• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      線粒體復合體Ⅲ抑制劑抗霉素A對巨噬細胞免疫功能的影響

      2015-07-24 19:02:04崔樹娜錢靜卜平
      中國藥理學與毒理學雜志 2015年4期
      關(guān)鍵詞:膜電位念珠菌磷酸化

      崔樹娜,錢靜,卜平

      (揚州大學醫(yī)學院中西醫(yī)結(jié)合學系,江蘇揚州225001)

      線粒體復合體Ⅲ抑制劑抗霉素A對巨噬細胞免疫功能的影響

      崔樹娜,錢靜,卜平

      (揚州大學醫(yī)學院中西醫(yī)結(jié)合學系,江蘇揚州225001)

      目的研究線粒體復合體Ⅲ抑制劑抗霉素A(AMA)對巨噬細胞免疫功能的影響,并探討其可能的作用機制。方法AMA 0.0005,0.05,0.5,5和10 mg·L-1與RAW264.7巨噬細胞分別作用2,24和48 h后,WST-1法檢測巨噬細胞增殖;AMA 0.0005,0.05和0.5 mg·L-1與RAW264.7作用2 h后,定量熒光法檢測巨噬細胞產(chǎn)生活性氧水平、線粒體膜電位和對白色念珠菌的吞噬作用;Western蛋白印跡法檢測絲裂原活化蛋白激酶(MAPK)P38蛋白磷酸化水平;Griess法檢測細胞培養(yǎng)上清一氧化氮含量。結(jié)果AMA作用2 h對RAW264.7巨噬細胞增殖無明顯影響,當作用時間延長到24和48 h后,可顯著抑制RAW264.7巨噬細胞增殖(P<0.01)。AMA作用2 h可顯著誘導RAW264.7巨噬細胞產(chǎn)生活性氧(P<0.01),降低線粒體膜電位(P<0.01)。AMA可增強RAW264.7巨噬細胞對白色念珠菌的吞噬功能,顯著降低脂多糖誘導的巨噬細胞炎癥介質(zhì)一氧化氮的產(chǎn)生(P<0.01)。AMA顯著誘導MAPK P38磷酸化(P<0.01)。結(jié)論AMA能夠誘導RAW264.7巨噬細胞線粒體損傷,增強巨噬細胞對白色念珠菌的吞噬功用,降低脂多糖誘導的炎癥反應(yīng),可能與激活MAPK P38磷酸化,進而激活MAPK信號轉(zhuǎn)導通路有關(guān)。

      巨噬細胞;線粒體復合體Ⅲ;抗霉素A

      DOl:10.3867/j.issn.1000-3002.2015.04.007

      線粒體復合體Ⅲ抑制劑抗霉素A(antimycin A,AMA)是一種具有殺菌作用的抗生素[1],其作用機制包括抑制琥珀酸和煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NADH)氧化酶,及線粒體細胞色素bc1之間的電子傳輸[2]。線粒體內(nèi)電子傳遞的抑制會導致線粒體內(nèi)膜跨膜質(zhì)子梯度崩潰,從而破壞線粒體膜電位;這種抑制也導致活性氧(reactive oxygen species,ROS)的生成。研究發(fā)現(xiàn),AMA能夠誘導腫瘤細胞凋亡,抑制自噬,有望成為潛在的抗肺癌干細胞藥物[3-4]。然而,其對巨噬細胞的線粒體損傷及巨噬細胞功能的影響尚未見報道。因此,本研究觀察AMA對巨噬細胞增殖、ROS生成、膜電位的變化、吞噬以及分泌功能的影響,并觀察AMA對絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)P38蛋白磷酸化的影響,進一步探討其可能的作用機制。

      1 材料與方法

      1.1 細胞、試劑和儀器

      RAW264.7巨噬細胞購于美國菌種保藏中心,細胞培養(yǎng)嚴格按照說明書操作。白色念珠菌SC5314,德國菌種保藏中心;DMEM培養(yǎng)液和胎牛血清,瑞士Lonza公司;2′,7′二氯氫化熒光素二乙酸酯(H2DCFDA),美國Invitrogen公司;AMA、鏈霉素、青霉素、NaHCO3、脂多糖(lipopolysaccharides,LPS)、羅丹明123、YPD培養(yǎng)基和FITC購于德國Sigma公司;抗MAPK P38抗體和抗磷酸化P38(p-P38)抗體購于美國Cell Signaling公司;用于測定一氧化氮(nitric oxide,NO)的格里斯(Griess)試劑:1%對氨基苯磺酸和0.1%萘胺分別溶于50 mL 5%的H3PO4中,4℃儲存,臨用前在室溫下1∶1(V/V)混合。96孔細胞培養(yǎng)板,美BD Falcon公司;細胞培養(yǎng)瓶,美國Corning公司;分光光度計μQuant和熒光儀Synergy 4,美國BioTek公司;SDS-PAGE和WB系統(tǒng),美國Bio-Rad公司;低溫超速離心機,德國Eppendorf公司。

      1.2 細胞培養(yǎng)

      巨噬細胞RAW264.7采用完全DMEM培養(yǎng)液培養(yǎng),培養(yǎng)條件為37℃,10%CO2,相對飽和濕度。AMA終濃度分別為0.0005,0.005,0.05,0.5,5和50 mg·L-1,同時設(shè)溶劑(MeOH)對照組。溶劑對照組的MeOH體積含量比低于0.1%。

      1.3 WST-1法[5]檢測巨噬細胞增殖

      RAW264.7巨噬細胞經(jīng)DMEM培養(yǎng)液培養(yǎng)后,選取對數(shù)生長期細胞,用細胞刮刮下,計數(shù)后按5×108,1×109和2×109L-1接種在96孔板中,每孔培養(yǎng)液總體積為90 μL。并在每孔中分別加入AMA,終濃度分別為0.0005,0.005,0.05,0.5,5和50 mg·L-1。每濃度設(shè)8復孔,分別在培養(yǎng)2,24和48 h后加入10 μL的WST-1,孵育1 h,用分光光度計于450 nm檢測吸光度值(A)值。細胞增殖率(%)=(給藥組A450nm/正常對照組A450nm)×100%。

      1.4 H2DCFDA熒光染色測定細胞內(nèi)ROS含量

      將1×109L-1巨噬細胞RAW264.7接種在96孔板中2 h后,加入AMA預處理2 h,用PBS清洗1次后,用20 μmol·L-1H2DCFDA在37℃染色30 min,用熒光儀讀取熒光值(FI),檢測熒光波長為發(fā)射光480 nm,激發(fā)光為520 nm。計算平均值。

      1.5 羅丹明123熒光法測定巨噬細胞線粒體膜電位

      將1×109L-1巨噬細胞RAW264.7接種在96孔板2 h后,加入AMA預處理2 h,用PBS清洗1次后,用0.1 mg·L-1的羅丹明123在37℃染色30 min,用熒光儀讀取FI,檢測熒光的波長為發(fā)射光480 nm,激發(fā)光為520 nm。計算平均值。

      1.6 定量熒光法檢測巨噬細胞對白色念珠菌的吞噬作用[6]

      先用FITC對白色念珠菌進行熒光標記。將在YPD培養(yǎng)基中過夜培養(yǎng)的白色念珠菌計數(shù)后,按1×1011L-1密度轉(zhuǎn)移到1.5 mL試管中,離心收集(15 100×g,5 min,24℃)。棄上清,PBS清洗2次后加入1 mL用0.1 mmol·L-1NaHCO3(pH=9.0)稀釋的終濃度為500 mg·L-1的FITC染色,4℃過夜。第2天,用PBS沖洗3次立即使用,或放置在-20°C保存。

      將100 μL(2×109L-1)RAW264.7巨噬細胞接種96孔板,加入AMA預處理2 h后,終濃度為0.0005,0.005,0.05和0.5 mg·L-1,加入FITC標記的白色念珠菌感染巨噬細胞,巨噬細胞與白色念珠菌的比例為1∶2。感染后,將96孔板置于細胞培養(yǎng)箱(37℃,10%CO2),感染時間為60 min,用熒光儀讀取熒光強度后,用100 μL臺盼藍(250 mg·L-1)淬滅未被巨噬細胞吞噬的白色念珠菌熒光。在室溫下孵化1 min,棄去臺盼藍溶液,繼續(xù)用熒光儀從底部讀取數(shù)值,發(fā)射光波長為480 nm,激發(fā)光波長為520 nm。巨噬細胞的吞噬作用用感染組淬滅后相對熒光單位(relative fluorescence unit)-真菌對照組淬滅后RFU之差表示。

      1.7 Griess法測定NO含量

      取對數(shù)生長期的RAW264.7巨噬細胞,按1×109L-1接種在96孔板中并加入AMA預處理1 h后,加入LPS(終濃度為0.1 mg·L-1)繼續(xù)刺激20 h,取50 μL上清液置于96孔酶標板中,加等體積的Griess試劑,室溫下靜置10 min后,于酶標儀上測定A540nm,以標準曲線計算各組培養(yǎng)液中NO的含量。

      1.8 Western蛋白印跡法檢測MAPK P38的磷酸化

      方法見參考文獻[5],巨噬細胞以5×108L-1密度接種于6孔板,不同濃度AMA刺激30 min后;PBS洗滌2次,每孔加入100 μL含蛋白酶和磷酸酶抑制劑的SDS蛋白裂解液,冰上裂解30 min;用細胞刮刮下細胞,15 100×g,離心15 min,取上清。用BCA法進行蛋白定量,取30 μg等量蛋白,稀釋到上樣緩沖液中;將樣品在沸水中煮5 min,冰上冷卻后,15 100×g,離心10 min;75 g·L-1SDS-PAGE分離后,蛋白轉(zhuǎn)至PVDF膜上;用含50 g·L-1脫脂牛奶的TBST封閉膜2 h,小鼠抗P38和p-P38抗體(1∶1000)4℃孵育過夜;TBST充分洗滌膜,用HRP標記的山羊抗小鼠二抗(1∶3000)室溫孵育1 h;TBS洗3次,每次10 min,ECL顯色,化學凝膠成像系統(tǒng)成像,檢測p-P38和P38表達情況。以p-P38的積分吸光度值與p38的積分吸光度值比值表示蛋白表達相對水平。

      1.9 統(tǒng)計學分析

      2 結(jié)果

      2.1 AMA對巨噬細胞細胞增殖的影響

      圖1結(jié)果顯示,AMA 0.0005~50 mg·L-1的作用于RAW264.7細胞2 h對細胞增殖無影響。24 h后,AMA 50 mg·L-1對RAW264.7細胞增殖抑制作用明顯,細胞增殖率為41%(P<0.01),而其他濃度組巨噬細胞增殖率均>80%(P<0.01)。48 h后,AMA 0.0005~50 mg·L-1對巨噬細胞增殖均有顯著抑制作用(P<0.01)。因此,本研究采用AMA的濃度范圍為0.0005~0.5 mg·L-1,作用時間是2~24 h。

      Fig.1 .Effect of antimycin A(AMA)on cell proliferation of RAW264.7 cells.Macrophages were cultured with 0.0005-50·L-1AMA for 2,24 and 48 h,respectively.Cell proliferation was detected by WST-1 assay.Cell proliferation rate(%)=(A450nmof treated group/A450nmof solvent(control group)×100%.,compared with solvent control(MeOH)group.

      2.2 AMA誘導巨噬細胞生成ROS

      AMA作用RAW264.7巨噬細胞2h,AMA0.0005~0.5mg·L-1可誘導巨噬細胞產(chǎn)生ROS(P<0.01),分別為溶濟對照組的1.18,1.39,1.68和1.89倍(圖2)。

      Fig.2 Effect of AMA on reactive oxygen species(ROS)production of RAW264.7 cells.Macrophages were cultured with or without AMA for 2 h and stained with H2DCFDA.ROS production was detected by fluorescence intensity,which was detected by fluorometer.FI:fluorescence intensity.0.01,compared with solvent control(MeOH)group.

      2.3 AMA對巨噬細胞線粒體膜電位的影響

      圖3結(jié)果顯示,AMA 0.0005~0.5 mg·L-1組RAW264.7巨噬細胞線粒體膜電位分別為溶劑對照組的88%,76%,62%和53%(P<0.01)。

      Fig.3 EffectofAMAonmembranepotentialof RAW264.7 cells.Macrophages were cultured with AMA for 2h,andstainedwithRodamine123.Thechangein mitochondial membrane potential of RAW264.7 cell was detected by fluorometer.,compared with solvent control(MeOH)group.

      2.4 AMA對巨噬細胞吞噬功能的影響

      圖4結(jié)果顯示,與溶劑對照組比,隨著AMA濃度的增加,RAW264.7巨噬細胞對白色念珠菌的吞噬作用增強(P<0.01);在AMA 0.005 mg·L-1時,對白色念珠菌的吞噬作用最強,AMA 0.05和0.5 mg·L-1作用減弱。

      Fig.4 Effect of AMA on phagocytosis of C.albicans by RAW264.7 cells.Macrophages were pretreated with AMA for 2 h,and then were infected with FITC labeled C.albicans. The amount of internalized yeasts was determined 60 min post infection by a fluorescence microtiter plate reader.RFU:relative fluorescence unit.compared with solvent control(MeOH)group.

      2.5 AMA對LPS誘導的巨噬細胞產(chǎn)生NO的影響

      圖5所示,溶劑對照組分泌NO含量較低,LPS 0.1 mg·L-1能明顯刺激巨噬細胞生成NO(P<0.01),AMA 0.005,0.05和0.5 mg·L-1可抑制NO的生成(P<0.01),分別為LPS+MeOH對照組的73%,62%和63%。

      Fig.5 Effect of AMA on nitric oxide(NO)production of RAW264.7 cells induced by lipopolysaccharides(LPS). Macrophages were cultured with LPS alone or withAMA for 20 h. NO production was measured by Griess reagent. 0.01,compared with solvent control(MeOH)group;##P<0.01,compared with LPS+MeOH group.

      2.6 AMA對巨噬細胞MAPK P38磷酸化的影響

      如圖6所示,溶劑對照組巨噬細胞僅有少量磷酸化MAPK P38蛋白表達,AMA 0.005~0.5 mg·L-1作用30min后,磷酸化MAPKP38蛋白表達明顯增強(P<0.01),提示AMA可以顯著誘導MAPK P38磷酸化。

      Fig.6 Effect of AMA on phosphorylation of mitogenactivated protein kinases((MAPK)P38 in RAW264.7 cells by Western blotting.Macrophages were cultured with or without AMA for 30 min.A,lane 1:solvent control;lane 2:AMA 0.005 mg·L-1;lane 3:AMA 0.05 mg·L-1;lane 4:AMA 0.5 mg·L-1. B was the semiquantitative result of A.compared with solvent control(MeOH)group.

      3 討論

      本研究結(jié)果表明,AMA能夠誘導RAW264.7巨噬細胞線粒體損傷,同時增強巨噬細胞對白色念珠菌的吞噬作用,并降低LPS誘導的炎癥反應(yīng),可能與激活MAPK P38磷酸化,進而激活MAPK信號傳導通路有關(guān)。AMA在0.005~0.5 mg·L-1濃度范圍內(nèi)能夠誘導RAW264.7巨噬細胞產(chǎn)生ROS,并降低線粒體膜電位,而在此濃度范圍內(nèi),RAW264.7巨噬細胞對白色念珠菌的吞噬作用增強,降低LPS誘導的炎癥反應(yīng),說明巨噬細胞線粒體復合體Ⅲ損傷與免疫功能相關(guān)。

      AMA為特異性線粒體復合體Ⅲ抑制劑,AMA作用白色念珠菌能顯著誘導ROS生成[7]。在細胞模型中也發(fā)現(xiàn),AMA作用于不同PC12細胞系后能誘導ROS產(chǎn)生,誘導細胞凋亡[8]。本研究結(jié)果表明,AMA 0.005~0.5 mg·L-1作用于巨噬細胞后,能夠誘導RAW264.7巨噬細胞ROS生成及線粒體損傷。由于MAPK P38的激活與氧化應(yīng)激相關(guān)[9],AMA能誘導氧化應(yīng)激[10],為進一步明確其作用機制,本研究重點觀察了AMA對MAPK P38蛋白磷酸化的影響。發(fā)現(xiàn)AMA能夠誘導RAW264.7巨噬細胞MAPK P38磷酸化,表明AMA能夠激活MAPK信號通路。在白色念珠菌感染中,白色念珠菌細胞壁表面成分β-葡聚糖能夠與巨噬細胞細胞表面受體Dectin-1結(jié)合,從而激活轉(zhuǎn)錄因子AP-1和NF-κB[11]。AMA預處理RAW264.7巨噬細胞后能夠激活MAPK P38磷酸化,白色念珠菌感染巨噬細胞也能激活MAPK。因此,其吞噬作用增強可能與雙重激活MAPK信號通路有關(guān)。

      綜上所述,本研究通過觀察AMA對RAW264.7巨噬細胞生成ROS、線粒體膜電位改變、巨噬細胞吞噬功能和分泌功能的變化,發(fā)現(xiàn)AMA可通過誘導線粒體損傷并增強磷酸化MAPK P38表達,而增強巨噬細胞對白色念珠菌的吞噬功能。本研究為更深入研究線粒體損傷與巨噬細胞免疫功能之間的關(guān)系提供實驗依據(jù)。

      [1]Kido GS,Spyhalski E.Antimycin A,an antibiotic with insecticidal and miticidal properties[J].Science,1950,112(2902):172-173.

      [2]Ransac S,Mazat JP.How does antimycin inhibit the bc1 complex?A part-time twin[J].Biochim Biophys Acta,2010,1797(12):1849-1857.

      [3]Yeh CT,Su CL,Huang CY,Lin JK,Lee WH,Chang PM,et al.A preclinical evaluation of antimycin a as a potential antilung cancer stem cell agent[J].Evid Based Complement Alternat Med,2013,2013:910451.

      [4]Ma X,Jin M,Cai Y,Xia H,Long K,Liu J,et al. Mitochondrial electron transport chain complexⅢisrequired for antimycin A to inhibit autophagy[J].Chem Biol,2011,18(11):1474-1481.

      [5]Cui SN,Bilitewski U.Anti-inflammatory effect of Syk inhibitor in LPS stimulated macrophages[J].Chin J Cell Mol Immunol(細胞與分子免疫學),2013,29(10):1024-1027.

      [6]Klippel N,Cui S,Groebe L,Bilitewski U.Deletion of theCandida albicanshistidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall beta-1,3-glucans[J].Microbiology,2010,156(Pt 11):3432-3444.

      [7]Ruy F,Vercesi AE,Kowaltowski AJ.Inhibition of

      specificelectrontransportpathwaysleadsto oxidative stress and decreasedCandida albicansproliferation[J].J Bioenerg Biomembr,2006,38(2):129-135.

      [8]Lanju X,Jing X,Shichang L,Zhuo Y.Induction of apoptosis by antimycin A in differentiated PC12 cell line[J].J Appl Toxicol,2014,34(6):651-657.

      [9]Tormos AM,Taléns-Visconti R,Nebreda AR,Sastre J. p38 MAPK:a dual role in hepatocyte proliferation through reactive oxygen species[J].Free Radic Res,2013,47(11):905-916.

      [10]Choi EM,Jung WW,Suh KS.Pinacidil protects osteoblastic cells against antimycin A-induced oxidative damage[J].Mol Med Rep,2015,11(1):746-752.

      [11]Mayer FL,Wilson D,Hube B.Candida albicanspathogenicity mechanisms[J].Virulence,2013,4(2):119-128.

      Effect of mitochondrial complexⅢinhibitor antimycin A on immune function of macrophages

      CUI Shu-na,QIAN Jing,BO Ping
      (Department of Integrated Traditional Chinese Medicine and Western Medicine,Medical College of Yangzhou University,Yangzhou 225001,China)

      OBJECTlVETo investigate the role of macrophage mitochondrial complexⅢinhibitor antimycin A(AMA)on the immune function of macrophages and to explore its possible mechanism.METHODSAMA of different concentrations(0.0005-0.5 mg·L-1)was used for incubation with macrophages RAW264.7 for 2,24 and 48 h.Cell proliferation was detected by WST-1 assay.Reactive oxygen species(ROS)production,mitochondrial membrane potential and phagocytosis ofC.albicanswere detected by fluorometric assay.Phosphorylation of mitogen-activated protein kinases(MAPK)P38 was detected by Western blotting.Griess reagent was used to determine nitric oxide(NO)production.RESULTSAMA 0.0005-50 mg·L-1treatment for 2 h had no obvious effect on macrophages RAW264.7 proliferation,but for 24 and 48 h,the cell proliferation was significantly inhibited(P<0.01).AMA 0.005-0.5 mg·L-1for 2 h significantly induced ROS production(P<0.01)and reduced the mitochondrial membrane potential of RAW264.7(P<0.01),suggesting that the macrophage mitochondrial were damaged.When macrophages′mitochondrial complexⅢwas impaired,phagocytosis ofC.albicansby macrophage was significantly increased(P<0.01).Moreover,AMA significantly reduced NO production after the macrophages were stimulated by LPS.AMA 0.05-0.5 mg·L-1strongly activated the phosphorylation of MAPK P38(P<0.01).CONCLUSlONAMA can impair the mitochondrial function of macrophages,enhance the phagocytic efficiency ofC.albicans,and show anti-inflammatory effect.The possible mechanism is to activate the MAPK signal cascade by stimulating the phosphorylation of MAPK P38.

      macrophage;mitochondrial complexⅢ;antimyicin A

      The project supported by Administration of Traditional Chinese Medicine of Jiangsu Province(LZ13248);Natural Science Foundation of Jiangsu Higher Education Institutions of China(13KJB310022);China Postdoctoral Science Foundation(2013M541741);Yangzhou University Innovative Research Fund(2014CXJ057);and Scientific Research Fund of Yangzhou UIniversity

      CUI Shu-na,E-mail:sncui@yzu.edu.cn,Tel:(0514)87992215

      R285.5

      A

      1000-3002(2015)04-0573-05

      2015-01-22接受日期:2015-07-21)

      (本文編輯:齊春會)

      江蘇省中醫(yī)藥局科技項目資助(LZ13248);江蘇省高校自然科學研究項目資助(13KJB310022);中國博士后基金(2013M541741);揚州大學創(chuàng)新培育基金(2014CXJ057);揚州大學高層次人才科研啟動基金(2012)

      崔樹娜,女,醫(yī)學博士,副教授,主要從事感染免疫學相關(guān)研究。

      崔樹娜,E-mail:sncui@yzu.edu.cn,Tel:(0514) 87977689,(0514)87992215

      猜你喜歡
      膜電位念珠菌磷酸化
      有關(guān)動作電位的“4坐標2比較”
      參芪復方對GK大鼠骨骼肌線粒體膜電位及相關(guān)促凋亡蛋白的影響研究
      ITSN1蛋白磷酸化的研究進展
      念珠菌耐藥機制研究進展
      信鴿白色念珠菌病的診治
      MAPK抑制因子對HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
      臨產(chǎn)孕婦念珠菌感染及不良妊娠結(jié)局調(diào)查
      魚藤酮誘導PC12細胞凋亡及線粒體膜電位變化
      組蛋白磷酸化修飾與精子發(fā)生
      遺傳(2014年3期)2014-02-28 20:59:01
      PCR-RFLP鑒定常見致病性念珠菌
      全州县| 诸城市| 宜宾市| 白河县| 从化市| 肥西县| 武陟县| 卓尼县| 兴文县| 东平县| 红河县| 鹤山市| 蓬莱市| 宣恩县| 北辰区| 美姑县| 师宗县| 德格县| 湖南省| 甘谷县| 永仁县| 乐清市| 洮南市| 北辰区| 新泰市| 莱西市| 巴林右旗| 龙胜| 西充县| 长葛市| 蕲春县| 十堰市| 潍坊市| 南丹县| 裕民县| 萍乡市| 扎囊县| 闽清县| 益阳市| 平潭县| 长寿区|