孫琳琳, 辛士超, 強曉晶, 程憲國*
(1沈陽農(nóng)業(yè)大學土地與環(huán)境學院, 遼寧沈陽 110866;2中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081)
非生物脅迫下植物水通道蛋白的應答與調(diào)控
孫琳琳1, 2, 辛士超2, 強曉晶2, 程憲國2*
(1沈陽農(nóng)業(yè)大學土地與環(huán)境學院, 遼寧沈陽 110866;2中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081)
【目的】水分不僅是細胞中各類生命物質(zhì)合成的必需底物,而且也參與植物體內(nèi)的養(yǎng)分代謝和滲透平衡的調(diào)節(jié)。植物中水分的跨膜轉運主要是由水通道蛋白(AQPs)所介導的,因此,無論是在植物整體水平還是細胞水平上,水分的吸收以及跨細胞膜系統(tǒng)的轉運對于植物的生長發(fā)育都是至關重要的。近年來,水通道蛋白作為調(diào)節(jié)水分的吸收與轉運的關鍵,已成為植物營養(yǎng)與分子生物學特別關注和研究的熱點之一。本文從水通道蛋白的種類結構,底物特異性,基因表達特征和調(diào)控機制四個方面對水通道蛋白轉運水分的機理和轉運水分過程中對脅迫的響應機制進行了詳細闡述;從水通道蛋白的水分運輸和滲透調(diào)節(jié)功能及其養(yǎng)分運輸功能兩方面說明了水通道蛋白在植物生長過程中的生理作用;闡述了光照、干旱和低溫與水通道蛋白功能之間的關系,明確了水通道蛋白通過表達量的增加或者降低來響應相應環(huán)境條件的變化?!局饕獧C理】 水通道蛋白通過保持一定結構及對底物運輸?shù)奶禺愋詠韺崿F(xiàn)對水分的高效運輸,通過調(diào)整基因的表達量和翻譯后修飾等過程實現(xiàn)對水分的高效轉運;同時,水通道蛋白可以通過水分的運輸實現(xiàn)植物滲透平衡的調(diào)節(jié),對部分小分子養(yǎng)分的吸收等功能更是實現(xiàn)了對植物生理和養(yǎng)分吸收的調(diào)節(jié);另外,水通道蛋白不僅可以提高植物的抗旱、抗鹽能力,對低溫脅迫也有一定的響應,還可以與多類逆境脅迫蛋白發(fā)生相互作用,共同調(diào)節(jié)植物的水分和滲透平衡,提高植物應對逆境脅迫的能力,表明植物水通道蛋白對非生物脅迫下的應答機制有待于進一步探索,為植物水通道蛋白的應用研究提供科學的理論支持與材料支撐。
非生物脅迫; 水通道蛋白; 生理功能; 脅迫響應
1992年CHIP28 的水通道功能通過爪蟾卵母細胞表達系統(tǒng)得到了證實,并于1997年由基因組命名委員會命名為Aquaporin。 1993年Maurel等[9]從擬南芥中分離鑒定了第一個植物水通道蛋白基因γ-TIP,這是一種液泡膜內(nèi)在蛋白(TIPs),它的水分轉運功能同樣通過爪蟾卵母細胞表達系統(tǒng)得到了驗證, 為水通道蛋白在植物中水分轉運以及滲透勢調(diào)節(jié)的機理研究提供了重要的科學依據(jù)。
至今已在一系列物種中發(fā)現(xiàn)了越來越多的水通道蛋白。例如,在玉米[10]、擬南芥[11]、水稻[12]和棉花[13]中分別發(fā)現(xiàn)了36、35、33、71種水通道蛋白。根據(jù)序列的同源性又可將植物中的水通道蛋白分成四類,其中質(zhì)膜內(nèi)在蛋白(plasma membrane intrinsic protein,PIP)和液泡膜內(nèi)在蛋白(tonoplast intrinsic protein,TIP)在植物中的分布最為廣泛[11]。此外,在大豆的固氮共生根瘤的類囊體膜上存在大量的結瘤素26(GmNOD26)內(nèi)在蛋白,因此該類水通道蛋白被命名為類NOD26內(nèi)在蛋白(NIPs)。NIPs同樣存在于非豆科類植物中,如擬南芥中存在9種NIPs[14]。第四類是小分子堿性內(nèi)在蛋白(SIPs)。在植物中,這四類AQPs是高度保守的,不同物種之間的同源水通道蛋白也很難區(qū)分[12]。此外,在某些植物中又發(fā)現(xiàn)了一些新的水通道蛋白類型,苔蘚(Physcomitrellapatens)通過水平基因轉移能夠表達一種細菌甘油轉運蛋白GlpF的同系物[15],這樣苔蘚和一些其他植物(如白楊)就能夠編碼第五類水通道蛋白,這種新的AQPs與PIPs相近但又明顯不同[16]。
2.1 植物水通道蛋白結構
水通道蛋白整體維持在一個封閉的構象,實現(xiàn)水分的跨膜運輸,任何導致水通道蛋白整體構象改變的行為都會影響其水分轉運的活性,但是如何增加其水分轉運活性的相關調(diào)控機制還有待進一步的深入研究。
2.2 植物水通道蛋白跨膜轉運的底物特異性
圖1 典型水通道蛋白的分子結構(a)與選擇性轉運機理(b)[7]Fig.1 Molecular structure(a) and selective transport mechanism(b) of typical aquaporins[7]
2.3 植物水通道蛋白基因表達特征
植物的絕大部分組織中都存在水通道蛋白,并且不同類型的水通道蛋白在植物發(fā)育中的不同階段具有其各自獨特的功能,因此,不同的水通道蛋白基因的表達在不同生長發(fā)育階段都受到了嚴謹?shù)恼{(diào)控。通過調(diào)節(jié)水通道蛋白編碼基因的轉錄,或者改變AQPs蛋白合成的速度可以調(diào)控水通道蛋白在植物細胞中的含量。植物的生長發(fā)育階段、植物激素水平和各種生長環(huán)境變化等都會影響AQPs基因的轉錄水平,與共翻譯及翻譯后調(diào)控相比,這種調(diào)節(jié)方式響應速度較慢。有研究表明,細胞的動態(tài)分區(qū)和膜的循環(huán)可能也參與了水分滲透的調(diào)節(jié)[23]。
植物激素如脫落酸(ABA)、赤霉素(GA3)、油菜素內(nèi)酯(BR)和乙烯(C2H4)等都能夠調(diào)控植物AQPs基因的表達[24]。在植物中,ABA是一種非常重要的調(diào)控信號分子,主要參與響應干旱和鹽脅迫[25]。植物在缺水的情況下會大量積累ABA,同時激活多種ABA應答基因的表達,ABA的刺激會增加植物根系細胞和組織水平上的水導度,影響氣孔的開閉,如擬南芥的PIP1b基因表達受到ABA和GA3的誘導,γ-TIP的表達受到GA3的誘導,這表明植物中ABA誘導AQPs基因的表達,改變了植物膜的透水性。
環(huán)境脅迫同樣會影響AQPs基因的表達,水通道蛋白家族基因的表達調(diào)控在植物適應不同環(huán)境條件過程中也非常重要。豌豆的7a基因是第一個被確認的受到水脅迫誘導表達的AQPs基因,它屬于PIP1亞家族[26]。研究發(fā)現(xiàn)在高濃度鹽脅迫時會造成短時間內(nèi)多個水通道蛋白基因的表達水平顯著降低,然而隨著細胞內(nèi)滲透調(diào)節(jié)物質(zhì)的積累,AQPs基因的表達能夠逐漸恢復到脅迫前的水平甚至更高,這表明AQPs基因的表達受到動態(tài)的調(diào)控以適應不同的環(huán)境變化[22]。
2.4 水通道蛋白的調(diào)控機制
近年來蛋白組學和質(zhì)譜技術的發(fā)展使得人們可以更為全面的了解水通道蛋白的共翻譯和翻譯后的修飾。例如,PIP1類水通道蛋白只有在其N-末端N-α-乙?;蟛啪哂谢钚裕欢鳳IP2s則需要切掉部分氨基酸殘基[27]。雖然大部分的AQPs不會受到糖基化的調(diào)控,但是Miao等[29]和Vera-Estrella等[30]分別發(fā)現(xiàn)了大豆GmNOD26和冰葉日中花McTIP的糖基化現(xiàn)象,同時Vera-Estrella等人也證明了糖基化是環(huán)境脅迫所造成的水通道蛋白移位所必需的。水通道蛋白還是植物膜上第一個被發(fā)現(xiàn)能被甲基化的蛋白質(zhì)[27],例如,擬南芥的AtPIP2;1的Lys3殘基能夠攜帶1個甲基化基團,Glu6殘基能夠攜帶2個甲基化基團。這些結果表明,除了種類的多樣性,植物水通道蛋白還會通過多種多樣的修飾對其活性進行復雜的共翻譯和翻譯后調(diào)控。
近年來研究發(fā)現(xiàn),植物細胞中水通道蛋白在不同細胞器間的轉移對于其正常的表達和行使生理功能都至關重要。研究發(fā)現(xiàn)PIP1類質(zhì)膜內(nèi)在蛋白在爪蟾卵母細胞表達系統(tǒng)中并不具有通道活性,這是因為在爪蟾卵母細胞中單獨表達的PIP1s并不能正確的轉運到質(zhì)膜上,然而玉米的PIP1s與少量PIP2在爪蟾卵母細胞中共表達的時候就能夠表現(xiàn)出正常的水通道蛋白的功能,進一步的親和共純化、免疫共純化以及在共表達PIP1s和PIP2s的玉米原生質(zhì)體中進行的熒光共振能量轉移成像(FRET)研究表明,在植物細胞和爪蟾卵母細胞中,兩類質(zhì)膜內(nèi)在蛋白PIP1s和PIP2s能夠直接互作形成異源四聚體,促進PIP1s在植物細胞中從內(nèi)質(zhì)網(wǎng)向質(zhì)膜的轉移[30-31]。Temmei 等[32]發(fā)現(xiàn)PIP1類水通道蛋白的磷酸化也與其向內(nèi)質(zhì)網(wǎng)轉移的過程有關,含羞草PIP1環(huán)B的磷酸化在與其他水通道蛋白的互作中并不是必需的,但是在爪蟾卵母細胞中環(huán)B的磷酸化能夠整體的提高PIP1-PIP2復合物的水分轉運效率。PIP1和PIP2的這種互作依賴的轉移過程就包含了廣泛的不同水通道蛋白間互相組合調(diào)控的可能性,這種異源四聚體與PIP1s和PIP2s各自形成的同源四聚體在功能方面的差異目前仍不明確。同其他的膜蛋白相似,PIP2類水通道蛋白在質(zhì)膜上也是不停循環(huán)的,網(wǎng)格蛋白能夠誘導質(zhì)膜PIP2通過內(nèi)陷進入胞內(nèi)[33],而生長素能夠抑制這一過程[34]。
水通道蛋白的門控機制即孔道的打開和關閉受到多種因素的調(diào)節(jié)。在爪蟾卵母細胞功能性表達野生型、磷酸化位點發(fā)生突變的PvTIP3;1、GmNOD26和SoPIP2;1以及外源性蛋白激酶和磷酸酶所導致的水通道蛋白的通道活性變化均表明,AQPs的磷酸化對于其門控機制是非常重要的[35]。在純化的類菌體周膜上所進行的停流檢測發(fā)現(xiàn),堿性磷酸酶導致GmNOD26去磷酸化而顯著地降低其對水的通透性,說明了磷酸化在GmNOD26門控調(diào)節(jié)中發(fā)揮作用[35]。Gerbeau等[36]和Alleva等[37]分別通過在擬南芥懸浮培養(yǎng)細胞和甜菜的根中純化得到的質(zhì)膜囊泡進行水分轉運實驗,結果表明胞質(zhì)側的質(zhì)子和二價陽離子同樣會調(diào)節(jié)PIPs的通透性。爪蟾卵母細胞中的水通道蛋白結構功能分析及所得到的菠菜SoPIP2;1呈現(xiàn)打開和閉合構象時的原子結構特征闡明了水通道蛋白門控的分子機理[18, 38]。PIPs環(huán)D上高度保守的組氨酸殘基都能夠結合胞質(zhì)側的質(zhì)子,質(zhì)子化或是結合二價陽離子的His殘基能夠引起環(huán)D的構象發(fā)生改變從而關閉水通道蛋白的孔道[18]。菠菜SoPIP2;1的原子結構模型表明了環(huán)B的磷酸化能夠開啟環(huán)D,使AQPs孔道打開,同時C-末端的磷酸化反而會阻止相鄰AQPs單體的環(huán)D變?yōu)榭椎狸P閉的構象[18]。Ye等[39]通過對輪藻細胞進行壓力檢測發(fā)現(xiàn)當在膜的兩側同時存在某些溶質(zhì)時,就會影響水通道蛋白的門控調(diào)節(jié)過程,使細胞膜對水的通透性受到抑制,并且這種抑制作用與溶質(zhì)的分子大小是密切相關的,因此,Ye等[39]提出了水通道蛋白的緊張/松弛模型:有些溶質(zhì)會阻塞在孔道的一端,AQPs排斥這些溶質(zhì)的時候會產(chǎn)生滲透壓力而轉變?yōu)榫o張狀態(tài),這會進一步造成孔道的關閉。羥基自由基同樣會顯著并且可逆地(90% 以上)抑制輪藻細胞的水分轉運,這是由水通道蛋白的氧化所造成的,然而,由活性氧所造成的擬南芥根中水通道蛋白的抑制作用卻與細胞中信號傳導相關的[40]。
3.1 AQP參與了植物體內(nèi)的水分運輸與滲透調(diào)節(jié)
水分跨細胞途徑運輸主要通過三種方式穿過膜:自由擴散通過脂雙層、膜轉運蛋白介導的水分轉運以及被動運輸通過水通道蛋白。在某些生理過程中,需要進行大量而且迅速的水分轉運,僅靠前兩種方式是不能夠滿足需求的,通過水通道蛋白可以實現(xiàn)水分快速的跨膜轉運,其動力來自于靜水壓和滲透水壓。植物通過維管系統(tǒng)來實現(xiàn)水分在體內(nèi)長距離大量的運輸,水分由根吸收之后經(jīng)凱氏帶進入導管,莖和葉便可以從導管中獲取水分,植物中這些轉運水分的生理過程需要水通道蛋白的參與。在許多植物的維管束以及附近組織中均能觀察到水通道蛋白的高水平表達,如玉米的γ-TIP[41]、菠菜的δ-TIP[42]、擬南芥的δ-TIP和PIP1b[43]。
AQPs會影響植物的開花生理,Azad等[44]發(fā)現(xiàn)郁金香花瓣中的PM-AQP受到磷酸化和去磷酸化的調(diào)控,分別使花瓣在低溫時閉合,高溫時打開。煙草的NtPIP2;1能夠促進水分在細胞間和組織間的轉移,這對于花粉粒通過水合作用附著到子房上非常重要[45]。Bots等[46]發(fā)現(xiàn)煙草NtPIP2;1基因的表達在花粉囊發(fā)育的過程中受得嚴格的調(diào)控,RNA干擾NtPIP2;1基因會造成煙草的花粉脫水作用更慢,開裂延遲,所以煙草中PIP2類水通道蛋白是有性生殖所必需的。Fleurat-Lessard等[47]發(fā)現(xiàn)豆類根瘤內(nèi)皮層細胞(IC-cells)可以通過快速的膨脹機制來調(diào)節(jié)胞內(nèi)間隙和液相阻塞的體積從而調(diào)控根瘤中氧的擴散速率,γ-TIP參與IC-cells的膨脹調(diào)控,因此根瘤內(nèi)皮層細胞中γ-TIP基因的表達與氧擴散調(diào)控機制是密切相關的。含羞草的震感運動主要是由葉枕的運動實現(xiàn)的,F(xiàn)leurat-Lessard等[48]通過免疫共沉淀分析發(fā)現(xiàn)含羞草TIPs水通道蛋白通過介導水分跨細胞膜的快速轉運參與了葉枕的彎曲運動。
植物種子在成熟過程中能夠合成大量的貯藏蛋白保存在大量的蛋白貯藏囊泡(PSVs)中[49]。在種子開始萌發(fā)的過程中需要大量吸收水分,液泡膜的流動性增強,會出現(xiàn)細胞質(zhì)溶質(zhì)總量的迅速變化,導致暫時的滲透紊亂,因此需要通過一些生理過程來迅速地調(diào)節(jié)滲透平衡。種子成熟后期,α-TIP水通道蛋白大量積累,主要參與維持細胞中滲透平衡[50]。質(zhì)膜和液泡膜上的AQPs則能夠通過介導一些滲透調(diào)節(jié)物質(zhì)的快速轉運從而維持細胞質(zhì)的滲透平衡。通常狀況下,AQPs主要參與水分子快速的跨膜轉運,具有高度的底物特異性,但是在植物細胞中也有些水通道蛋白除了調(diào)控水分轉運之外還能參與某些離子、甘油和尿素等有機小分子的跨膜轉運。利用爪蟾卵母細胞表達系統(tǒng)研究煙草NtTIPa時發(fā)現(xiàn)其轉運尿素的能力是對照的3.9倍左右。Prudent等[51]在釀酒酵母滲透敏感突變體fpls1Δ中功能性表達花椰菜液泡膜水通道蛋白BobTIP1;1時發(fā)現(xiàn)其定位于酵母液泡膜上,表達BobTIP1;1的酵母細胞液泡中的甘油含量高于細胞質(zhì),并且能夠在進行低滲震蕩時存活。
3.2 AQP參與了植物對養(yǎng)分的吸收
植物水通道蛋白在應對各類環(huán)境脅迫的過程中具有非常重要的功能[55]。當受到干旱、高鹽和低溫等非生物脅迫時,水通道蛋白的表達量都會發(fā)生明顯的變化[56]。同時,水通道蛋白的表達也是存在多種情況。面對同樣的脅迫,不同水通道蛋白的表達可能存在上調(diào)表達或者降低表達的情況,即使是在同一亞族中的水通道蛋白也會出現(xiàn)在完全不同的環(huán)境脅迫下表現(xiàn)一致表達量的情況[57]。所以對于水通道蛋白的表達特征還要從多方面去考慮,在不同脅迫環(huán)境下選擇合適的目標基因來研究轉基因植物的水通道蛋白的調(diào)控和表達模式反而顯得更加重要。
4.1 光照對水通道蛋白活性的影響
水通道蛋白在植物的各組織中均有廣泛的分布,對植物最直接的影響來自它對水分的轉運功能。水通道蛋白轉運水分受光照的影響,對細胞的滲透調(diào)節(jié)可以改變細胞形態(tài)。例如,向日葵保衛(wèi)細胞中的TIP類水通道蛋白SunTIP7在一天之中的不同階段的表達量在不停地變化,在傍晚的時候表達水平最高,氣孔閉合,說明SunTIP7能夠介導保衛(wèi)細胞中的水分向外轉運[58]。大量數(shù)據(jù)表明,光照在很大程度上影響著植物葉的導水率[59]。在許多植物中,光照能夠增強葉片的導水率,例如Lo Gullo等[60]研究表明常綠喬木和落葉喬木的葉電導率與光合有效輻射(PAR)呈正相關。Cochard等[61]對核桃樹樹中兩種主要的PIP2表達強度的研究進一步證明了這一結果,從黑暗環(huán)境轉移到高強度光照下的過程中,核桃葉片的導水率與這兩種水通道蛋白的表達密切相關。葉片日常的活動能夠使對于光照的吸收最大化,這一過程離不開水通道蛋白的參與。Kim等研究表明完整玉米葉子的細胞液壓會隨著光密度的變化而做出響應,從而影響著植物的蒸騰作用[62]。進一步的研究數(shù)據(jù)表明不同的光強度可以調(diào)節(jié)細胞水平的水流量,當光密度達到一定數(shù)值時,胞內(nèi)水流量達到最大值,然后又降低[63]。在百脈根和玉米中,根的導水率在中午左右最強,這與PIP1和PIP2基因的表達水平基本一致。玉米的ZmPIP1;5基因在所有類型的根系中全天都有表達,但晚上只在根的表皮中表達[64],這其中除了轉錄調(diào)控之外,玉米根中的的PIP水通道蛋白應該還存在更為復雜的轉錄后調(diào)控模式。因此,水通道蛋白對作物感光應答以及在根中的遠距離調(diào)控機理研究還需進一步驗證。
4.2 鹽、干旱和低溫脅迫下水通道蛋白的應答
水分的跨膜運動主要是由水通道蛋白家族實現(xiàn)的,鹽、干旱和低溫脅迫對植物細胞水分的影響類似,都會導致植物一個缺水的狀態(tài),進而影響了植物的生長和作物產(chǎn)量。由此,植物本身對鹽、干旱和低溫等非生物脅迫的響應也就在很大程度上依賴自身的調(diào)控能力,而水通道蛋白對水分的運輸在這其中起著關鍵作用。
面對低溫脅迫,植物一般會通過增加根的吸水量來響應脅迫[65]。在特定氣孔阻力下,地上部水分的可利用程度是由根部供水情況決定的,并由根的抗脅迫能力決定。因此根部水分的調(diào)控在植物水分平衡的過程中也起著決定性的作用,同時影響著CO2的積累和作物產(chǎn)量[66]。Lee等[67]研究發(fā)現(xiàn)在低溫處理情況下,對低溫敏感的黃瓜株系中的內(nèi)皮細胞數(shù)量大大減少,但是對低溫有抗性的南瓜株系內(nèi)皮細胞數(shù)量沒有發(fā)生很大變化,進一步的研究也發(fā)現(xiàn),質(zhì)外體屏障和內(nèi)皮層細胞可以幫助調(diào)節(jié)根部滲透系數(shù)和水通道蛋白的活性。由此,來實現(xiàn)植物對低溫的脅迫響應。Azad等[68]發(fā)現(xiàn)溫度的改變會誘導水通道蛋白的磷酸化和去磷酸化,進而影響水分的運輸。但是關于低溫 門控水通道蛋白轉運水分的具體機制還需要更多的信息去闡明。冷凍處理時,耐低溫玉米品種Z7通過大量表達水通道蛋白來維持根系導水率以及體內(nèi)的水分運輸,減少植株所受凍害[69]。在擬南芥和煙草中超表達PIP1;4 和PIP2;5基因,正常生長狀況下的轉基因株系的生長速度和水分運輸與野生型相比并沒有差異。在干旱脅迫的條件下,轉基因株系較易失水,造成植株萌發(fā)延遲,幼苗生長緩慢。然而在低溫脅迫條件下,轉基因植株的導水率提高,水分轉運能力增強,萌發(fā)率增加[70]。同時Jang等[70]也發(fā)現(xiàn)PIP1;4 和PIP2;5基因的過表達還會影響其他多個內(nèi)源水通道蛋白基因在干旱脅迫條件下的表達模式,進而影響種子萌發(fā)、幼苗的生長以及植物的抗脅迫能力。
植物中水分的跨膜轉運主要是由水通道蛋白(AQPs)所介導的。因此,無論是在植物整體水平還是細胞水平上,水分的吸收以及跨細胞膜系統(tǒng)的轉運對于植物的生長發(fā)育都是至關重要的。水通道蛋白也叫做主體內(nèi)在蛋白(MIPs),在調(diào)節(jié)植物水分關系的過程中發(fā)揮核心作用,除水分之外,有些水通道蛋白還能夠轉運中性小分子溶質(zhì)(尿素、硼酸、硅酸)和氣體(NH3和CO2)。在不同的環(huán)境條件下,植物可通過多種模式對水通道蛋白進行轉錄和翻譯后調(diào)控,從而實現(xiàn)對細胞中多種生物膜通道活性的調(diào)節(jié)。
本實驗室研究也發(fā)現(xiàn)水通道蛋白作為水分轉運因子,不僅可以提高植物的抗旱、抗鹽能力,對低溫脅迫也有一定的響應[79]。本研究小組利用從番茄以及小鹽芥中獲得的不同類型的水通道蛋白作為誘餌蛋白進行酵母雙雜實驗,結果也表明水通道蛋白可以與多類逆境脅迫蛋白互作,共同調(diào)節(jié)植物的水分和滲透平衡,提高植物的抗逆性和適應性,這可能也是未來植物水通道蛋白研究的重點和熱點,為培育抗非生物脅迫作物品種提供分子材料與有價值的基因資源提供理論支持。
[1] Obroucheva N V, Sin'kevich I A. Aquaporins and cell growth[J]. Russia Journal of Plant Physiology, 2010, 57(2): 153-165.
[2] Otto B, Uehlein N, Sdorra Setal. Aquaporin tetramer composition modifies the function of tobacco aquaporins[J]. Journal of Biological Chemistry, 2010, 285(41): 31253-31260.
[3] Heckwolf M, Pater D, Hanson D Tetal. TheArabidopsisthalianaaquaporin AtPIP1;2 is a physiologically relevant CO2transport facilitator[J]. The Plant Journal, 2011, 67(5): 795-804.
[4] Yool A J, Campbell E M. Structure, function and translational relevance of aquaporin dual water and ion channels[J]. Molecular Aspects of Medicine, 2012, 33(5-6): 553-561.
[5] Chen S, Polle A. Salinity tolerance ofPopulus[J]. Plant Biology, 2010, 12(2): 317-333.
[6] Ruiz-Lozano J M, Porcel R, Azcón Cetal. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies[J]. Journal of Experimental Botany, 2012, 63(11): 4033-4044.
[7] Maurel C, Verdoucq L, Luu D Tetal. Plant aquaporins: membrane channels with multiple integrated functions[J]. Annual Review of Plant Biology, 2008, 59: 595-624.
[8] 牛洪斌,呂軍朋,鄧德芝,等. 小麥AQPs蛋白TaPIP1基因cDNA克隆及其表達分析[J]. 麥類作物學報, 2010, 30(1): 1-5. Niu H B, Lü J P, Deng D Zetal. Cloning ofTaPIP1 cDNA from wheat and its expression[J]. Journal of Triticeae Crops, 2010, 30(1): 1-5.
[9] Maurel C, Reizer J, Schroeder J Ietal. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes[J]. The EMBO Journal, 1993, 12(6): 2241-2247.
[10] Chaumont F, Barrieu F, Wojcik Eetal. Aquaporins constitute a large and highly divergent protein family in maize[J]. Plant Physiology, 2001, 125(3): 1206-1215.
[11] Johanson U, Karlsson M, Johansson Ietal. The complete set of genes encoding major intrinsic proteins inArabidopsisprovides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiology, 2001, 126(4): 1358-1369.
[12] Sakurai J, Ishikawa F, Yamaguchi Tetal. Identification of 33 rice aquaporin genes and analysis of their expression and function[J]. Plant & Cell Physiology, 2005, 46(9): 1568-1577.
[13] Park W, Scheffler B E, Bauer P Jetal. Identification of the family of aquaporin genes and their expression in upland cotton (GossypiumhirsutumL.)[J]. BMC Plant Biology, 2010, 10(1): 142.
[14] Wallace I S, Choi W G, Roberts D M. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2006, 1758(8): 1165-1175.
[15] Gustavsson S, Lebrun A S, Nordén Ketal. A novel plant major intrinsic protein inPhyscomitrellapatensmost similar to bacterial glycerol channels[J]. Plant Physiology, 2005, 139(1): 287-295.
[16] Tuskan G A, Difazio S, Jansson Setal. The genome of black cottonwood,Populustrichocarpa(Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-1604.
[17] Fujiyoshi Y, Mitsuoka K, de Groot B Letal. Structure and function of water channels[J]. Current Opinion in Structural Biology, 2002, 12(4): 509-515.
[18] Tornroth-Horsefield S, Wang Y, Hedfalk Ketal. Structural mechanism of plant aquaporin gating[J]. Nature, 2006, 439(7077): 688-694.
[19] Nyblom M, Frick A, Wang Yetal. Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating[J]. Journal of Molecular Biology, 2009, 387(3): 653-668.
[20] HIll A, Shachar-Hill B, Shachar-Hill Y. What are aquaporins for?[J]. The Journal of Membrane Biology, 2004, 197(1): 1-32.
[22] Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a member CO2pore with physiological functions[J]. Nature, 2003, 425: 734-737.
[23] Li X, Wang X, Yang Yetal. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes ofArabidopsisplasma membrane aquaporin regulation[J]. The Plant Cell, 2011, 23(10): 3780-3797.
[24] 李嶸,牛向麗,苗雁文,等. 水通道蛋白基因OsPIP2;6的功能分析[J]. 中國農(nóng)業(yè)科學, 2013, 46(15): 3079-3086. Li R, Niu X L, Miao Y Wetal. Functional characterization of the plasma intrinsic protein geneOsPIP2;6 in rice[J]. Scientia Agricultura Sinica, 2013,46(15): 3079-3086.
[25] Sharp R E, Poroyko V, Hejlek L Getal. Root growth maintenance during water deficits: physiology to functional genomics[J]. Journal of Experimental Botany, 2004, 55(407): 2343-2351.
[26] Gerbeau P, Guclu J, Ripoche Petal. Aquaporin NtTIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes[J]. Plant Journal, 1999, 18(6): 577-587.
[27] Santoni V, Verdoucq L, Sommerer Netal. Methylation of aquaporins in plant plasma membrane[J]. Biochemical Journal, 2006, 400: 189-197.
[28] Miao G, Hong Z, Verma D. Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane[J]. The Journal of Cell Biology, 1992, 118(2): 481-490.
[29] Vera-Estrella R, Barkla B J, Bohnert H S, Pantoja O. Novel regulation of aquaporins during osmotic stress[J]. Plant Physiology, 2004, 135(4): 2318-2329.
[30] Fetter K, Van Wilder V, Moshelion Metal. Interactions between plasma membrane aquaporins modulate their water channel activity[J]. The Plant Cell Online, 2004, 16(1): 215-228.
[31] Zelazny E, Borst J W, Muylaert Metal. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization[J]. Proceedings of the National Academy of Sciences, 2007, 104(30): 12359-12364.
[32] Temmei Y, Uchida S, Hoshino Detal. Water channel activities ofMimosapudicaplasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation[J]. FEBS Letters, 2005, 579(20): 4417-4422.
[33] Dhonukshe P, Aniento F, Hwang Ietal. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers inArabidopsis[J]. Current Biology, 2007, 17(6): 520-527.
[34] Paciorek T, Zazimalova E, Ruthardt Netal. Auxin inhibits endocytosis and promotes its own efflux from cells[J]. Nature, 2005, 435(7046): 1251-1256.
[35] Guenther J F, Chanmanivone N, Galetovic M Petal. Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals[J]. The Plant Cell, 2003, 15(4): 981-991.
[36] Gerbeau P, Amodeo G, Henzler Tetal. The water permeability ofArabidopsisplasma membrane is regulated by divalent cations and pH[J]. The Plant Journal, 2002, 30(1): 71-81.
[37] Alleva K, Niemietz C M, Sutka Metal. Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations[J]. Journal of Experimental Botany, 2006, 57(3): 609-621.
[38] Tournaire-Roux C, Sutka M, Javot Hetal. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins[J]. Nature, 2003, 425(6956): 393-397.
[39] Ye Q, Wiera B, Steudle E. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration[J]. Journal of Experimental Botany, 2004, 55(396): 449-461.
[40] Henzler T, Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals[J]. Plant, Cell & Environment, 2004, 27(9): 1184-1195.
[41] Barrieu F, Chaumont F, Chrispeels M J. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize[J]. Plant Physiology, 1998, 117(4): 1153-1163.
[42] Karlsson M, Johansson I, Bush Metal. An abundant TIP expressed in mature highly vacuolated cells[J]. The Plant Journal, 2000, 21(1): 83-90.
[43] Kaldenhoff R, Fischer M. Functional aquaporin diversity in plants[J]. Biochimica et Biophysica Acta-Biomembranes, 2006, 1758(8): 1134-1141.
[44] Azad A K, Sawa Y, Ishikawa Tetal. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant Cell Physiol, 2004, 45(5): 608-617.
[45] Bots M, Feron R, Uehlein Netal. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development[J]. Journal of Experimental Botany, 2005, 56(409): 113-121.
[46] Bots M, Vergeldt F, Wolters-Arts Metal. Aquaporins of thePIP2 class are required for efficient anther dehiscence in tobacco[J]. Plant Physiology, 2005, 137(3): 1049-1056.
[47] Fleurat-Lessard P, Michonneau P, Maeshima Metal. The distribution of aquaporin subtypes (PIP1, PIP2 and γ-TIP) is tissue dependent in soybean (Glycinemax) root nodules[J]. Ann Bot-London, 2005, 96(3): 457-460.
[48] Fleurat-Lessard P, Frangne N, Maeshima Metal. Increased expression of vacuolar aquaporin and H+-ATPase related to motor cell function inMimosapudicaL.[J]. Plant Physiology, 1997, 114(3): 827-834.
[49] Maurel C. Aquaporins and water permeability of plant membranes[J]. Annual Review of Plant Biology, 1997, 48(1): 399-429.
[50] Hoh B, Hinz G, Jeong B Ketal. Protein storage vacuoles form de novo during pea cotyledon development[J]. Journal of Cell Science, 1995, 108(1): 299-310.
[51] Prudent S, Marty F, Charbonnier M. The yeast osmo sensitive mutant fps1Δtransformed by the cauliflower BobTIP1;1 aquaporin withstand a hypo-osmotic shock[J]. FEBS Letters, 2005, 579(18): 3872-3880.
[52] Clarkson D T, Carvajal M, Henzler Tetal. Root hydraulic conductance: diural aquaporin expression and the effects of nutrient stress[J]. Journal of Experimental Botany, 2000, 51(342): 61-70.
[53] Wang Y H, Garvin D F, Kochian L Y. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition[J]. Plant Physiology, 2001, 127: 345-359.
[54] Liu L H, Ludewig U, Gassert Betal. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis[J]. Plant Physiology, 2003, 133(3): 1220-1228.
[55] Aroca R, Porcel R, Ruiz-Lozano J M. Regulation of root water uptake under abiotic stress conditions[J]. Journal of Experimental Botany, 2012, 63: 43-57.
[56] Wang L L, Chen A P, Zhong N Qetal.TheThellungiellasalsugineatonoplast aquaporin TsTIP1; 2 functions in protection against multiple abiotic stresses[J]. Plant and Cell Physiology, 2014, 55(1): 148-161.
[57] Alexandersson E, Sj?vall-Larsen Setal. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005, 59(3): 469-484.
[58] Sarda X, Tousch D, Ferrare Ketal. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells[J]. The Plant Journal, 1997, 12(5): 1103-1111.
[59] Cochard H, Venisse J S, Barigah T Setal. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light[J]. Plant Physiology, 2007, 143(1): 122-133.
[60] Lo Gullo M A, Nardini A, Trifilò P, Salleo S. Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees[J]. Tree Physiology, 2005, 25(4): 505-512.
[61] Cochard H, Venisse J S, Barigah T Setal. Putative tole of aquaporin in variable hydraulic conductance of leaves in response to light[J]. Plant Physiology, 2007, 143(1): 122-133.
[62] Kim Y X, Steudle E. Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves ofZeamays[J]. Journal of Experimental Botany, 2007, 58(15-16): 4119-4129.
[63] Kim Y X, Steudle E. Gating of aquaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib ofZeamays[J]. Journal of Experimental Botany, 2009, 60(2): 547-556.
[64] Gaspar M l, Bousser A, Sissoeff Ietal. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea[J]. Plant Science, 2003, 165(1): 21-31.
[65] Lee S H, Singh A P, Chung G C. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport[J]. Journal of Experimental Botany, 2004, 55(403): 1733-1741.
[66] Steudle E. Water uptake by plant roots: an integration of views[J]. Acta Physiologiae Plantrum, 2004, 26(3): 77.
[67] Lee S H, Chung G C, Steudle E. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd[J]. Journal of Experimental Botany, 2005, 56(413): 985-995.
[68] Azad A K, Sawa Y, Ishikawa T, Shibata H. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant and Cell Physiology, 2004, 45: 608-617.
[69] Ma J F, Tamai K, Yamaji Netal. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691.
[70] Jang J Y, Lee S H, Rhee J Yetal. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses[J]. Plant Molecular Biology, 2007, 64(6): 621-632.
[71] Lovisolo C, Schubert A. Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach[J]. New Phytologist, 2006, 172(3): 469-478.
[72] Alexandersson E, Fraysse L, Sj?vall-Larsen Setal. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005, 59(3): 469-484.
[73] Maathuis F J M, Filatov V, Herzyk Petal. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress.[J]. Plant Journal, 2003, 35: 675-692.
[74] Guo L, Wang Z Y, Lin Hetal. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family[J]. Cell Research, 2006, 16(3): 277-286.
[75] Fricke W, Akhiyarova G, Wei Wetal. The short-term growth response to salt of the developing barley leaf[J]. Journal of Experimental Botany, 2006, 57(5): 1079-1095.
[76] Hose E, Steudle E, Hartung W. Abscisic acid and hydraulic conductivity of maize roots: a study using cell-and root-pressure probes[J]. Planta, 2000, 211(6): 874-882.
[77] Lian H L, Yu X, Ye Qetal. The role of aquaporinRWC3 in drought avoidance in rice[J]. Plant and Cell Physiology, 2004, 45(4): 481-489.
[78] Lian H L, Yu X, Lane Detal. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment[J]. Cell Research, 2006, 16(7): 651-660.
[79] Xin S C, Yu G H, Sun L Letal. Expression of tomatoSlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins[J]. Journal of Plant Research, 2014, 127: 695-708.
Responsive regulation of aquaporins in the plants exposed to abiotic stresses
SUN Lin-lin1,2, XIN Shi-chao2, QIANG Xiao-jing2, CHENG Xian-guo2*
(1CollegeofLandandEnvironment,ShenyangAgriculturalUniversity,Shenyang,Liaoning110866,China;2AgriculturalResourcesandRegionalPlanningInstitute,ChineseAcademyofAgriculturalSciences,Beijing100081,China)
Water is not only a necessary substrate synthesizing living matter in organisms, but also involves in the nutrient metabolism and the osmotic adjustment in the plant. Transmembrane transport of water in plants is mainly carried out by the water channel protein (AQPs) mediation. Therefore, based the overall level of plants or cell level, the moisture absorption and transport across the membrane system are essential guarantee for plant growth and development. In recent years, aquaporin, as a key factor regulating the water absorption and translation, has been widely focused in the research fields of plant nutrition and stress physiology at molecular level. This review described the mechanism of water transport involved by AQPs and the response mechanism of the AQPs to abiotic stresses based on the kinds of structure, substrate specificity, gene expression and regulation mechanism of aquaporin in plants, and the physiological effects of water channel protein during plant growth process were better described, and functionally characterized the transport mechanism of water and osmotic adjustment as well as nutrient transport models regulated by channel protein. The responses of aquaporin proteins to the changes of environment factors such as the strength of light, drought and low temperature, were discussed accordingly. Study showed that the water channel protein obviously responded to the environmental changes by increasing or reducing the accumulation amounts ofAQSexpression, and aquaporin could realize an efficient transport of water in plants by maintaining certain specific structures and the transport of substrate specificity as well as adjusting the expression of target genes and post-translational modification processes. Importantly, aquaporin plays a positive role in maintianing an equilibrium of osmotic potentials by transport regulation of water and absorption of small molecule chemicals, which are involved in the physiological regulation and nutrient uptake in the plants. Aquaporin can not only enhance the tolerance of plant to drought and salt stress, but also to cold stress. Moreover, aquaporin could interact with proteins that responds to abiotic stresses, and regulate osmotic equilibrium in the plant cells to improve the adaptation ability of plant exposed to abiotic stresses. Responsive mechanism of water channel protein in the plants exposing to abiotic stresses should be further investigated in the coming exploration to provide scientific supports and molecular materials for application of aquaporin in molecular breeding.
abiotic stress; aquaporin; physiological function; stress response
2014-07-15 接受日期: 2014-10-20 網(wǎng)絡出版日期: 2015-05-20
國家轉基因生物重大專項“鉀養(yǎng)分高效利用小麥新品種培育”(2013/2014ZX08002-005);科研院所公益基金項目(IARRP-2014-403-15)資助。
孫琳琳(1989—),女,山東濱州人,碩士,主要從事植物營養(yǎng)生理研究。E-mail:kernim@163.com * 通信作者 Tel:010-82105031,E-mail: chengxianguo@caas.cn
S945.17+1
A
1008-505X(2015)04-1040-09