• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Approach to Stability Analysis and Stabilization of Discrete-Time T-S Fuzzy Descriptor Systems

    2015-07-24 17:34:42,

    ,

    (Space Control and Inertial Technology Research Center,Harbin Institute of Technology,Harbin 150080,China)

    New Approach to Stability Analysis and Stabilization of Discrete-Time T-S Fuzzy Descriptor Systems

    Mao Wang?,Jia Shi and Kan Liu

    (Space Control and Inertial Technology Research Center,Harbin Institute of Technology,Harbin 150080,China)

    The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper.Based on fuzzy Lyapunov function,a set of slack variables is introduced to remove the basic semi-definite matrix inequality condition to check the regularity,causality and stability of discrete-time T-S fuzzy descriptor systems;a new sufficient condition for the discrete-time T-S fuzzy descriptor systems to be admissible is proposed in terms of strict linear matrix inequalities(LMIs).And a sufficient condition is proposed for the existence of state feedback controller in terms of a set of coupled strict LMIs. Finally,an illustrative example is presented to demonstrate the effectiveness of the proposed approach.

    T-S fuzzy descriptor systems;parameter uncertainties;stability;state feedback control;linear matrix inequality(LMI)

    1 Introduction

    Descriptor systems are also known as singular systems,generalized state-space systems,implicit systems or differential-algebraic systems,which are well-known to be able to describe a wider class of systems,including physical models and non-dynamic constraints,and thus their stability issues are more complicated[1].Taniguchi and Tanaka et al.[2-3]investigated the fuzzy descriptor systems firstly.A variety of results concerning on the analysis and synthesis for the nonlinear descriptor systems described in T-S model have been proposed[4-8].In recent years,more and more attention has been paid to derive the strict LMI condition for stability analysis and controller design.

    Nevertheless,to date and to the best of our knowledge,there are few research results concerning on discrete-time T-S fuzzy descriptor systems.And main approaches to admissibility analysis for fuzzy descriptor systems have been based on a single Lyapunov function. These methods are basically reduced to the problem of finding a common Lyapunov function for a set of admissible conditions,which may lead to significant conservativeness[9].On the other hand,the most frequently used admissible condition for discrete-time descriptor systems is derived using a non-strict LMI and has the drawback that it cannot be directly solved using classical numerical tools.

    In this paper,it tries to remove the semi-definite matrix inequality in admissible condition.The objective in this paper is to remove such inequalities and establish new strict matrix inequality conditions.Based on the fuzzy Lyapunov function,the admissible condition for the discrete-time T-S fuzzy descriptor systems will be investigated.The fuzzy Lyapunov function shares the same membership function with the T-S fuzzy descriptor model of a descriptor system. Then,based on this result,this paper derives a sufficient condition for state feedback control of the discrete-time T-S fuzzy descriptor systems.We believe our results will find further applications as a fundamental tool for the discrete-time T-S fuzzy descriptor systems.

    The notations used throughout the paper are standard.Rndenotes then-dimensional Euclidean space,andRm×nrefers to the set of all real matrices withmrows andncolumns.ATrepresents the transpose of the matrixA,andA-1denotes the inverse ofA.For real symmetric matricesXandY,the notationX≥Y(respectively,X>Y)means that the matrixX-Yis positive-semi definite(respectively,positive definite). The notation?is used to indicate the terms which can be induced by symmetry.Iis the identity matrix with appropriate dimensions.

    2 Problem Formulation and Preliminaries

    In this paper,we consider a class of uncertain discrete-time T-S fuzzy descriptor systems described by,

    Rulei:IFTHEN

    Then,the final output of the uncertain discrete TS fuzzy descriptor system is inferred as follows:

    Considering the following unforced discrete fuzzy descriptor system:

    Based on system(4),we will introduce the following definitions.

    Definition 1[5]The system(4)is said to be regular if is not identically zero.

    Definition 2[5]The system(4)is said to be causal if

    Definition 3[5]The system(4)is said to be stable if it is regular and the system trajectory satisfies

    under arbitrary switching signals.

    Definition 4[5]The system(4)is said to be admissible if it is regular,causal and stable.

    Following lemmas are given for developing the main results.We end this section by recalling the following lemmas which will be used to derive our main results in this paper.

    3 Main Results

    In this section,we focus on the problems of stability and stabilization for the discrete-time T-S fuzzy descriptor system(3)based on the fuzzy Lyapunov function.And the results will be described by strict linear matrix inequalities.Firstly,we present the following theorem,which gives the condition to satisfy that the unforced system is admissible.

    Theorem 1System(4)is admissible,if there exist symmetric positive definite matricesand invertible symmetric matricessatisfying the following LMI:

    ProofTo facilitate the following discussion,we define

    Sincerank(E)=r,there exist two nonsingular matricessuch that[10]

    According to formulas(6)-(10),it follows that

    It is obviously that

    Then,we will prove that system(4)is stable.

    Let

    And from formulas(6)and(7)-(9),it is obtained that

    Pre-and post-multiply inequality(5)byandrespectively,together with formulas(6),(7)-(9)and(12)-(13),it follows that

    Obviously

    From formulas(6)and(7)-(9),system(4)is equally transformed into

    From system(15),we can see that ifx1(k)→0,ask→∞,thenx2(k)→0,k→∞.So,we only need to prove that the first system of system(15)is stable.

    A fuzzy Lyapunov function is constructed as

    Then,it is obtained that

    From formula(14),we can see thatΔV(k)<0.Then,it follows that the first system of system(15)is stable.This completes the proof.

    Remark 1Theorem 1 provides a sufficient condition for the discrete-time T-S fuzzy descriptor system(4)to be admissible.It is noted that the condition in formula(5)is strict LMI,which is in contrast to that in Refs.[1]and[5]where a non-strict LMI was included.

    However,Theorem 1 cannot be used directly to design controllers or observers.In order to design a feedback controller in strict LMI setting,we need a new formulation to Theorem 1.The following lemma is needed to derive the result of controller design.

    Theorem 2Letεandδbe given scalars.System(4)is admissible if there exist a nonsingular matrixGand symmetric positive-definite matricesYi,Ψisuch that the following LMI holds

    ProofSinceis of full row rank,then

    From formula(17),it is obtained that system(4)is admissible if there exist symmetric positivedefinite matricesPi,symmetric nonsingular matricesUiand matrixFsatisfying the following LMI:

    Applying the Schur complement lemma,formula(19)is equivalent to

    Note that,for any scalarsεandδ,and let0,the following inequalities hold

    Then,the above inequalities together with formula(20)results in

    The proof is completed.

    Remark 2In Theorem 2,scalarsεandδare introduced to reduce the conservativeness.It is easy to see that scalarsεandδmay be positive or negative. Given values of parametersεandδhave an important effect on the feasible solution of the coupled LMIs(16).If the values of parametersεandδare not chosen properly,the coupled LMIs(16)may have no feasible solutions.

    Next,we construct a state-feedback controller which shares the same fuzzy sets in the premise parts with the fuzzy model(1)and has local linear controller in the consequent parts as follows:

    Using the feedback control law(21)to system(3)withwe can obtain the closed-loop system

    Apply Theorem 2 to the closed-loop system(22)and letHi=KiG,then we have the following theorem.

    Theorem 3Letεandδbe given scalars. Considering the discrete-time T-S fuzzy descriptor system(3)withTi(k)=0,there exists a state feedback controller of the form(21)such that the closed-loop system(22)is admissible if there exist a non-singular matrixG,matricesHj,and symmetric positive-definite matricesYi,Ψisuch that

    and the local gains of the stabilizing state feedback controller are given by:

    ProofConsider the closed-loop system(22),according Theorem 2,and letwe have the following result.

    Letεandδbe given scalars.Considering system(4),if there exist a nonsingular matrixG,matricesHiand symmetric positive-definite matricesYi,Ψisuch that the following LMI holds

    and then system(22)is admissible via the state feedback controllerand the local gains are given by:

    This completes the proof[15].

    In the following,we focus on the design of a state feedback control for a class of uncertain discrete-time TS fuzzy descriptor systems such that the resulting closedloop system is admissible for all parameter uncertainties satisfying formula(2)and

    Using the feedback control law(21)to system(3),we can obtain the closed-loop system

    To facilitate the discussion,we give the following lemma.

    Lemma 1Given real matricesD,HandF(k)with appropriate dimensions,andF(k)satisfyingFT(k)F(k)≤I.Then,for any scalarρ>0,we have

    DF(k)H+HTFT(k)DT≤ρ-1DDT+ρHTH

    Based on Theorem 3 and Lemma 1,we can get the corresponding robust condition as follows.

    Theorem 4Letεandδ<0 be given scalars. Considering the uncertain discrete-time T-S fuzzy descriptor system(3),there exists a state feedback controller of the form(21)such that the closed-loop system(24)is admissible if there exist positive scalarsρ1ij>0,ρ2ij>0,a non-singular matrixG,matricesHj,and symmetric positive-definite matricesYi,Ψisuch that

    and the local gains of the stabilizing state feedback controller are given by:Ki=HiG-1.

    4 Numerical Example

    In this section,we present an illustrative example to demonstrate the applicability and effectiveness of the proposed approach.

    Considering uncertain discrete-time T-S fuzzy descriptor system(3)with parameters as

    The aim is to design a state feedback controller(21)to stabilize the system(3)to ensure correspond closed-loop system is robust admissible.

    The open system is not admissible.In particular,let the initial conditionx(0)=[1-0.5 0.5]T,then the state responses for the open-loop are shown in Fig.1.

    Fig.1 State responses of the open-loop system

    In Ref.[4],the matrices of the system need to do some transformation before we try to find feedback gain matrices.And the conditions of the given theorems are not given in stric LMIs,which cannot be solved by LMI control toolbox in Matlab.Similarly,theorems in Ref.[5]are also given in non-stric LMIs,which also causes difficulties in finding feedback gain matrices.

    The state responses for the closed-loop are shown in Fig.2.It can be clearly observed from the simulation curves that the designed state feedback controller stabilizes the above system,which illustrates the effectiveness of the proposed design approach.

    Fig.2 State responses of the closed-loop system

    5 Conclusions

    The problems of stability,state feedback control for discrete-time T-S fuzzy descriptor systems have been studied.Based on the fuzzy Lyapunov approach,a new sufficient condition for a discrete-time T-S fuzzy descriptor system to be admissible has been proposed in terms of strict LMIs.An explicit construction of a desired state feedback control law has also been given. A numerical example has been used to illustrate the main results.

    [1]Dai L.Singular Control Systems.Berlin:Springer-Verlag,Inc.,1989.

    [2]Taniguchi T,Tanaka K,Yamafuji K,et al.Fuzzy descriptor systems:stability analysis and design via LMIs. American Control Conference,1999.Proceedings of the 1999.Piscataway:IEEE,1999,3:1827-1831.

    [3]Taniguchi T,Tanaka K,Wang H O.Fuzzy descriptor systems and nonlinear model following control.IEEE Transactions on Fuzzy Systems,2000,8(4):442-452.

    [4]Xu S,Song B,Lu J,et al.Robust stability of uncertain discrete-time singular fuzzy systems.Fuzzy Sets and Systems,2007,158(20):2306-2316.

    [5]Zhu B Y,Zhang Q L,Tong S C.Stability criteria for a class of Takagi-Sugeno fuzzy discrete descriptor system. Kongzhi Lilun yu Yingyong/Control Theory&Applications,2007,24(1):113-116.

    [6]Huang C P.Stability analysis of discrete singular fuzzy systems.Fuzzy Sets and Systems,2005,151(1):155-165.

    [7]Wang C,Huang T,Qiu J.RobustH∞control of discretetime singular T-S fuzzy systems.7th World Congress on Intelligent Control and Automation,2008.WCICA 2008. Piscataway:IEEE,2008.2159-2163.

    [8]Huang C P.Stability analysis and controller synthesis for fuzzy descriptor systems.International Journal of Systems Science,2013,44(1):23-33.

    [9]Yuan Y,Zhang Q,Zhang D Q,et al.Admissible conditions of fuzzy descriptor systems based on fuzzy Lyapunov function approach.International Journal of Information and Systems Sciences,2008,4(2):219-232.

    [10]Zhang G,Xia Y,Shi P.New bounded real lemma for discrete-time singular systems.Automatica,2008,44(3):886-890.

    [11]Ma S,Boukas E K.Stability and stabilization for a class of discrete-time piecewise affine singular systems.Proceedings of the 48th IEEE Conference on Decision and Control,2009 held jointly with the 2009 28th Chinese Control Conference.CDC/CCC 2009.Piscataway:IEEE,2009:6395-6400.

    [12]Xia Y,Zhang J,Boukas E K.Control for discrete singular hybrid systems.Automatica,2008,44(10):2635-2641.

    [13]Yang C,Zhang Q,Zhou L.Stability Analysis and Design for Nonlinear Singular Systems.Berlin:Springer,2013.

    [14]Chadli M,Darouach M.Novel bounded real lemma for discrete-time descriptor systems:Application toH∞control design.Automatica,2012,48(2):449-453.

    [15]Lee H J,Kau S W,Lee C H,et al.H∞control for discrete-time fuzzy descriptor systems.IEEE International Conference on Systems,Man and Cybernetics,2006.SMC'06.Piscataway:IEEE,2006,6:5059-5064.

    TP273

    :1005-9113(2015)05-0055-06

    10.11916/j.issn.1005-9113.2015.05.009

    2014-07-14.

    Sponsored by the National Natural Science Foundation of China(Grant No.61004038).

    ?Corresponging author.E-mail:wangmao0451@sina.com.

    一a级毛片在线观看| 十八禁人妻一区二区| 最新在线观看一区二区三区| 在线国产一区二区在线| 亚洲 国产 在线| www.999成人在线观看| 国产精品久久视频播放| 久久精品91无色码中文字幕| 亚洲av电影不卡..在线观看| www日本在线高清视频| 久久久久亚洲av毛片大全| 天堂√8在线中文| 欧美成人一区二区免费高清观看 | 亚洲欧美日韩无卡精品| 亚洲熟女毛片儿| 精品一区二区三区视频在线观看免费| 午夜免费成人在线视频| 琪琪午夜伦伦电影理论片6080| 高清毛片免费观看视频网站| 亚洲人成网站高清观看| 黑人巨大精品欧美一区二区mp4| 搡老岳熟女国产| 亚洲无线在线观看| 亚洲成a人片在线一区二区| 一级毛片精品| 亚洲全国av大片| 长腿黑丝高跟| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩高清在线视频| 午夜视频精品福利| 久久久久久国产a免费观看| 国产欧美日韩一区二区精品| 丁香六月欧美| 亚洲成人久久性| 日本精品一区二区三区蜜桃| 真人一进一出gif抽搐免费| 国产又黄又爽又无遮挡在线| 国产99白浆流出| 18禁国产床啪视频网站| 好男人在线观看高清免费视频| 国产精品久久电影中文字幕| 啦啦啦观看免费观看视频高清| 亚洲av电影不卡..在线观看| 久久久久久亚洲精品国产蜜桃av| 青草久久国产| 亚洲精品中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 男女那种视频在线观看| 精品福利观看| 久久久久久久久久黄片| 亚洲精华国产精华精| 欧美极品一区二区三区四区| 亚洲午夜理论影院| 美女免费视频网站| 又粗又爽又猛毛片免费看| 国语自产精品视频在线第100页| 欧美日本视频| 精品少妇一区二区三区视频日本电影| 熟女电影av网| 2021天堂中文幕一二区在线观| 国产亚洲精品第一综合不卡| 此物有八面人人有两片| 99热只有精品国产| 19禁男女啪啪无遮挡网站| 1024视频免费在线观看| 真人一进一出gif抽搐免费| √禁漫天堂资源中文www| 欧洲精品卡2卡3卡4卡5卡区| www.www免费av| 制服诱惑二区| 国产一区二区三区在线臀色熟女| 国产亚洲精品第一综合不卡| 午夜福利欧美成人| 国产精品久久久av美女十八| 最好的美女福利视频网| 午夜福利18| 欧美黄色片欧美黄色片| 在线免费观看的www视频| 极品教师在线免费播放| 大型av网站在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁裸乳无遮挡免费网站照片| 国产成人一区二区三区免费视频网站| 中出人妻视频一区二区| 国产成人av激情在线播放| 又爽又黄无遮挡网站| 在线观看免费午夜福利视频| 黄色片一级片一级黄色片| 后天国语完整版免费观看| 精品久久久久久成人av| 成人18禁在线播放| 色综合欧美亚洲国产小说| 国产精品 欧美亚洲| 一本一本综合久久| 日本免费a在线| 后天国语完整版免费观看| 一边摸一边抽搐一进一小说| 一级片免费观看大全| 丝袜人妻中文字幕| 国产真实乱freesex| 欧美日韩一级在线毛片| 久久亚洲真实| 极品教师在线免费播放| 久久天躁狠狠躁夜夜2o2o| 毛片女人毛片| 成人av一区二区三区在线看| 日韩欧美 国产精品| 国产一区二区激情短视频| 亚洲人成电影免费在线| 国产熟女xx| 丁香欧美五月| 香蕉国产在线看| 国产精品电影一区二区三区| 亚洲国产精品sss在线观看| 最近最新中文字幕大全免费视频| 高清在线国产一区| 18禁观看日本| 十八禁网站免费在线| 一级毛片女人18水好多| 天堂av国产一区二区熟女人妻 | 亚洲欧美日韩无卡精品| www.www免费av| 免费在线观看日本一区| 国产在线观看jvid| 日本一二三区视频观看| 黑人操中国人逼视频| 亚洲国产精品sss在线观看| 久久亚洲真实| 一级毛片精品| 搡老岳熟女国产| 免费看十八禁软件| 亚洲午夜理论影院| 午夜免费观看网址| 亚洲欧美激情综合另类| 精品不卡国产一区二区三区| 一个人免费在线观看的高清视频| 人妻久久中文字幕网| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 欧美人与性动交α欧美精品济南到| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 亚洲aⅴ乱码一区二区在线播放 | 俄罗斯特黄特色一大片| 国产人伦9x9x在线观看| 亚洲美女黄片视频| 禁无遮挡网站| 欧美精品啪啪一区二区三区| 亚洲精品美女久久久久99蜜臀| 可以在线观看的亚洲视频| 韩国av一区二区三区四区| 99re在线观看精品视频| 我要搜黄色片| 天堂影院成人在线观看| 亚洲自拍偷在线| 男女下面进入的视频免费午夜| 国产精品爽爽va在线观看网站| x7x7x7水蜜桃| 国产免费男女视频| 九色成人免费人妻av| 黄片大片在线免费观看| 欧美日韩国产亚洲二区| 巨乳人妻的诱惑在线观看| 这个男人来自地球电影免费观看| 日本撒尿小便嘘嘘汇集6| 超碰成人久久| 一二三四社区在线视频社区8| 1024手机看黄色片| 亚洲自偷自拍图片 自拍| 免费看a级黄色片| 最近最新免费中文字幕在线| 级片在线观看| 国产在线观看jvid| 亚洲欧美日韩高清专用| 不卡av一区二区三区| 在线永久观看黄色视频| 黄片大片在线免费观看| 欧美日韩瑟瑟在线播放| 欧美日韩黄片免| 精品国产乱码久久久久久男人| www.精华液| 亚洲国产精品合色在线| 淫秽高清视频在线观看| 黄色片一级片一级黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 一级作爱视频免费观看| 亚洲成av人片在线播放无| 999精品在线视频| 国产av不卡久久| 香蕉丝袜av| 法律面前人人平等表现在哪些方面| 啦啦啦韩国在线观看视频| 久久久久久人人人人人| 久久精品91无色码中文字幕| 亚洲av中文字字幕乱码综合| 黄片小视频在线播放| 男插女下体视频免费在线播放| 亚洲国产欧美网| 亚洲成人免费电影在线观看| 日韩 欧美 亚洲 中文字幕| 中文字幕人成人乱码亚洲影| 女生性感内裤真人,穿戴方法视频| 精品第一国产精品| 免费在线观看成人毛片| 久久热在线av| 欧美高清成人免费视频www| 麻豆久久精品国产亚洲av| 午夜老司机福利片| 50天的宝宝边吃奶边哭怎么回事| 日本一本二区三区精品| 欧美高清成人免费视频www| 久久久久亚洲av毛片大全| 国产精品免费一区二区三区在线| 亚洲成av人片免费观看| 精品日产1卡2卡| 757午夜福利合集在线观看| 国产野战对白在线观看| 香蕉国产在线看| 啦啦啦韩国在线观看视频| 美女午夜性视频免费| 性色av乱码一区二区三区2| 久久人妻av系列| 一区二区三区激情视频| 2021天堂中文幕一二区在线观| 亚洲国产高清在线一区二区三| 国产不卡一卡二| 国产精品精品国产色婷婷| 国产精品亚洲av一区麻豆| 国产黄片美女视频| 90打野战视频偷拍视频| 熟女少妇亚洲综合色aaa.| 一进一出抽搐gif免费好疼| 亚洲国产看品久久| 18禁黄网站禁片午夜丰满| 757午夜福利合集在线观看| 男人舔奶头视频| 久久久久久久精品吃奶| 欧美一级a爱片免费观看看 | 亚洲精品粉嫩美女一区| www.精华液| 久久精品人妻少妇| cao死你这个sao货| 亚洲av中文字字幕乱码综合| av欧美777| 成人av在线播放网站| 久久久精品大字幕| 国内揄拍国产精品人妻在线| 久久这里只有精品19| 韩国av一区二区三区四区| 男女床上黄色一级片免费看| 久久草成人影院| 999精品在线视频| 波多野结衣高清作品| 日本一二三区视频观看| 婷婷亚洲欧美| 午夜福利欧美成人| 麻豆国产av国片精品| 韩国av一区二区三区四区| 男女床上黄色一级片免费看| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 欧美在线一区亚洲| 久久久久久久久免费视频了| 香蕉av资源在线| 免费看十八禁软件| 亚洲一区中文字幕在线| 亚洲无线在线观看| 正在播放国产对白刺激| 中文字幕人成人乱码亚洲影| 免费观看人在逋| 午夜精品一区二区三区免费看| av在线播放免费不卡| 18禁裸乳无遮挡免费网站照片| 国产免费男女视频| 国产欧美日韩精品亚洲av| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 日本一二三区视频观看| 特级一级黄色大片| 欧美性猛交黑人性爽| 精品午夜福利视频在线观看一区| 神马国产精品三级电影在线观看 | 亚洲人成伊人成综合网2020| 亚洲专区字幕在线| 日韩欧美三级三区| 桃色一区二区三区在线观看| 又黄又粗又硬又大视频| 十八禁网站免费在线| 在线播放国产精品三级| 最好的美女福利视频网| xxxwww97欧美| 伊人久久大香线蕉亚洲五| 国内毛片毛片毛片毛片毛片| 波多野结衣巨乳人妻| 一进一出抽搐gif免费好疼| 99精品欧美一区二区三区四区| 一个人免费在线观看的高清视频| 国产激情偷乱视频一区二区| 亚洲av美国av| 特大巨黑吊av在线直播| av福利片在线观看| 丝袜美腿诱惑在线| 可以在线观看毛片的网站| 美女午夜性视频免费| e午夜精品久久久久久久| 小说图片视频综合网站| 在线观看午夜福利视频| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 亚洲国产精品久久男人天堂| 美女午夜性视频免费| 丝袜人妻中文字幕| 亚洲中文字幕日韩| av超薄肉色丝袜交足视频| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线| 精品日产1卡2卡| 无遮挡黄片免费观看| 一级作爱视频免费观看| 久久精品91蜜桃| 欧美黑人巨大hd| 50天的宝宝边吃奶边哭怎么回事| 美女高潮喷水抽搐中文字幕| 亚洲国产精品久久男人天堂| 国产三级在线视频| av片东京热男人的天堂| 欧美最黄视频在线播放免费| 一二三四社区在线视频社区8| 久久午夜综合久久蜜桃| 99re在线观看精品视频| 99热这里只有精品一区 | 亚洲 欧美 日韩 在线 免费| 国产高清有码在线观看视频 | 国产精品久久久人人做人人爽| 精品欧美国产一区二区三| 女同久久另类99精品国产91| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久视频播放| 看黄色毛片网站| 长腿黑丝高跟| 性欧美人与动物交配| 妹子高潮喷水视频| 欧美成狂野欧美在线观看| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看电影 | 精品福利观看| av视频在线观看入口| 国产精品一区二区免费欧美| 欧美黄色片欧美黄色片| 亚洲欧美激情综合另类| 亚洲乱码一区二区免费版| av福利片在线| 亚洲专区国产一区二区| 一本久久中文字幕| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美人成| 99国产精品99久久久久| 免费电影在线观看免费观看| 两个人看的免费小视频| 五月玫瑰六月丁香| 丰满人妻熟妇乱又伦精品不卡| 国产真人三级小视频在线观看| 国产真实乱freesex| 少妇粗大呻吟视频| 日本一区二区免费在线视频| 午夜两性在线视频| 国产欧美日韩一区二区精品| 悠悠久久av| 日韩av在线大香蕉| 国产精品一区二区精品视频观看| 国产精品av视频在线免费观看| 亚洲欧美精品综合久久99| 少妇人妻一区二区三区视频| 毛片女人毛片| 午夜福利高清视频| 三级毛片av免费| 手机成人av网站| 99久久无色码亚洲精品果冻| www日本在线高清视频| 久久精品国产亚洲av高清一级| 欧美日本视频| 女生性感内裤真人,穿戴方法视频| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 黄色丝袜av网址大全| 色在线成人网| 日韩有码中文字幕| 国产亚洲精品久久久久久毛片| 欧美成人一区二区免费高清观看 | 欧美日韩国产亚洲二区| 18禁美女被吸乳视频| 午夜精品一区二区三区免费看| 十八禁网站免费在线| 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 岛国视频午夜一区免费看| 国产人伦9x9x在线观看| 久久精品影院6| 人妻丰满熟妇av一区二区三区| 国产精品一区二区精品视频观看| 久久人妻福利社区极品人妻图片| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美人成| 熟女少妇亚洲综合色aaa.| 精品久久久久久,| 午夜福利成人在线免费观看| av中文乱码字幕在线| www国产在线视频色| 99re在线观看精品视频| 国产单亲对白刺激| av在线播放免费不卡| 成年免费大片在线观看| 亚洲国产精品999在线| 久久久精品国产亚洲av高清涩受| 免费看a级黄色片| 可以在线观看的亚洲视频| av中文乱码字幕在线| 精品欧美一区二区三区在线| 国产亚洲精品第一综合不卡| 色播亚洲综合网| 无限看片的www在线观看| 天天添夜夜摸| 国产精品野战在线观看| 亚洲精品色激情综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品999在线| 给我免费播放毛片高清在线观看| 国产精品一区二区三区四区免费观看 | 亚洲人与动物交配视频| 中文亚洲av片在线观看爽| 黄片大片在线免费观看| 在线a可以看的网站| 桃红色精品国产亚洲av| 悠悠久久av| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 一级作爱视频免费观看| 老熟妇仑乱视频hdxx| 久久这里只有精品19| av免费在线观看网站| 黄频高清免费视频| 激情在线观看视频在线高清| 亚洲av电影在线进入| 久久精品亚洲精品国产色婷小说| 99久久无色码亚洲精品果冻| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 欧美丝袜亚洲另类 | 曰老女人黄片| 免费高清视频大片| 观看免费一级毛片| a级毛片a级免费在线| 国产免费男女视频| 18禁美女被吸乳视频| 又紧又爽又黄一区二区| 一级作爱视频免费观看| 好男人电影高清在线观看| 少妇的丰满在线观看| 巨乳人妻的诱惑在线观看| 可以免费在线观看a视频的电影网站| 欧美黑人精品巨大| 欧美久久黑人一区二区| 欧美黄色片欧美黄色片| 欧美日本视频| 亚洲五月天丁香| 成人国产综合亚洲| 好男人在线观看高清免费视频| 午夜福利在线在线| 在线看三级毛片| 丁香欧美五月| 欧美久久黑人一区二区| 丰满人妻一区二区三区视频av | 无限看片的www在线观看| 露出奶头的视频| 99国产精品一区二区三区| 午夜福利在线观看吧| 日本成人三级电影网站| 精品熟女少妇八av免费久了| 亚洲国产精品sss在线观看| 久久久久国产一级毛片高清牌| 国产精品久久久久久精品电影| 啦啦啦韩国在线观看视频| 日韩三级视频一区二区三区| 无限看片的www在线观看| 久久精品成人免费网站| 麻豆成人av在线观看| 麻豆成人午夜福利视频| 国产亚洲精品第一综合不卡| 少妇的丰满在线观看| 久久中文看片网| 久久久久精品国产欧美久久久| 日韩成人在线观看一区二区三区| 可以在线观看的亚洲视频| 狂野欧美激情性xxxx| 成人三级做爰电影| av天堂在线播放| 亚洲欧美日韩高清专用| 亚洲一区中文字幕在线| 神马国产精品三级电影在线观看 | 国产高清有码在线观看视频 | 怎么达到女性高潮| 岛国视频午夜一区免费看| 狂野欧美激情性xxxx| 成人三级黄色视频| 成人手机av| 老汉色∧v一级毛片| 精品欧美国产一区二区三| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影| 淫妇啪啪啪对白视频| 国产精品久久久久久久电影 | svipshipincom国产片| 男人舔女人下体高潮全视频| 香蕉国产在线看| 国产乱人伦免费视频| 国产高清有码在线观看视频 | 日韩欧美在线乱码| 久久久国产精品麻豆| 久久热在线av| 长腿黑丝高跟| 国产aⅴ精品一区二区三区波| 免费av毛片视频| 色av中文字幕| 日韩精品免费视频一区二区三区| 好男人在线观看高清免费视频| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 亚洲最大成人中文| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人| 99热只有精品国产| 日韩大尺度精品在线看网址| 国产亚洲欧美在线一区二区| 欧美日本视频| 亚洲av熟女| 好看av亚洲va欧美ⅴa在| 亚洲九九香蕉| 丁香六月欧美| 欧美黑人欧美精品刺激| 国产av麻豆久久久久久久| www.999成人在线观看| 日日夜夜操网爽| 天堂动漫精品| 国产久久久一区二区三区| 波多野结衣高清无吗| 18禁裸乳无遮挡免费网站照片| 在线a可以看的网站| 一级片免费观看大全| 夜夜躁狠狠躁天天躁| 97人妻精品一区二区三区麻豆| 久久精品成人免费网站| 搞女人的毛片| 最近视频中文字幕2019在线8| 亚洲av电影不卡..在线观看| 中文字幕人成人乱码亚洲影| 精品一区二区三区四区五区乱码| 村上凉子中文字幕在线| 欧美久久黑人一区二区| 精品免费久久久久久久清纯| 欧美日韩精品网址| 黄色片一级片一级黄色片| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 亚洲精华国产精华精| av中文乱码字幕在线| 欧美大码av| 欧美日韩中文字幕国产精品一区二区三区| 亚洲午夜精品一区,二区,三区| bbb黄色大片| 天天躁狠狠躁夜夜躁狠狠躁| 50天的宝宝边吃奶边哭怎么回事| av视频在线观看入口| 日韩国内少妇激情av| 1024手机看黄色片| 亚洲美女视频黄频| 麻豆一二三区av精品| 黄频高清免费视频| 精品电影一区二区在线| 国产人伦9x9x在线观看| 变态另类丝袜制服| 国产午夜精品论理片| 麻豆国产av国片精品| 日韩精品免费视频一区二区三区| 国产激情久久老熟女| 视频区欧美日本亚洲| 中文亚洲av片在线观看爽| 欧美乱妇无乱码| avwww免费| 人人妻人人看人人澡| 91国产中文字幕| 日韩精品青青久久久久久| 欧美另类亚洲清纯唯美| www.999成人在线观看| 国产探花在线观看一区二区| 国产精品久久视频播放| 精品久久久久久,| 国产99久久九九免费精品| 最近最新中文字幕大全免费视频| 老熟妇仑乱视频hdxx| 欧美大码av| 男女床上黄色一级片免费看| 国产乱人伦免费视频| 亚洲一区高清亚洲精品| 长腿黑丝高跟| 欧美乱色亚洲激情| 久9热在线精品视频| 久久这里只有精品中国| 精品日产1卡2卡| 十八禁网站免费在线| 三级男女做爰猛烈吃奶摸视频| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆| 亚洲av中文字字幕乱码综合|