魏子淳 王宇 徐熙萌 吳畏 饒晨旭 譚會兵
脊髓室管膜細胞再生修復的潛力和其他相關(guān)細胞靶向治療策略
魏子淳 王宇 徐熙萌 吳畏 饒晨旭 譚會兵
中樞神經(jīng)系統(tǒng)中,脊髓中央管室管膜細胞(EC)具有一定的再生修復能力,是特化的不僅限于功能形態(tài)學的活性單位,后者作為特定的術(shù)語,它的意義超出生理學和解剖學定義。在損傷條件下,EC即可增殖分化為星形膠質(zhì)細胞、少突膠質(zhì)細胞和神經(jīng)元。目前,復合生長因子和纖維蛋白支架的干細胞實驗性治療研究還存在長期療效的爭議。在中樞神經(jīng)系統(tǒng)原位,使非神經(jīng)元直接轉(zhuǎn)化為功能性神經(jīng)元研究方法,為脊髓損傷和疾病提供了新的治療策略。在設(shè)計細胞治療,如何控制EC增殖和分化或其他非神經(jīng)元轉(zhuǎn)化為神經(jīng)元,繼而形成和維持穩(wěn)定有效的新生神經(jīng)元功能,直至脊髓功能恢復仍然需要繼續(xù)深入研究。我們需要一個全新的細胞組織概念,將神經(jīng)干細胞棲地應用于中樞神經(jīng)損傷等疾病的治療和修復研究中,建立非傳統(tǒng)的細胞分化和成熟的生物醫(yī)療微生態(tài)即環(huán)境再造治療策略。
脊髓;干細胞;室管膜細胞;脊髓損傷;治療
長期以來人們認為哺乳動物中樞神經(jīng)組織為終極分化的恒久組織,缺乏自我更新和修復能力。即使已經(jīng)發(fā)現(xiàn)在室管膜及其腦室下層(subventricular zone,SVZ)和海馬齒狀回顆粒下層存在神經(jīng)干細胞,然而在損傷和疾病條件下,其再生和修復能力極其有限。僅美國每年就有1.2萬人因脊髓損傷造成永久性殘疾[1]。為彌補這種修復能力的缺陷,正在開辟的神經(jīng)干細胞移植作為治療中樞神經(jīng)系統(tǒng)(CNS)損傷以及神經(jīng)退行性疾病的一種新型治療策略,引起廣泛的注目。
首先,討論一個名詞術(shù)語:脊髓內(nèi)的神經(jīng)干細胞Niche (棲地)。Niche是研究干細胞的專業(yè)術(shù)語,其中文翻譯還沒有統(tǒng)一的共識,通俗科普定義可見生命百科(baike.bbioo. com),有將niche翻譯成“干細胞壁龕”提法,有關(guān)定義可參考Wikipedia;也有直接使用英文單詞而不經(jīng)翻譯,比如“脊髓神經(jīng)干細胞niche的研究進展”[2],因為niche詞語還是關(guān)聯(lián)生態(tài)環(huán)境方面術(shù)語。本文將niche暫時翻譯為“棲地”,Nature對niche定義如下:干細胞群建立在干細胞棲地(stem-cell niche,SCN)內(nèi),其關(guān)于參與如何調(diào)解組織發(fā)生,維持和修復的特殊解剖學部位。SCN維持干細胞免于枯竭,同時保證宿主避免干細胞增殖過度活躍。SCN構(gòu)建基本組織生理學單位,整合信號介導干細胞對機體需要的平衡反應。對SCN干細胞或其他靶點施以異常功能可發(fā)生病理改變。干細胞及其SCN之間的相互作用是維護組織建立動態(tài)系統(tǒng)和最終設(shè)計干細胞治療所必須的。干細胞的簡單解剖學位置不足以完整定義SCN,SCN兼?zhèn)浣馄屎凸δ軆删S性[3]。
在胚胎發(fā)育時外胚層和神經(jīng)上皮發(fā)育成神經(jīng)管,其頭側(cè)先形成腦泡,繼而形成前腦和腦室系統(tǒng),尾側(cè)在脊髓形成中央管。室管膜細胞(ependymal cell,EC)是襯在腦室和中央管內(nèi)表面的上皮樣的細胞。游離面的纖毛形成二維極性,纖毛搏動能夠驅(qū)動腦脊液流動。腦脊髓損傷可致室管膜的纖毛搏動障礙。二維細胞極性(planar cell polarity,PCP)是EC功能基礎(chǔ),有一系列發(fā)育分子機制控制[4]。在中央管腔內(nèi)有Reissner's纖維(RF),是緊湊束狀結(jié)構(gòu),由非條紋組成的絲狀纖維,其直徑約5~10 nm。中央管內(nèi)還有上述EC的纖毛,通常可單個散置,也可多到4條,多數(shù)為2條深入到管腔內(nèi)[5]。
靈長類Macaca fascicularis的脊髓中央管可由無纖毛、單纖毛、雙纖毛和多纖毛EC,膠質(zhì)細胞和神經(jīng)元組成。多纖毛細胞類似于側(cè)腦室EC,單纖毛和雙纖毛細胞呈大的星形基底細胞,類似于鼠類EC??梢杂^察到單纖毛和雙纖毛細胞而不是多纖毛細胞可增殖產(chǎn)生新的EC。人類嬰兒期和成年脊髓的EC類型和猴子相似。此外,在中央管周圍還可發(fā)現(xiàn)由中間絲構(gòu)成的纖維束[6]。
纖毛可分為兩類,初纖毛和動纖毛,他們通過基部胞體長軸的轉(zhuǎn)動和基部胞體與頂部胞體翻轉(zhuǎn)位控制EC的極化發(fā)育[7]。無論是動纖毛還是初纖毛,其動力障礙均可導致腦積水[8-9]。電子顯微鏡觀察,經(jīng)[3H]噻嘧啶和BrdU標記,可以發(fā)現(xiàn)EC分裂現(xiàn)象。大多數(shù)的EC具有兩個長的9+2結(jié)構(gòu)的動纖毛,呈抗原標記vimentin,CD24,F(xiàn)oxJ1,Sox2和CD133陽性,然而nestin和神經(jīng)膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)陰性。雙纖毛EC類似側(cè)腦室E2細胞,但是細胞基底部卻不像E2或E1細胞。有趣的是,有些細胞有兩個核、4條纖毛,很像不完全的胞質(zhì)分裂或細胞融合[10]。
RF是由聯(lián)合下器(subcommissural organ,SCO)分泌的糖蛋白聚集形成,RF占據(jù)腦室導管和中央管,可以一直向脊髓中央管下端延續(xù)。牛和雞的RF含有540 kDa前體蛋白,牛還有320 kDa的前體蛋白,RF由兩個不同的復合體組成,一個預計分子量約700 kDa,另一個至少由6個多肽組成。現(xiàn)在有5個cDNA序列編碼SCO-脊椎樣蛋白[11]。七鰓鰻完全性脊髓損傷不影響RF產(chǎn)生,RF物質(zhì)堆積在脊髓損傷近端。GAP-43抗體反應可標記損傷動物的SCO和RF,但是western blotting不能標記預計出現(xiàn)GAP-43蛋白反應的條帶,5-HT抗體也不能標記[12]。
脊髓中央管與腦室EC是有區(qū)別的,在中央管室管膜下層有一些特征不清晰的膠質(zhì)細胞構(gòu)成邊界,結(jié)構(gòu)也相對不完善,還有少量的膠質(zhì)細胞,少突膠質(zhì)細胞和神經(jīng)元組成。不像腦室SVZ,圍繞中央管的增殖細胞靠近血管,主要涉及室管膜,而室管膜下細胞不明顯。這些細胞以典型的自我復制方式增殖而不是產(chǎn)生轉(zhuǎn)化放大祖細胞,并且沒有發(fā)現(xiàn)亞類EC存在細胞系關(guān)聯(lián)的證據(jù)。中央管背側(cè)極存在伸長細胞樣亞群,表達EC和神經(jīng)元前體兩者細胞的標志物[13]。脊髓中央管由EC、伸長細胞、膠質(zhì)細胞等組成,還包括接觸腦脊液神經(jīng)元等細胞(圖1)。該圖以Hugnot示意圖(2011)[14]為基本模式,我們再總結(jié)文獻繪制。
圖1 脊髓中央管示意圖(參照Hugnot[14]文獻重新繪制)
研究EC及其相關(guān)細胞常用的生物標志物有nestin、vimentin和SOX2等80多種,EC有增殖潛力,Ki67是一種增殖細胞相關(guān)的核抗原,其功能與有絲分裂密切相關(guān),出現(xiàn)于細胞增殖過程中,Ki67作為標記細胞增殖狀態(tài)的標記物[14]。新的標志物還在不斷的發(fā)現(xiàn),比如最近還發(fā)現(xiàn)在大鼠脊髓內(nèi)ATF3是一種新型核標志物用來定位EC遷移[15]。在生物體內(nèi),脊椎中的Olig2陽性運動神經(jīng)元祖細胞可能并不具有干細胞的特質(zhì)。早期小鼠胚胎(E9.5)的運動神經(jīng)元祖細胞移植到雞胚(E2)后,祖細胞只會分化成運動神經(jīng)元。相反地,移植晚期老鼠胚胎(E13.5)的運動神經(jīng)元祖細胞移植到雞胚后,卻只能分化成寡突細胞,無法分化成運動神經(jīng)元[16]。
人體的病理學研究證實脊髓損傷增加nestin陽性細胞EC,增生細胞反應是跨節(jié)段,可見于頸段、胸段和腰段,說明局部的損傷累及全部脊髓的干細胞棲地反應,增殖細胞的nestin與GFAP染色沒有交叉免疫反應[17]。
新近的研究指出,大鼠脊髓中央管細胞可以進一步根據(jù)表達受體分成獨特的亞細胞群,比如CB1大麻素受體EC,這些細胞分布在中央管背側(cè)和兩側(cè),細胞呈卵圓性核為尖錐型,纖毛數(shù)量不等(0.1或2個);同樣這些細胞表達干/祖細胞標志物,比如Vimentin,Nestin,Sox2,Sox9和GLAST,但CD15和GFAP陰性。靜息狀態(tài)EC不增殖,剛出生和鈍性脊髓損傷50%EC表達Ki67[18]。對于脊髓EC的分化潛力,應用3種實驗模型對比,只有鈍性SCI可以誘發(fā)脊髓EC增殖,而溶血磷脂酰膽堿脊髓內(nèi)局部注射和脫髓鞘疾病多發(fā)性硬化模型均不能誘發(fā)EC[19]。人類EC也同樣具有分化潛力,保存良好無病理表現(xiàn)的成年人體尸檢脊髓標本可以發(fā)現(xiàn)nestin,Sox2、GFAP、CD15、Nkx6.1和PSA-NCAM表達。電鏡觀察可以發(fā)現(xiàn)室管膜靠近室管膜外側(cè)有未成熟的細胞。從人體脊髓完全分離的細胞經(jīng)培養(yǎng),神經(jīng)球中可見Sox2(+)nestin (+)的增殖前體細胞,這些細胞可進一步分化成膠質(zhì)細胞和GABA能神經(jīng)元[20]。
為研究神經(jīng)前體細胞(neural precursor cells,NPCs)在脊髓內(nèi)的分布,應用nestin第二內(nèi)含子增強子控制的LacZ報告基因顯示nestin陽性表達細胞。發(fā)現(xiàn)背角陽性細胞>中央管區(qū)>前角,在背角主要分布在膠狀質(zhì),中央管區(qū)主要分布在室管膜,從脊髓節(jié)段上分,頸段>腰骶>胸段。左右側(cè)沒有區(qū)別,在相應的頸段、腰骶、胸段內(nèi)也無區(qū)別[21]。小劑量的脂多糖有可能促進腸道或SVZ來源的神經(jīng)干細胞分裂,高劑量則對神經(jīng)干細胞有抑制作用[22]。宋啟春等[23]也發(fā)現(xiàn)大鼠脊髓內(nèi)室管膜區(qū)細胞,在鈍性打擊損傷后潛在的增殖和分化能力能可被激活,半乳凝素-1對室管膜區(qū)細胞的增殖和分化具有明顯促進作用。狗損傷后,應用免疫組化顯示(proliferating cell nuclear antigen,PCNA),Ki-67,caspase 3,E-cadherin,GFAP和vimentin時,對照組與損傷組均未見Ki-67表達,可能是犬類有一定種屬差異,損傷可致GFAP陽性細胞增加[24]。即便是較輕微的脊髓損傷,也可以使EC在脊髓損傷3 d之后,開始增殖,而不出現(xiàn)細胞凋亡。表現(xiàn)為nestin迅速表達,增值標記指數(shù)達8.6倍;而且陽性細胞向損傷部位遷移,增殖的EC可以分化為膠質(zhì)細胞[25]。更重要的是,脊髓損傷引起的EC增殖,不僅是限于損傷相鄰的局部,而是其他非創(chuàng)傷部位脊髓也有增生細胞核抗體PCNA、nestin、GFAP和GAP-43免疫陽性反應[26]。
增生的EC從室管膜處開始遷移,移向靠近軸突圍繞在血管周圍的空間,損傷尾側(cè)端的中央管6周時開始擴大。擴大的管腔內(nèi)襯的中央管內(nèi)側(cè)EC的高度變短。可見成簇的異位EC與擴大管腔有關(guān)。距離中央管較遠的EC有形成玫瑰花環(huán)樣地趨勢。在EC簇之間可見3~8個神經(jīng)纖維組成束狀結(jié)構(gòu)[27]。不能只看到SCI修復中膠質(zhì)細胞的劣勢,膠質(zhì)細胞實際上在減輕損傷范圍、清除毒素、維持微環(huán)境穩(wěn)定方面起著重要的作用[28]。
內(nèi)源性干細胞在治療SCI方面可以避免免疫排斥反應,近年來亦受到重視[29-31]。妊娠期間胚胎和早產(chǎn)兒脊髓存在干細胞,其分化潛能可能區(qū)別不大。正常情況下,nestin不表達,但是在肌萎縮側(cè)索硬化和脊髓腫瘤患者可以見到陽性表達。這說明在疾病在疾病條件下,尤其是患腫瘤時,激發(fā)機體的抗病機制[32]。人類的臍帶間充質(zhì)干細胞可以促使鈍性打擊脊髓損傷大鼠脊髓中央管EC增殖,創(chuàng)傷空腔明顯變小,運動功能明顯恢復。BrdU細胞有nestin、NG2、CNPase、MBP和GFAP陽性表達[30]。
表皮生長因子(EGF)和成纖維細胞生長因子2(FGF2)可使在體的成年大鼠脊髓室管膜前體細胞增殖分裂[33]。腦室下分離的多能干細胞是EGF依賴性,腰骶脊髓多能干細胞為EGF+堿性FGF依賴性[34]。最近有證據(jù)表明,通過BrdU免疫標記,神經(jīng)祖細胞Ki67、Nanog、Nestin和Sox-2標記經(jīng)體視學分析,損傷后背根神經(jīng)節(jié)有神經(jīng)發(fā)生[35]。背根神經(jīng)節(jié)實際上是中樞神經(jīng)系統(tǒng)內(nèi)的結(jié)構(gòu),因為解剖學上,背根神經(jīng)節(jié)位于腦脊膜內(nèi),周圍包圍著腦脊液。與中樞神經(jīng)損傷不同,周圍神經(jīng)損傷一般是可以通過軸突生長錐沿雪旺氏細胞鞘再生至靶器官[36-37]。
脊髓損傷治療要本著構(gòu)建SCN要素,注重細胞發(fā)育環(huán)境動態(tài)平衡穩(wěn)態(tài),形成一個解剖和功能交互作用的整體行動。SCI治療,無論是干細胞注射植入,誘導脊髓內(nèi)源性干細胞,還是轉(zhuǎn)化膠質(zhì)細胞使其成為神經(jīng)元細胞,最終使得SCI病灶兩側(cè)上行和下行神經(jīng)元連接起來,而不僅僅是長距離跨越膠質(zhì)瘢痕。顯然單純的干細胞在治療SCI不能達到理想的效果,干細胞借助纖維蛋白支架再復合多種生長因子還是可以達到這一目的[31]。雖然干細胞治療研究取得一定的進展,但是這些實驗結(jié)果并不相一致。最近一項類似上述干細胞附加纖維蛋白復合生長因子的動物實驗,重新評價了脊髓損傷治療,其療效表明,T3水平脊髓橫斷兩周后,開始這種綜合性移植治療9周后,雖然從網(wǎng)狀結(jié)構(gòu)神經(jīng)追蹤可以顯示紅核脊髓束,干細胞移植物可以充滿損傷病灶空腔,并有大量軸突生長,但是BBB評分的結(jié)果顯示移植組和對照組的運動恢復沒有區(qū)別[38]。除了急性SCI病人,現(xiàn)在SCI很多是慢性的,上述兩個實驗表明,同樣移植神經(jīng)干細胞,保證新生神經(jīng)纖維穩(wěn)定地跨越膠質(zhì)瘢痕達到功能性環(huán)路建立還需要進一步驗證,因為神經(jīng)元可以在相應各種生長因子誘導下,生長入相應的區(qū)域,但是如果建立不了穩(wěn)定的生理環(huán)路機能聯(lián)系和或投射支配,這些新生的神經(jīng)終末有可能最終退化,甚至源于治療的神經(jīng)元胞體也會隨后死亡。
發(fā)掘自身抗病因素也是需要考慮的因素,除了損傷可激發(fā)EC增生以外,通過觀察Sox-2、nestin、Ki67和BrdU,生理鍛煉也可增加脊髓干細胞數(shù)量;給脊髓損傷大鼠,輔助跑步機鍛煉可以促進自主排尿功能和改善運動[39]。這種改善可能是增加了新生或脫髓鞘纖維髓鞘化而提高了功能恢復[40]。
人類胚胎干細胞移植存在倫理學問題,還有異體來源的細胞還有免疫排斥問題[41]。因此,在中樞神經(jīng)系統(tǒng)內(nèi),在基因表達水平,將常駐非神經(jīng)元細胞重新編程,刺激自身細胞增殖或誘導非神經(jīng)元轉(zhuǎn)化成神經(jīng)元,有可能成為一種新的治療途徑。脊髓中央管的EC也可能成為神經(jīng)干細胞的來源。很有趣的是,目前原位將非轉(zhuǎn)化神經(jīng)細胞轉(zhuǎn)化為神經(jīng)元,轉(zhuǎn)化靶細胞可以不限于EC,而是腦或脊髓的膠質(zhì)細胞和由于病理刺激引起的反應性膠質(zhì)細胞。
當神經(jīng)退行性變或神經(jīng)損傷引起的反應性膠質(zhì)細胞瘤或瘢痕時,用現(xiàn)有的方法很難逆轉(zhuǎn)。應用逆轉(zhuǎn)錄病毒表達單一的神經(jīng)轉(zhuǎn)錄因子NeuroD1可將上述病理條件下的膠質(zhì)細胞轉(zhuǎn)化為有功能的神經(jīng)元。在表達NeuroD1后,再將膠質(zhì)細胞轉(zhuǎn)化成谷氨酸能神經(jīng)元。隨后NG2細胞再程序化為谷氨酸能神經(jīng)元和GABA能神經(jīng)元。在這些轉(zhuǎn)化的神經(jīng)元可記錄到整合性的神經(jīng)元功能活動。由此建立起來的轉(zhuǎn)化系統(tǒng),也可在培養(yǎng)體系中驗證?,F(xiàn)在,體外實驗可以定向地控制出生后的哺乳動物中樞神經(jīng)組織中的膠質(zhì)細胞定向分化成為實驗性治療的移植神經(jīng)元,這些神經(jīng)元繼而發(fā)育成具有突觸聯(lián)系的神經(jīng)元,即膠質(zhì)細胞轉(zhuǎn)成功能性神經(jīng)元。應用逆轉(zhuǎn)錄病毒載體。表達背側(cè)端腦命運決定“Neurogenin2”轉(zhuǎn)錄因子可使星形膠質(zhì)細胞轉(zhuǎn)變?yōu)楣劝彼崮苌窠?jīng)元,相反表達腹側(cè)端腦命運決定“Dlx2”轉(zhuǎn)錄因子可使其轉(zhuǎn)變?yōu)橐种菩訥ABA能神經(jīng)元。Dlx2介導的神經(jīng)元重編程效力遠低于Neurogenin2,可能由于皮層星形膠質(zhì)細胞對背側(cè)端腦命運決定有高度的競爭性。有趣的是,當星形膠質(zhì)細胞作為神經(jīng)球細胞開始擴增時優(yōu)先以Dlx2轉(zhuǎn)化,重新編程使星形膠質(zhì)細胞定向生成GABA能神經(jīng)元的方向大為強化。更重要的是,在神經(jīng)球階段擴增使用的方法,隨后程控定向的神經(jīng)轉(zhuǎn)化因子也能擴展地應用到損傷皮層中分離的活化星形膠質(zhì)細胞,繼而再選擇性地產(chǎn)生谷氨酸能或GABA能神經(jīng)元。
進一步從膠質(zhì)細胞訂制神經(jīng)元來代替退行性變的神經(jīng)元,并且還能定制含有特定遞質(zhì)的神經(jīng)元。同樣強制少突膠質(zhì)細胞前體細胞表達Sox10、Olig2和Zfp536轉(zhuǎn)錄因子,也可以定制少突膠質(zhì)細胞用于某些疾病治療。因為少突膠質(zhì)細胞是SCI功能修復較重要的作用。脊髓損傷時,可通過單一轉(zhuǎn)錄因子SOX2便可將常駐脊髓膠質(zhì)細胞轉(zhuǎn)化成微管相關(guān)蛋白doublecortin陽性的神經(jīng)母細胞。轉(zhuǎn)化的神經(jīng)母細胞可在體內(nèi)形成突觸整合到神經(jīng)回路中,應用組蛋白脫乙酰酶抑制劑,丙戊酸能夠進一步促進神經(jīng)元成熟過程。組織自我更新是正常的生理現(xiàn)象,由于中樞神經(jīng)系統(tǒng)再生能力有限,如何利用和發(fā)掘脊髓的自己我更新和再生修復能力對治療脊髓損傷和退行性神經(jīng)疾病具有重要意義。眾所周知,SCI伴隨膠質(zhì)瘢痕形成。在SCI修復中,EC具有正面和負面的作用。研究顯示負面效果可能是阻礙損傷修復重要因素,因為膠質(zhì)瘢痕中的星形膠質(zhì)細胞超過半數(shù)來自EC,因此限制和干預EC損傷后的反應和增殖分化方向可能會影響SCI的治療效果。研究斑馬魚SCI時可以發(fā)現(xiàn)有兩種神經(jīng)干細胞,一種是放射狀膠質(zhì)細胞表達同源盒轉(zhuǎn)錄因子Dbx,另一種缺乏Dbx但是表達Olig2。另外,新技術(shù)如活細胞成像,雙光子復合共聚焦顯微鏡技術(shù),展示4D數(shù)據(jù)揭示放射性膠質(zhì)細胞和神經(jīng)祖細胞的發(fā)育,對未來深入研究帶來新的認識。
應該注意到研究神經(jīng)干細胞需要面對非傳統(tǒng)上的細胞和組織概念,就是前面提到的神經(jīng)干細胞棲地,在體內(nèi)外建立非傳統(tǒng)的利于細胞分化和成熟的生物醫(yī)療微生態(tài)即環(huán)境再造治療策略。EC可以分化為多種中樞神經(jīng)細胞,無論是星形膠質(zhì)細胞,少突膠質(zhì)細胞還是神經(jīng)元,最終還是解決神經(jīng)元的功能修復,現(xiàn)在需要進一步了解SCI修復時各種細胞扮演的角色,開展必要的比較動物學研究,比如兩棲類動物脊髓損傷能夠完全功能恢復。深入研究低等動物兩棲類動物脊髓損傷功能恢復的奧秘,也可能從中找到一些答案。
[1]Lipson AC,Horner PJ.Potent possibilities:endogenous stem cells in the adult spinal cord[J].Progress in brain research, 2002,137(2):283-297.
[2]廖法學,張輝,尹宗生.脊髓神經(jīng)干細胞Niche的研究進展[J].中國組織工程研究,2012,16(19):3588-3592.
[3]Scadden DT.The stem-cell niche as an entity of action[J]. Nature,2006,441(7097):1075-1079.
[4]Boutin C,Labedan P,Dimidschstein J,et al.A dual role for planar cell polarity genes in ciliated cells[J].Proc Natl Acad Sci U S A,2014,111(30):E3129-E3138.
[5]Kohno K.Electron microscopic studies on Reissner's fiber and the ependymal cells in the spinal cord of the rat[J].Z Zellforsch Mikrosk Anat,1969,94(4):565-573.
[6]Alfaro-Cervello C,Cebrian-Silla A,Soriano-Navarro M,et al. The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human[J].J Comp Neurol,2014,522(8):1800-1817.
[7]Mirzadeh Z,Han YG,Soriano-Navarro M,et al.Cilia organize ependymal planar polarity[J].J Neurosci,2010,30(7): 2600-2610.
[8]Lee L.Riding the wave of ependymal cilia:genetic susceptibility to hydrocephalus in primary ciliary dyskinesia[J]. J Neurosci Res,2013,91(9):1117-1132.Review.
[9]Ohata S,Nakatani J,Herranz-Perez V,et al.Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus[J].Neuron,2014,83(3):558-571.
[10]Alfaro-Cervello C,Soriano-Navarro M,Mirzadeh Z,et al. Biciliated ependymal cell proliferation contributes to spinal cord growth[J].J Comp Neurol,2012,520(15):3528-3552.
[11]Nualart F,Hein S.Biosynthesis and molecular biology of the secretory proteins of the subcommissural organ[J].Microsc Res Tech,2001,52(5):468-483.Review.
[12]Barreiro-Iglesias A,Villar-Cervino V,Anadon R,et al.A monoclonal antibody as a tool to study the subcommissural organ and Reissner's fibre of the sea lamprey:an immunofluorescence study before and after a spinal cord transection[J].Neurosci Lett,2009,464(1):34-38.
[13]Hamilton LK,Truong MK,Bednarczyk MR,et al.Cellular organization of the central canal ependymal zone,a niche of latent neural stem cells in the adult mammalian spinal cord[J]. Neuroscience,2009,164(3):1044-1056.
[14]Hugnot JP,Franzen R.The spinal cord ependymal region:a stem cell niche in the caudal central nervous system[J].Front Biosci(Landmark Ed),2011,16:1044-1059.Review.
[15]Mladinic M,Bianchetti E,Dekanic A,et al.ATF3 is a novel nuclear marker for migrating ependymal stem cells in the rat spinal cord[J].Stem Cell Res,2014,12(3):815-827.
[16]Mukouyama YS,Deneen B,Lukaszewicz A,et al.Olig2+ neuroepithelial motoneuron progenitors are not multipotent stem cells in vivo[J].Proc Natl Acad Sci U S A,2006,103(5): 1551-1556.
[17]Cawsey T,Duflou J,Shannon-Weikert C,et al.Nestin positive ependymal cells are increased in the human spinal cord after traumatic CNS injury[J].J Neurotrauma,2015,[Epub ahead of print]PubMed PMID:25599268.
[18]Garcia-Ovejero D,Arevalo-Martin A,Paniagua-Torija B,et al. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord[J].J Comp Neurol,2013,521(1):233-251.
[19]Lacroix S,Hamilton LK,Vaugeois A,et al.Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions[J].PLoS One, 2014,9(1):e85916.
[20]Dromard C,Guillon H,Rigau V,et al.Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro[J].J Neurosci Res,2008,86(9):1916-1926.
[21]Xu R,Wu C,Tao Y,et al.Nestin-positive cells in the spinal cord:a potential source of neural stem cells[J].Int J Dev Neurosci,2008,26(7):813-820.
[22]Schuster A,Grundmann D,Nguyen TD,et al.Bacterial Lipopolysaccharide Promotes Proliferation of Neural Stem Cells From Both Enteric and Central Nervous System[J]. Gastroenterology,2011,140(5):Suppl 1,S320-S332.
[23]宋啟春,黨曉謙,姬樂,et al.半乳凝素-1對脊髓損傷大鼠室管膜區(qū)細胞增殖的影響[J].中國脊柱脊髓雜志,2013,23(8): 734-739.
[24]Moore SA,Oglesbee MJ.Spinal Cord Ependymal Responses to Naturally Occurring Traumatic Spinal Cord Injury in Dogs[J]. Vet Pathol,2014,[Epub ahead of print]PubMed PMID: 25445323.
[25]Mothe AJ,Tator CH.Proliferation,migration,and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat[J].Neuroscience,2005,131(1):177-187.
[26]Takahashi M,Arai Y,Kurosawa H,et al.Ependymal cell reactions in spinal cord segments after compression injury in adult rat[J].JNeuropathol Exp Neurol,2003,62(2):185-194.
[27]Attar A,Kaptanoglu E,Aydin Z,et al.Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord[J].Surg Neurol,2005,64 Suppl 2:S28-S32.
[28]Lukovic D,Stojkovic M,Moreno-Manzano V,et al.Concise review:reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys?[J].Stem Cells,2015,33(4): 1036-1041.
[29]胡博,尹宗生.內(nèi)源性神經(jīng)干細胞治療脊髓損傷的研究進展[J].安徽醫(yī)科大學學報,2011,46(1):83-86.
[30]Park SI,Lim JY,Jeong CH,et al.Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis [J].J Biomed Biotechnol,2012,2012:362473.
[31]Lu P,Wang Y,Graham L,et al.Long-distance growth and connectivity of neural stem cells after severe spinal cord injury [J].Cell,2012,150(6):1264-1273.
[32]Sakakibara A,Aoki E,Hashizume Y,et al.Distribution of nestin and other stem cell-related molecules in developing and diseased human spinal cord[J].Pathol Int,2007,57(6): 358-368.
[33]Kojima A,Tator CH.Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo[J].J Neuropathol Exp Neurol,2000,59(8):687-697.
[34]Weiss S,Dunne C,Hewson J,et al.Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis[J].J Neurosci,1996,16(23):7599-7609.
[35]Muratori L,Ronchi G,Raimondo S,et al.Generation of new neurons in dorsal root Ganglia in adult rats after peripheral nerve crush injury[J].Neural Plast,2015,2015:860546.
[36]Kawabuchi M,Tan H,Wang S.Age affects reciprocal cellular interactions in neuromuscular synapses following peripheral nerve injury[J].Ageing Res Rev,2011,10(1):43-53.
[37]Wang S,Kawabuchi M,Zhou CJ,et al.The spatiotemporal characterization of endplate reoccupation,with special reference to the superposition patterns of the presynaptic elements and the postsynaptic receptor regions during muscle reinnervation[J].J Peripher Nerv Syst,2004,9(3):144-157.
[38]Sharp KG,Yee KM,Steward O.A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury[J].Exp Neurol,2014,257:186-204.
[39]Foret A,Quertainmont R,Botman O,et al.Stem cells in the adult rat spinal cord:plasticity after injury and treadmill training exercise[J].J Neurochem,2010,112(3):762-772.
[40]Krityakiarana W,Espinosa-Jeffrey A,Ghiani CA,et al. Voluntary exercise increases oligodendrogenesis in spinal cord [J].Int J Neurosci,2010,20(4):280-290.
[41]Lee-Kubli CA,Lu P.Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury[J].Neural Regen Res,2015,10(1):10-16.Review.
Potential of spinal cord ependymal cells reproduction and other related cell targeted therapeutic strategies
Wei Zichun,Wang Yu,Xu Ximeng,Wu Wei,Rao Chenxu,Tan Huibing.
Department of Anatomy,Liaoning Medical College,Jinzhou 121001,China
Huibing Tan,Email:davidtanhb@foxmail.com
In the central nervous system,the ependymal cells(EC)in central canal of the spinal cord remain the persistence of a pool of stem and progenitor cells.Terminology of the EC niche as an entity of action not only showed neural stem cell potential but functioned beyond physiological and anatomical manners.The spinal cord EC generated astrocytes,oligodendrocytes and neurons in vitro and in vivo in injured spinal cord.However,it was still a challenge that the long term survival of spinal cord injury(SCI)treated by the stem cells transplanted in a fibrin matrix with a growth factor cocktail. Recently,the non-neuronal cells were directly converted into functional neurons in vivo,which opened up a new cellular therapy.With ultimate design of the therapeutics,we still need further to investigate how to manipulation of the proliferation and differentiation of EC or reprogramming of non-neuronal components into neuronal compartments,and constitute and functionally sustain the transplantation of stem cells and cellular modification in vivo until functional recovery in following SCI.We should figure out a new concept other than the traditional cell and tissue,stem cell niche,which could be non-traditionally mimicked in our human bodies to treatment of SCI under biomedical micro-ecology.
Spinal cord;Stem cell;Ependymal cell;Spinal cord injury;Treatment
2015-04-08)
(本文編輯:張麗)
10.3877/cma.j.issn.2095-9141.2015.03.013
遼寧醫(yī)學院人才引進項目(YY017);國家自然科學金(81471286);遼寧省大學生創(chuàng)新課題(201410160007);遼寧醫(yī)學院教改課題(YA2014004)資助
121001錦州,遼寧醫(yī)學院解剖學教研室
譚會兵,Email:davidtanhb@foxmail.com
魏子淳,王宇,徐熙萌,等.脊髓室管膜細胞再生修復的潛力和其他相關(guān)細胞靶向治療策略[J/CD].中華神經(jīng)創(chuàng)傷外科電子雜志,2015,1(3):178-182.