费| 大码成人一级视频| 一级a爱片免费观看的视频| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 免费在线观看黄色视频的| 老汉色∧v一级毛片| 午夜精品在线福利| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| 女警被强在线播放| 久久精品国产a三级三级三级| tocl精华| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 人人妻,人人澡人人爽秒播| 日韩一卡2卡3卡4卡2021年| 丝瓜视频免费看黄片| 美女 人体艺术 gogo| 国产精品影院久久| 十分钟在线观看高清视频www| 国产精品久久久久久精品古装| 成人免费观看视频高清| 在线播放国产精品三级| 啦啦啦免费观看视频1| 精品午夜福利视频在线观看一区| 国产在线观看jvid| www.精华液| 黄色女人牲交| 精品国产乱子伦一区二区三区| 国产一卡二卡三卡精品| 高潮久久久久久久久久久不卡| 欧美激情 高清一区二区三区| 国产精品 欧美亚洲| 80岁老熟妇乱子伦牲交| 欧美久久黑人一区二区| 成年人免费黄色播放视频| 国产精品电影一区二区三区 | 国产成+人综合+亚洲专区| 99精国产麻豆久久婷婷| 在线十欧美十亚洲十日本专区| 91av网站免费观看| 岛国在线观看网站| 18在线观看网站| 妹子高潮喷水视频| 欧美人与性动交α欧美精品济南到| 激情视频va一区二区三区| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 99热国产这里只有精品6| 黑人巨大精品欧美一区二区蜜桃| 一区二区三区激情视频| av福利片在线| 午夜影院日韩av| 18禁黄网站禁片午夜丰满| 精品少妇一区二区三区视频日本电影| videosex国产| 国产亚洲精品一区二区www | 校园春色视频在线观看| 国产精品久久久人人做人人爽| 首页视频小说图片口味搜索| 精品一区二区三卡| 欧美日韩亚洲国产一区二区在线观看 | 国产三级黄色录像| 天天躁日日躁夜夜躁夜夜| 91av网站免费观看| 国产成+人综合+亚洲专区| 久久久水蜜桃国产精品网| 欧美一级毛片孕妇| 亚洲精品中文字幕在线视频| 18禁黄网站禁片午夜丰满| 国产野战对白在线观看| 欧洲精品卡2卡3卡4卡5卡区| 夫妻午夜视频| 他把我摸到了高潮在线观看| xxxhd国产人妻xxx| 黑丝袜美女国产一区| 日韩免费高清中文字幕av| 人成视频在线观看免费观看| 成人特级黄色片久久久久久久| 久久久久国内视频| 不卡一级毛片| 三级毛片av免费| 国产在线观看jvid| 正在播放国产对白刺激| 国产欧美亚洲国产| 国产亚洲精品一区二区www | 久久香蕉精品热| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 视频区图区小说| 涩涩av久久男人的天堂| 国产精品久久电影中文字幕 | 久久精品国产99精品国产亚洲性色 | av网站在线播放免费| 日韩欧美一区二区三区在线观看 | 精品亚洲成国产av| 欧美国产精品一级二级三级| 亚洲av成人av| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 成人永久免费在线观看视频| 麻豆av在线久日| 丝袜在线中文字幕| 国产成人免费观看mmmm| 久久久精品免费免费高清| 久久国产精品人妻蜜桃| 国产成人精品在线电影| 757午夜福利合集在线观看| 丝袜人妻中文字幕| 男人舔女人的私密视频| av网站在线播放免费| 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 男女下面插进去视频免费观看| 国产精品国产高清国产av | 三上悠亚av全集在线观看| 国产成人免费观看mmmm| 国产蜜桃级精品一区二区三区 | 午夜福利在线免费观看网站| a级毛片黄视频| 国产精华一区二区三区| 婷婷精品国产亚洲av在线 | 欧美午夜高清在线| 亚洲色图综合在线观看| 午夜亚洲福利在线播放| 亚洲欧美日韩另类电影网站| 18禁黄网站禁片午夜丰满| 国产在线观看jvid| 国产aⅴ精品一区二区三区波| 欧美黄色片欧美黄色片| 女人爽到高潮嗷嗷叫在线视频| 亚洲九九香蕉| 水蜜桃什么品种好| 中文字幕人妻熟女乱码| 亚洲国产毛片av蜜桃av| 成人影院久久| 美女高潮到喷水免费观看| 欧美性长视频在线观看| 91国产中文字幕| 午夜免费成人在线视频| 男女高潮啪啪啪动态图| 啦啦啦 在线观看视频| 欧美人与性动交α欧美软件| 一区二区三区精品91| 乱人伦中国视频| 欧美另类亚洲清纯唯美| 岛国毛片在线播放| 色老头精品视频在线观看| 久久午夜亚洲精品久久| 亚洲国产毛片av蜜桃av| 两个人看的免费小视频| 国产精品av久久久久免费| 在线观看免费视频日本深夜| x7x7x7水蜜桃| 久久亚洲精品不卡| 在线观看免费高清a一片| 91成年电影在线观看| 王馨瑶露胸无遮挡在线观看| 免费女性裸体啪啪无遮挡网站| 老司机亚洲免费影院| 亚洲五月婷婷丁香| 亚洲成人免费av在线播放| 男女高潮啪啪啪动态图| 成年人免费黄色播放视频| 纯流量卡能插随身wifi吗| 操出白浆在线播放| 国产亚洲精品第一综合不卡| 久久午夜综合久久蜜桃| 亚洲人成77777在线视频| 曰老女人黄片| 黄色片一级片一级黄色片| 一区福利在线观看| 啦啦啦视频在线资源免费观看| 19禁男女啪啪无遮挡网站| 岛国在线观看网站| 国产欧美日韩综合在线一区二区| 国产在线观看jvid| 99精品在免费线老司机午夜| 老鸭窝网址在线观看| 丝瓜视频免费看黄片| 在线播放国产精品三级| 亚洲av电影在线进入| 精品福利观看| 亚洲欧美激情综合另类| 亚洲av美国av| 亚洲国产精品合色在线| 久99久视频精品免费| 久久精品国产亚洲av香蕉五月 | а√天堂www在线а√下载 | 国产亚洲欧美98| 深夜精品福利| 女性被躁到高潮视频| 在线观看免费午夜福利视频| 午夜福利乱码中文字幕| 午夜日韩欧美国产| 在线观看免费日韩欧美大片| 国产又爽黄色视频| 国产1区2区3区精品| 在线观看午夜福利视频| tube8黄色片| av国产精品久久久久影院| 亚洲av欧美aⅴ国产| 人人妻,人人澡人人爽秒播| 国产精品一区二区免费欧美| 久久人妻熟女aⅴ| ponron亚洲| 亚洲精品国产色婷婷电影| 欧美日韩亚洲综合一区二区三区_| 亚洲五月色婷婷综合| 亚洲精品乱久久久久久| 国产91精品成人一区二区三区| 亚洲欧洲精品一区二区精品久久久| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 亚洲av熟女| 乱人伦中国视频| 国产成人av激情在线播放| 亚洲av欧美aⅴ国产| 国产男靠女视频免费网站| 午夜免费鲁丝| 最近最新免费中文字幕在线| 色在线成人网| 日日摸夜夜添夜夜添小说| 日韩大码丰满熟妇| 欧美在线黄色| 王馨瑶露胸无遮挡在线观看| 久久午夜亚洲精品久久| 日韩欧美一区视频在线观看| 搡老熟女国产l中国老女人| 久久久国产成人免费| 国产精品国产av在线观看| 不卡av一区二区三区| 中文字幕人妻熟女乱码| 亚洲精品一二三|