宋延杰 任一菱 唐曉敏 等
摘 要:首先通過(guò)統(tǒng)計(jì)方法對(duì)D凹陷沙四段致密油儲(chǔ)層中的油頁(yè)巖、粉砂巖和泥質(zhì)云巖3類巖性測(cè)井曲線敏感性進(jìn)行分析,優(yōu)選出聲波時(shí)差、密度和自然伽馬。其次基于敏感測(cè)井響應(yīng),分別建立了測(cè)井響應(yīng)交會(huì)圖巖性識(shí)別方法以及決策樹(shù)和量子神經(jīng)網(wǎng)絡(luò)巖性識(shí)別模型。在測(cè)井響應(yīng)交會(huì)圖法中,首先利用密度-標(biāo)準(zhǔn)化自然伽馬交會(huì)圖區(qū)分油頁(yè)巖與粉砂巖和泥質(zhì)云巖,然后利用密度-聲波時(shí)差交會(huì)圖區(qū)分粉砂巖和泥質(zhì)云巖;在決策樹(shù)模型中,構(gòu)建了3層巖性判別樹(shù)狀圖,直觀映射出4條分類規(guī)則;在量子神經(jīng)網(wǎng)絡(luò)模型中,構(gòu)建了三層前饋量子神經(jīng)網(wǎng)絡(luò)模型,并優(yōu)選出精度最高的樣本構(gòu)造方法。通過(guò)與實(shí)際取心結(jié)果對(duì)比分析發(fā)現(xiàn),決策樹(shù)和量子神經(jīng)網(wǎng)絡(luò)模型均能很好地識(shí)別致密油儲(chǔ)層復(fù)雜巖性,而測(cè)井響應(yīng)交會(huì)圖法難以對(duì)致密儲(chǔ)層復(fù)雜巖性進(jìn)行有效識(shí)別。
關(guān) 鍵 詞:致密油儲(chǔ)層;油頁(yè)巖、粉砂巖和泥質(zhì)云巖;巖性識(shí)別;量子神經(jīng)網(wǎng)絡(luò);決策樹(shù);測(cè)井響應(yīng)交會(huì)圖
中圖分類號(hào):P 631.84 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1671-0460(2015)10-2341-04
Research on the Method of Lithology Identification of
Tight Oil Reservoirs in S4 Formation of D Sag
SONG Yan-jie 1,2,REN Yi-ling 1,3,TANG Xiao-min 1,2,DENG Xin 1,LIU Yue 1
(1. College of Geoscience, Northeast Petroleum University, Heilongjiang Daqing 163318,China;
2. State Key Laboratory Cultivation Base of Accumulation and Development of Unconventional Oil and Gas, Jointly-constructed by Heilongjiang Province and the Ministry of Science and Technology, Heilongjiang Daqing 163318,China;
3. Exploration and Development Research Institute of Liaohe Oilfield Company, PetroChina, Liaoning Panjin 124010,China)
Abstract: The lithologies of tight oil reservoirs in S4 Formation of D Sag can be divided into oil shale, siltstone and shaly dolomite. Based on statistical methods, the sensitivity of logging curves for lithology identification was analyzed, by which interval transit time, density and gamma ray were optimized. Log response cross plot, decision tree model and quantum neural network model were established to determine the lithology with selected sensitive log responses. In the process of lithology identification by the log response cross plot, oil shale was first identified by standardized gamma ray vs. interval transit time, after that, siltstone and shaly dolomite were distinguished with density vs. interval transit time. In the process of lithology identification by decision tree model, a dendrogram with three levels was built. The model mapped four rules intuitively. In the process of lithology identification by quantum neural network model, a three-layer feedforward quantum neural network was built, and the sample construction method with the highest accuracy was screened out. By comparing with the practical coring results, both the decision tree model and the quantum neural network model can determine the lithologies in tight oil reservoirs much better than the conventional log response cross plot, and they can be applied in lithology identification of tight oil reservoirs perfectly.
Key words: Tight oil reservoirs; Oil shale, siltstone and argillaceous dolomite; Lithology identification; Quantum neural network model; Decision tree model; Log response cross plot
D凹陷沙四段致密油儲(chǔ)層巖性復(fù)雜,測(cè)井響應(yīng)變化無(wú)規(guī)律,不同巖性測(cè)井響應(yīng)存在重疊。目前的巖性識(shí)別技術(shù)中,常規(guī)的取心分析識(shí)別巖性直觀準(zhǔn)確,但成本高、資料有限;巖屑錄井識(shí)別巖性存在滯后性,且依賴巖屑錄井資料質(zhì)量。1982年wollf[1]等人提出利用測(cè)井資料自動(dòng)識(shí)別巖性,自此利用計(jì)算機(jī)自動(dòng)識(shí)別巖性成為了常用的巖性識(shí)別技術(shù)。
常用的測(cè)井資料巖性識(shí)別方法是應(yīng)用敏感測(cè)井響應(yīng)來(lái)構(gòu)建交會(huì)圖版[2-6]。該方法簡(jiǎn)單直觀,實(shí)用性強(qiáng)。但是由于其只能同時(shí)利用兩種測(cè)井響應(yīng),因此更適用于巖性單一且不同巖性測(cè)井響應(yīng)區(qū)分明顯的儲(chǔ)層。相比之下,決策樹(shù)[7-9]模型信息量大,算法穩(wěn)定,能直觀體現(xiàn)數(shù)據(jù)特點(diǎn),并能自動(dòng)分析各參數(shù)的權(quán)重,據(jù)此建立的非線性模型準(zhǔn)確率高。神經(jīng)網(wǎng)絡(luò)[10-13]因其在模式識(shí)別方面有較強(qiáng)非線性映射能力和容錯(cuò)及抗干擾性能,故而在巖性識(shí)別領(lǐng)域應(yīng)用廣泛。但傳統(tǒng)神經(jīng)網(wǎng)絡(luò)收斂速度慢,容易陷入局部極小點(diǎn),且容易對(duì)訓(xùn)練樣本過(guò)度擬合。1995年Kak[14]提出量子神經(jīng)計(jì)算的概念,將神經(jīng)計(jì)算與量子計(jì)算相結(jié)合。量子神經(jīng)網(wǎng)絡(luò)[15-21]有效克服了傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的缺陷,提高了神經(jīng)網(wǎng)絡(luò)模型的收斂性和準(zhǔn)確率。
本文基于取心數(shù)據(jù)和測(cè)井?dāng)?shù)據(jù),將該區(qū)塊的巖性劃分為油頁(yè)巖、粉砂巖和泥質(zhì)云巖三類。通過(guò)優(yōu)選識(shí)別三類巖性的敏感測(cè)井曲線,分別采用測(cè)井響應(yīng)交會(huì)圖法、決策樹(shù)模型和量子神經(jīng)網(wǎng)絡(luò)模型對(duì)該區(qū)塊巖性進(jìn)行識(shí)別,并且將識(shí)別結(jié)果和實(shí)際取心結(jié)果對(duì)比,給出識(shí)別該區(qū)塊巖性的最佳方法。
1 致密油儲(chǔ)層巖性識(shí)別的敏感測(cè)井響應(yīng)優(yōu)選
D凹陷沙四段致密油儲(chǔ)層巖性復(fù)雜,有油頁(yè)巖、含粉砂油頁(yè)巖、粉砂質(zhì)油頁(yè)巖、粉砂巖(云質(zhì)、灰質(zhì))、含灰油頁(yè)巖、云質(zhì)油頁(yè)巖、碳酸鹽質(zhì)油巖、泥質(zhì)云巖、含灰泥晶云巖9種主要巖性。基于各巖性地質(zhì)特征及測(cè)井響應(yīng)特征,將該區(qū)塊的巖性統(tǒng)一劃分為油頁(yè)巖、粉砂巖和泥質(zhì)云巖3類。
基于8口取心井的取心數(shù)據(jù),分小層讀取深側(cè)向電阻率、聲波時(shí)差、密度、補(bǔ)償中子、自然伽馬的測(cè)井響應(yīng)數(shù)據(jù),并對(duì)自然伽馬曲線標(biāo)準(zhǔn)化,在此基礎(chǔ)上進(jìn)行統(tǒng)計(jì)分析(見(jiàn)表1),發(fā)現(xiàn)區(qū)分油頁(yè)巖、粉砂巖和泥質(zhì)云巖最明顯的測(cè)井響應(yīng)為聲波時(shí)差、密度和自然伽馬。除此之外,這3類巖性在補(bǔ)償中子和電阻率測(cè)井響應(yīng)上也有一定程度的區(qū)分。
表1 三類巖性測(cè)井響應(yīng)數(shù)據(jù)統(tǒng)計(jì)表
Table 1 Log responses of three categories of lithology
測(cè)井響應(yīng) 名稱 油頁(yè)巖 粉砂巖 泥質(zhì)云巖
補(bǔ)償中子(CNL)
,% 主要范圍 40~50 20~35 30~40
平均值 44.9 29.7 31.7
聲波時(shí)差(AC)
/(μs·m-1) 主要范圍 350~400 250~300 280~330
平均值 380.8 267.0 295.4
密度(DEN)
/(g·cm-3) 主要范圍 2.0~2.4 2.4~2.6 2.3~2.6
平均值 2.26 2.53 2.45
電阻率測(cè)井(RLLD)
/(Ω·m-1) 主要范圍 5~15 3~10 5~10
平均值 11.1 10.9 9.5
標(biāo)準(zhǔn)化自然
伽馬(ΔGR)
(無(wú)量綱) 主要范圍 0.6~1.0 0.3~0.5 0.4~0.6
平均值 0.70 0.42 0.46
(1)深側(cè)向電阻率測(cè)井
油頁(yè)巖深側(cè)向電阻率測(cè)井響應(yīng)值較高,粉砂巖深側(cè)向電阻率測(cè)井響應(yīng)值較低,泥質(zhì)云巖深側(cè)向電阻率測(cè)井響應(yīng)值中等, 介于油頁(yè)巖和粉砂巖之間;
(2)孔隙度測(cè)井
油頁(yè)巖具有低密度、高中子、高聲波時(shí)差的測(cè)井響應(yīng)特點(diǎn),粉砂巖具有高密度、低中子、低聲波時(shí)差的測(cè)井響應(yīng)特點(diǎn),泥質(zhì)云巖的密度、中子、聲波時(shí)差測(cè)井響應(yīng)值均介于油頁(yè)巖和粉砂巖之間;
(3)自然伽馬測(cè)井
油頁(yè)巖自然伽馬測(cè)井響應(yīng)值為高值,粉砂巖自然伽馬測(cè)井響應(yīng)值為低值,泥質(zhì)云巖自然伽馬測(cè)井響應(yīng)值中等,介于油頁(yè)巖和粉砂巖之間。
2 致密油儲(chǔ)層巖性識(shí)別方法
2.1 測(cè)井響應(yīng)交會(huì)圖法識(shí)別巖性
基于敏感測(cè)井響應(yīng)優(yōu)選,將自然伽馬、密度和聲波時(shí)差作為識(shí)別巖性的主要測(cè)井響應(yīng),制作交會(huì)圖版(圖1、圖2)。
圖1 密度-標(biāo)準(zhǔn)化自然伽馬交會(huì)圖
Fig.1 DEN vs. ΔGR
圖2 密度-聲波時(shí)差交會(huì)圖
Fig.2 DEN vs. AC
首先利用圖1從油頁(yè)巖、粉砂巖和泥質(zhì)云巖中區(qū)分出油頁(yè)巖。當(dāng)測(cè)井響應(yīng)值滿足 且 時(shí),判斷巖性為油頁(yè)巖,否則為粉砂巖或泥質(zhì)云巖。其次利用圖2區(qū)分粉砂巖和泥質(zhì)云巖,當(dāng)測(cè)井響應(yīng)值滿足 時(shí),判斷巖性為粉砂巖,否則為泥質(zhì)云巖。用測(cè)井響應(yīng)交會(huì)圖法識(shí)別巖性的準(zhǔn)確率為82.5%。
2.2 決策樹(shù)模型識(shí)別巖性
2.2.1 決策樹(shù)理論
決策樹(shù)算法是常用的以實(shí)例為基礎(chǔ)的歸納學(xué)習(xí)算法。在進(jìn)行分類時(shí),模型從根節(jié)點(diǎn)開(kāi)始逐步對(duì)樣本屬性進(jìn)行測(cè)試,進(jìn)而判斷從該節(jié)點(diǎn)向下的分支,每個(gè)節(jié)點(diǎn)代表一個(gè)屬性,每個(gè)分支代表一個(gè)規(guī)則。
2.2.2 決策樹(shù)巖性識(shí)別模型建立