夏方山,閆慧芳,毛培勝,王明亞,鄭慧敏,陳泉竹
(中國(guó)農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,草業(yè)科學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京100193)
PEG引發(fā)對(duì)燕麥老化種子活力的影響
夏方山,閆慧芳,毛培勝*,王明亞,鄭慧敏,陳泉竹
(中國(guó)農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,草業(yè)科學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京100193)
為探討PEG引發(fā)對(duì)燕麥老化種子活力的影響,并確定其最適濃度和引發(fā)時(shí)間,試驗(yàn)以45℃老化48 d的超干燕麥種子(含水量4%)為材料,通過(guò)不同濃度PEG-6000(0,-0.3,-0.6,-0.9和-1.2 MPa)引發(fā)0(CK),3,6和12 h后,分析其發(fā)芽率、發(fā)芽指數(shù)、平均發(fā)芽時(shí)間及幼苗活力指數(shù)的變化。結(jié)果表明:低濃度(0~-0.6 MPa)PEG引發(fā)降低了燕麥老化種子的發(fā)芽率、發(fā)芽指數(shù)及幼苗活力指數(shù),并提高了其平均發(fā)芽時(shí)間;而高濃度(-0.9和-1.2 MPa)則相反。這表明PEG引發(fā)不僅能預(yù)防超干燕麥種子的吸脹損傷,還能修復(fù)其老化損傷,但作用效果與其濃度、引發(fā)時(shí)間及兩者之間交互作用顯著相關(guān)。該試驗(yàn)中濃度為-1.2 MPa的PEG引發(fā)12 h時(shí)效果最佳,但是否能應(yīng)用于農(nóng)業(yè)生產(chǎn)實(shí)踐仍需深入探討。
引發(fā);聚乙二醇;種子老化;超干;燕麥;種子活力
種子在貯藏條件下總會(huì)發(fā)生不同程度地劣變,導(dǎo)致其萌發(fā)及幼苗生長(zhǎng)能力下降,甚至死亡[1]。貯藏過(guò)程種子含水量越大,其活力下降越嚴(yán)重[2]。超干貯藏則可保持種子的生理功能,保護(hù)種子膜結(jié)構(gòu)的完整性,提高種子的耐貯藏性,最大限度地延長(zhǎng)種子的貯藏壽命[3]。因此,超干貯藏成為保護(hù)植物種質(zhì)資源、維持物種遺傳穩(wěn)定性的有效方法,并越來(lái)越受到人們的重視。然而,種子不僅在超干處理過(guò)程中會(huì)受損,在萌發(fā)初期也會(huì)發(fā)生吸脹損傷,導(dǎo)致細(xì)胞膜完整性降低,溶質(zhì)釋放到質(zhì)外體,及持續(xù)吸水等[4]。引發(fā)可以影響不同生態(tài)條件下種子的發(fā)芽率、發(fā)芽勢(shì)、種子活力及幼苗生長(zhǎng)[1],而且可以修復(fù)老化損傷[5-6]。聚乙二醇(PEG)是最常用的引發(fā)劑,可降低萌發(fā)過(guò)程中水分進(jìn)入種子的速度。目前,PEG引發(fā)已應(yīng)用于小麥(Triticum aestivum)[7]、大豆(Glycine max)[8]、穿心蓮(Andrographis paniculata)[9]、莖瘤芥(Brassica juncea)[10]、蔓性千斤拔(Moghania philippinensis)[11]及紫蘇(Perilla frutescens)[12]等植物老化種子的研究。然而,尚未報(bào)道關(guān)于對(duì)超干種子老化后的影響研究。
燕麥(Avena sativa)具有耐瘠薄、耐鹽堿、抗旱耐寒等優(yōu)良特性,是一種低碳環(huán)保的傳統(tǒng)糧食和優(yōu)質(zhì)飼料[13]。燕麥籽實(shí)富含對(duì)人類健康至關(guān)重要的均衡蛋白質(zhì)、可溶性膳食纖維β-葡聚糖、不飽和脂肪酸、維生素及礦物質(zhì)等[14]。因此,試驗(yàn)以超干燕麥種子為材料,分析PEG濃度及引發(fā)時(shí)間對(duì)其老化后活力水平的影響,以期為預(yù)防超干種子萌發(fā)過(guò)程的吸脹損傷,以及老化種子的修復(fù)機(jī)理研究提供理論基礎(chǔ)。
1.1 材料來(lái)源
供試燕麥(品種:三冠王)種子由中國(guó)農(nóng)業(yè)大學(xué)牧草種子實(shí)驗(yàn)室提供,2009年收集于河北省張家口市沽源牧場(chǎng),在-20℃保存至2014年進(jìn)行試驗(yàn)。種子自然含水量為9.8%,正常種苗數(shù)為89%,不正常種苗數(shù)為5%。
1.2 含水量的測(cè)定
準(zhǔn)確稱取4.5 g燕麥種子,放入樣品盒中稱重(精確到0.001 g),設(shè)2次重復(fù),130~133℃烘干1 h后取出,蓋好盒蓋,放入干燥器內(nèi)冷卻30 min,按公式計(jì)算含水量:種子含水量(%)=(M2-M3)/(M2-M1)×100%,式中:M1,樣品盒和蓋的重量(g);M2,樣品盒、蓋及樣品的烘前重量(g);M3,樣品盒、蓋及樣品的烘后重量(g)。
1.3 超干處理
稱量種子初始重量,并將其放置于裝有變色硅膠的干燥器內(nèi),反復(fù)稱重,當(dāng)種子達(dá)到所需重量時(shí)(種子含水量為4%,鮮重),立即密封于12 cm×17 cm的錫箔袋中,每袋大約20 g種子,放入4℃冰箱備用。
1.4 老化及PEG引發(fā)處理
將調(diào)整好含水量的燕麥種子放于45℃恒溫水浴箱內(nèi)劣變48 d,將老化種子用不同濃度的PEG-6000(0,-0.3,-0.6,-0.9和-1.2 MPa)分別引發(fā)處理0(CK),3,6和12 h,蒸餾水沖洗2次,用濾紙吸干表層水分,然后25℃室內(nèi)風(fēng)干,每個(gè)處理重復(fù)4次。
1.5 發(fā)芽試驗(yàn)及指標(biāo)測(cè)定
參照國(guó)際種子檢驗(yàn)協(xié)會(huì)(ISTA)的種子檢驗(yàn)規(guī)程(2013)[15]規(guī)定的發(fā)芽條件。選取均勻飽滿的種子100粒放入培養(yǎng)皿中,設(shè)4次重復(fù),在20℃恒溫條件下培養(yǎng)。初次計(jì)數(shù)第5天,末次計(jì)數(shù)第10天,最終統(tǒng)計(jì)正常種苗數(shù),并測(cè)定其平均苗長(zhǎng),按以下公式計(jì)算種子發(fā)芽率(germination percentage,Gp)、發(fā)芽指數(shù)(germination index,Gi)、平均發(fā)芽時(shí)間(mean germination time,MGT)及幼苗活力指數(shù)(seedling vigor index,SVI):
1)Gp的測(cè)定參照國(guó)際種子檢驗(yàn)協(xié)會(huì)(ISTA)的種子檢驗(yàn)規(guī)程(2013)[15]進(jìn)行,Gp(%)=(G10/N)×100,G10為第10天正常發(fā)芽種子數(shù),N為發(fā)芽種子總數(shù);
2)Gi的測(cè)定參照Abdul-Baki和Anderson[16]的方法進(jìn)行,Gi=∑(Gt/t),Gt為第t天發(fā)芽種子數(shù),t為發(fā)芽天數(shù);
3)MGT的測(cè)定參照Ellis和Roberts[17]的方法進(jìn)行,MGT=∑(Gt×t)/∑Gt(d),Gt為第t天發(fā)芽(胚根突破種皮2 mm)種子數(shù),t為發(fā)芽天數(shù);
4)SVI的測(cè)定參照Abdul-Baki和Anderson[16]的方法進(jìn)行,SVI=[Gp(100%)×平均苗長(zhǎng)(cm)]/100,Gp為種子發(fā)芽率。
1.6 數(shù)據(jù)處理與統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)通過(guò)Excel 2010和SAS 8.0統(tǒng)計(jì)分析軟件處理,多重比較采用Duncans法進(jìn)行,結(jié)果以平均值±標(biāo)準(zhǔn)誤表示。
2.1 PEG引發(fā)對(duì)燕麥老化種子發(fā)芽率(Gp)的影響
隨PEG濃度增加,引發(fā)3 h后燕麥老化種子Gp呈先降后升的趨勢(shì)(表1),濃度為-0.3 MPa時(shí)顯著小于其他濃度(P<0.05),濃度為-0.9和-1.2 MPa時(shí)達(dá)到最大值;引發(fā)6 h后其Gp升高,濃度為-1.2 MPa時(shí)顯著高于0~-0.6 MPa(P<0.05);引發(fā)12 h后其Gp則先降后升,濃度為-1.2 MPa時(shí)顯著高于0~-0.6 MPa(P<0.05)。濃度為0 MPa時(shí),引發(fā)6 h后Gp顯著小于CK(P<0.05);濃度為-0.3 MPa時(shí),引發(fā)3 h后Gp顯著小于CK(P<0.05);濃度為-0.6~-1.2 MPa時(shí),各引發(fā)時(shí)間Gp差異不顯著(P>0.05)。
表1 PEG引發(fā)下燕麥老化種子發(fā)芽率的變化Table 1 Changes of germination percentage in aged oat seeds priming with PEG%
2.2 PEG引發(fā)對(duì)燕麥老化種子發(fā)芽指數(shù)(Gi)的影響
隨PEG濃度增加,引發(fā)3和6 h后燕麥種子Gi呈先升后降的趨勢(shì)(表2),濃度為0 MPa時(shí)顯著小于其他濃度(P<0.05),在-0.9 MPa時(shí)顯著大于其他濃度(P<0.05);引發(fā)12 h后其Gi升高,濃度為0和-0.3 MPa時(shí)顯著小于其他濃度(P<0.05),而濃度為-1.2 MPa時(shí)顯著高于其他濃度(P<0.05)。PEG濃度為0 MPa時(shí),引發(fā)6 h后Gi顯著小于CK(P<0.05),引發(fā)12 h后Gi顯著大于其他引發(fā)時(shí)間(P<0.05);濃度為-0.3 MPa時(shí),引發(fā)12 h顯著大于引發(fā)6 h(P<0.05);濃度為-0.6 MPa時(shí),引發(fā)12 h顯著大于其他引發(fā)時(shí)間(P<0.05);濃度為-0.9 MPa時(shí),引發(fā)3~12 h之間差異不顯著(P>0.05),但顯著大于CK(P<0.05);濃度為-1.2 MPa時(shí),引發(fā)3 h與CK之間差異不顯著(P>0.05),但引發(fā)6和12 h顯著大于CK(P<0.05)。
2.3 PEG引發(fā)對(duì)燕麥老化種子平均發(fā)芽時(shí)間(MGT)的影響
由表3可以看出,隨PEG濃度增加,引發(fā)3 h后燕麥老化種子MGT在濃度為-0.3 MPa時(shí)顯著大于其他濃度(P<0.05),濃度為-0.9和-1.2 MPa時(shí)與0 MPa差異不顯著(P>0.05);引發(fā)6 h其MGT呈先降后升的趨勢(shì),濃度為-0.3~-1.2 MPa時(shí)顯著小于0 MPa(P<0.05);引發(fā)12 h其MGT不斷下降,濃度為0 MPa時(shí)顯著大于其他濃度(P<0.05),而濃度為-0.6~-1.2 MPa時(shí)顯著小于0和-0.3 MPa(P<0.05)。PEG濃度為0 MPa時(shí),各引發(fā)時(shí)間對(duì)MGT的影響差異不顯著(P>0.05);濃度為-0.3 MPa時(shí),引發(fā)6和12 h后其MTG顯著小于CK和3 h(P<0.05);濃度為-0.6和-0.9 MPa時(shí),引發(fā)3~12 h后MGT均顯著小于CK(P<0.05);濃度為-1.2 MPa時(shí),引發(fā)6和12 h后MGT均顯著小于CK(P<0.05)。
2.4 PEG引發(fā)對(duì)燕麥老化種子幼苗活力指數(shù)(SVI)的影響
隨PEG濃度增加,引發(fā)3和6 h后燕麥老化種子SVI呈先增后減的趨勢(shì)(表4)。引發(fā)3 h后在濃度為-0.6~-1.2 MPa時(shí)顯著大于0和-0.3 MPa(P<0.05);引發(fā)6 h后在濃度為0 MPa時(shí)顯著小于其他濃度(P<0.05),而濃度為-0.9 MPa時(shí)顯著大于其他濃度(P<0.05);引發(fā)12 h后SVI在濃度為0~-0.6 MPa時(shí)顯著小于-0.9和-1.2 MPa(P<0.05),而在濃度為-1.2 MPa時(shí)顯著大于其他濃度(P<0.05)。PEG濃度為0 MPa時(shí),PEG引發(fā)3~12 h后SVI顯著小于CK(P<0.05),但引發(fā)3~12 h間差異不顯著(P>0.05);濃度為-0.3 MPa時(shí),引發(fā)3和12 h后SVI顯著小于CK(P<0.05);濃度為-0.6 MPa時(shí),引發(fā)3和6 h后SVI與CK差異不顯著(P>0.05),但引發(fā)12 h后顯著低于CK(P<0.05);濃度為-0.9 MPa時(shí)SVI隨引發(fā)時(shí)間的延長(zhǎng)呈先增后減的趨勢(shì),引發(fā)3 h后顯著大于CK和引發(fā)12 h(P<0.05);濃度為-1.2 MPa時(shí),SVI隨引發(fā)時(shí)間的延長(zhǎng)而增加,引發(fā)12 h后顯著大于引發(fā)0~6 h(P<0.05)。
表2 PEG引發(fā)下燕麥老化種子發(fā)芽指數(shù)的變化Table 2 Changes of germination index in aged oat seeds priming with PEG
表3 PEG引發(fā)下燕麥老化種子平均發(fā)芽時(shí)間的變化Table 3 Changes of mean time of germination in aged oat seeds priming with PEG d
表4 PEG引發(fā)下燕麥老化種子幼苗活力指數(shù)的變化Table 4 Changes of seedlings vigor index in aged oat seeds priming with PEG
表5 PEG引發(fā)時(shí)間和濃度對(duì)燕麥老化種子活力影響的雙因素方差分析Table 5 Variance analysis of PEG concentration and priming time on aged oat seed vigor
2.5 PEG引發(fā)時(shí)間和濃度對(duì)燕麥老化種子活力影響的雙因素方差分析
雙因素方差分析結(jié)果表明(表5),不同引發(fā)時(shí)間對(duì)燕麥老化種子Gp的影響差異顯著(P<0.05),而對(duì)其Gi、MGT和SVI的影響則差異極顯著(P<0.01),不同PEG濃度及其與引發(fā)時(shí)間之間的交互作用對(duì)其Gp、Gi、MGT和SVI的影響均差異極顯著(P<0.01)。
種子老化會(huì)導(dǎo)致其抗氧化酶活性下降,活性氧累積增多,脂質(zhì)過(guò)氧化增強(qiáng),細(xì)胞膜透性增大,膜完整性降低,從而造成種子活力下降[18]。PEG引發(fā)可修復(fù)種子的老化損傷,并顯著提高其活力水平[19]。研究小麥[7]、大豆[8]、穿心蓮[9]、莖瘤芥[10]、蔓性千斤拔[11]及紫蘇[12]等植物的老化種子活力發(fā)現(xiàn),盡管由于植物種類、PEG濃度及引發(fā)時(shí)間等因素的影響,PEG引發(fā)對(duì)種子活力的提高效果存在差異,但引發(fā)后其Gp、Gi及SVI均高于CK。本試驗(yàn)中,濃度為0~-0.6 MPa的PEG引發(fā)3~12 h后,燕麥老化種子的Gp、Gi和SVI小于CK,MGT則大于CK,這說(shuō)明濃度為0~-0.6 MPa的PEG引發(fā)導(dǎo)致了超干燕麥種子的吸脹損傷,從而加劇了其老化后的細(xì)胞損傷,所以種子活力下降。McDonald[18]認(rèn)為種子含水量高低是影響引發(fā)成敗的關(guān)鍵。前人的報(bào)道以安全含水量的植物種子為材料,而本試驗(yàn)以超干燕麥種子(含水量為4%)為材料,這是造成兩者存在差異的主要原因。高水勢(shì)致使超干種子快速吸脹,加劇了老化種子細(xì)胞膜完整性的喪失,從而不可逆地傷害細(xì)胞,即形成吸脹損傷,表現(xiàn)為種子活力下降[4]。所以,在提高老化種子活力時(shí),應(yīng)根據(jù)種子含水量高低謹(jǐn)慎應(yīng)用PEG引發(fā)處理。
本研究表明,隨PEG濃度增加,超干燕麥種子活力升高,表現(xiàn)為種子Gp、Gi和SVI增加,而MGT減少,濃度為-0.9和-1.2 MPa的PEG引發(fā)6和12 h后,種子活力均高于CK,這說(shuō)明恰當(dāng)濃度的PEG引發(fā)不僅可以預(yù)防超干燕麥種子的吸脹損傷,還能夠修復(fù)其老化損傷。研究發(fā)現(xiàn),PEG引發(fā)對(duì)老化種子的修復(fù)作用體現(xiàn)在兩個(gè)方面:一方面,PEG引發(fā)提高了其超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)及谷胱甘肽還原酶(GR)等抗氧化酶的活性,從而緩解老化過(guò)程的脂質(zhì)過(guò)氧化損傷,表現(xiàn)為丙二醛(MDA)含量減少[5,20]。另一方面,適當(dāng)濃度的PEG引發(fā)可以啟動(dòng)種子細(xì)胞內(nèi)的保護(hù)機(jī)制,降低其膜系統(tǒng)的損傷,增強(qiáng)膜系統(tǒng)的修復(fù),從而提高種子萌發(fā)能力,促進(jìn)幼胚的生長(zhǎng)[21]。
PEG引發(fā)對(duì)超干燕麥老化種子的修復(fù)不僅與其濃度有關(guān),還與引發(fā)時(shí)間及其兩者之間的交互作用關(guān)系密切。試驗(yàn)結(jié)果表明,PEG濃度對(duì)其Gp、Gi、MGT及SVI的影響差異顯著(P<0.05),引發(fā)時(shí)間及其與濃度的交互作用對(duì)其Gp、Gi、MGT及SVI的影響差異極顯著(P<0.01)。本研究中,濃度為-0.3和-0.6 MPa的PEG引發(fā)6 h后,超干燕麥老化種子的活力高于引發(fā)3和12 h,而低于CK,說(shuō)明低濃度PEG引發(fā)時(shí)間過(guò)長(zhǎng)會(huì)引起種子的吸脹損傷。濃度為-1.2 MPa的PEG引發(fā)0~12 h后,燕麥老化種子活力增加,說(shuō)明PEG濃度越高,對(duì)預(yù)防超干燕麥老化種子的吸脹損傷越有利。
[1] Dragani?I,Leki?S.Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions.Turkisk Journal of Agriculture and Forestry,2012,36(4):421-428.
[2] Parkhey S,Naithani S C,Keshavkant S.ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging.Plant Physiology and Biochemistry,2012,57(1):261-267.
[3] Perez-Garcia F,Gomez-Campo C,Ellis R H.Successful long-term ultra-dry storage of seed of 15 species of Brassicaceae in a genebank:variation in ability to germinate over 40 years and dormancy.Seed Science and Technology,2009,37(3):640-649.
[4] Bewley J D,Bradford K J,Hilhorst H W M,et al.Seeds:Physiology of Development,Germination and Dormancy(3rd Edi)[M].New York:Springer Press,2013:143-147.
[5] Bailly C,Benamar A,Corbineau C,et al.Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds.Physiologia Plantarum,1998,104(4):646-652.
[6] Butler L H,Hay F R,Ellis R H,et al.Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage.Annals of Botany,2009,103(8):1261-1270.
[7] Zhang Z Y,Jiang X L,Lu C R,et al.Effect of PEG solicitation on seed vigor changes and seedling growth of artificial aging seed in wheat.Journal of Henan Institute of Science and Technology,2013,41(1):1-5.
[8] Wang W,Shi Y G,Wang S G.Effect of PEG priming on germination and seed vigor of aging soybean.Journal of Shanxi Agricultural Science,2011,39(7):650-654.
[9] Pan C L,Huang Y F,Deng Z J,et al.Effect of PEG treatment on fresh and aged seed germination and seedling growth of Andrographis paniculata(Burm.f.)Nees.Seed,2013,32(12):30-34.
[10] Wang H C,Zhao C Q,Zheng M N,et al.Effects of PEG-soaking on aged seed vigor and seedling growth of tumorous stem mustard(Brassica juncea var.tumida Tsen et Lee‘Yonganxiaoye’).Plant Physiology Communications,2010,46(2):131-134.
[11] Feng S X,Ma X J,Li X Y,et al.The impact of soaking in PEG on the germination and vigor of the aging seed of trailing Flemingia.Crops,2013,(1):136-139.
[12] Zhang C P,He P,Du D D,et al.Effect of zinc sulphate and PEG priming on ageing seed germination and antioxidase activities of Perilla frutescens seedling.China Journal of Chinese Materia Medica,2010,35(18):2372-2377.
[13] Qin F C,Zhao G Q,Jiao T,et al.Effects of different moisture contents and additives on the quality of baled oat silage.Acta Prataculturae Sinica,2014,23(6):119-125.
[14] Shewry P R,Piironen V,Lampi A M,et al.Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen.Journal of Agricultural and Food Chemistry,2008,56(21):9777-9784.
[15] ISTA.International Rules for Seed Testing[M].Bassersdorf:Zurich,2013.
[16] Abdul Baki A A,Anderson J D.Vigour determination in soybean seed multiple criteria.Crop Science,1973,13(6):630-633.
[17] Ellis R H,Roberts E H.The influence of genotype,temperature and moisture on seed longevity in chickpea,cowpea and soybean.Annals of Botany,1982,50(1):69-82.
[18] McDonald M B.Seed deterioration:physiology,repair and assessment.Seed Science and Technology,1999,27(1):177-237.
[19] Inayat-ur-rahman,Ali N,Rab A,et al.Role of storage seed priming in controlling seed deterioration during storage.Sarhad Journal of Agriculture,2013,29(3):379-386.
[20] Jisha K C,Vijayakumari K,Jos Puthur T.Seed priming for abiotic stress tolerance:an overview.Acta Physiologiae Plantarum,2013,35(5):1381-1396.
[21] Xu Y Z,Zeng X C,Wang Q L,et al.Effects of PEG simulated drought stress on seed germination of different cucumber varieties.China Vegetables,2010,(14):54-59.
參考文獻(xiàn):
[7] 張自陽(yáng),姜小苓,盧春瑞,等.PEG引發(fā)處理對(duì)人工老化小麥種子活力及幼苗生長(zhǎng)的影響.河南科技學(xué)院學(xué)報(bào),2013,41(1):1-5.
[8] 王煒,史雨剛,王曙光.PEG引發(fā)對(duì)老化大豆種子發(fā)芽及活力的影響.山西農(nóng)業(yè)科學(xué),2011,39(7):650-654.
[9] 潘春柳,黃燕芬,鄧志軍,等.PEG處理對(duì)新鮮和老化穿心蓮種子萌發(fā)及幼苗生長(zhǎng)的影響.種子,2013,32(12):30-34.
[10] 王慧超,趙昌瓊,鄭美娜,等.聚乙二醇(PEG)浸種對(duì)莖瘤芥老化種子活力及其幼苗生長(zhǎng)的影響.植物生理學(xué)通訊,2010,46(2):131-134.
[11] 馮世鑫,馬小軍,李小勇,等.PEG浸種對(duì)老化的蔓性千斤拔種子萌發(fā)及活力的影響.作物雜志,2013,(1):136-139.
[12] 張春平,何平,杜丹丹,等.ZnSO4和PEG引發(fā)對(duì)老化紫蘇種子萌發(fā)及幼苗抗氧化酶活性的影響.中國(guó)中藥雜志,2010,35(18):2372-2377.
[13] 覃方銼,趙桂琴,焦婷,等.含水量及添加劑對(duì)燕麥捆裹青貯品質(zhì)的影響.草業(yè)學(xué)報(bào),2014,23(6):119-125.
[21] 許耀照,曾秀存,王勤禮,等.PEG模擬干旱脅迫對(duì)不同黃瓜品種種子萌發(fā)的影響.中國(guó)蔬菜,2010,(14):54-59.
Effects of polyethylene glycol priming on the vigor of aged oat seeds
XIA Fang-Shan,YAN Hui-Fang,MAO Pei-Sheng*,WANG Ming-Ya,ZHENG Hui-Min,CHEN Quan-Zhu
College of Animal Science and Technology,China Agricultural University,Beijing Key Laboratory of Grassland Science,Beijing 100193,China
A study has been undertaken to explore the effects of polyethylene glycol(PEG)priming on the vigor of aged oat seeds(Avena sativa).The research also aimed to determine the optimal PEG concentration and priming time.Seeds with ultra-dry moisture content(4%)were deteriorated for 48 d at 45℃.They were then primed for 0(control),3,6 and 12 h with different concentrations of PEG-6000(0,-0.3,-0.6,-0.9 and-1.2 MPa).The germination percentage,germination index,mean time to germination and seedling vigor index were then analyzed.The results showed that the germination percentage,germination index and seedling vigor index of aged oat seeds decreased after priming with low concentrations of PEG(0--0.6 MPa)in relation to the control,but that mean time to germination increased.However,the opposite trend was observed after priming with high PEG concentrations(-0.9 and-1.2 MPa).These results indicate that PEG priming not only prevents the imbibition damage for oat seeds with ultra-dry moisture content but also repairs damage from seed ageing.The effect of PEG priming was closely related to its concentration,priming time and their interaction.This study determined that the appropriate concentration and priming time was-1.2 MPa and 12 h for aged oat seeds.However,further research is needed to confirm whether these levels can be practically applied in agricultural production.
priming;polyethylene glycol;seed ageing;ultra-dry;oat;seed vigor
10.11686/cyxb2014520 http://cyxb.lzu.edu.cn
夏方山,閆慧芳,毛培勝,王明亞,鄭慧敏,陳泉竹.PEG引發(fā)對(duì)燕麥老化種子活力的影響.草業(yè)學(xué)報(bào),2015,24(11):234-239.
XIA Fang-Shan,YAN Hui-Fang,MAO Pei-Sheng,WANG Ming-Ya,ZHENG Hui-Min,CHEN Quan-Zhu.Effects of polyethylene glycol priming on the vigor of aged oat seeds.Acta Prataculturae Sinica,2015,24(11):234-239.
2014-12-15;改回日期:2015-03-30
國(guó)家十二五科技支撐課題“優(yōu)質(zhì)多抗牧草新品種選育與良種繁育關(guān)鍵技術(shù)研究與示范”(2011BAD17B01-02)資助。
夏方山(1983-),男,山東安丘人,博士。E-mail:dqlxfs8583@163.com
*通訊作者Corresponding author.E-mail:maops@cau.edu.cn