姚 譽(yù) 陳 鵬 吳樂南
(東南大學(xué)信息科學(xué)與工程學(xué)院, 南京 210096)
?
EBPSK調(diào)制脈沖雷達(dá)信號(hào)的探測(cè)性能
姚 譽(yù) 陳 鵬 吳樂南
(東南大學(xué)信息科學(xué)與工程學(xué)院, 南京 210096)
研究了EBPSK(extended binary phase shift keying)調(diào)制脈沖雷達(dá)信號(hào)的探測(cè)性能.首先分析了該雷達(dá)系統(tǒng)信號(hào)在幾種情況下基于CFAR(constant false alarm rate)的目標(biāo)檢測(cè)概率,表明在未知目標(biāo)距離情況下,EBPSK調(diào)制雷達(dá)信號(hào)的探測(cè)性能優(yōu)于傳統(tǒng)LFM雷達(dá)信號(hào)的探測(cè)性能,在短波信道中,EBPSK脈沖雷達(dá)信號(hào)不存在多普勒頻擴(kuò).該信號(hào)的模糊函數(shù)是對(duì)稱的,所以不存在距離-多普勒耦合效應(yīng).其次,EBPSK調(diào)制雷達(dá)系統(tǒng)的調(diào)制器靈活多變,可根據(jù)要求設(shè)置不同的調(diào)制參數(shù)以改變信號(hào)的測(cè)距精度與目標(biāo)探測(cè)性能.最后,通過仿真實(shí)驗(yàn)驗(yàn)證了理論分析的合理性,在較大脈沖回波時(shí)延估計(jì)誤差的前提下,EBPSK信號(hào)的脈沖壓縮性能高于LFM的脈沖壓縮性能,且獲得相同的探測(cè)性能,當(dāng)時(shí)延大于0.05 μs時(shí),EBSPK脈沖雷達(dá)信號(hào)所需SNR比LFM脈沖雷達(dá)信號(hào)要少;當(dāng)時(shí)延為0.5 μs時(shí),EBSPK脈沖雷達(dá)信號(hào)所需SNR比LFM脈沖雷達(dá)信號(hào)少25 dB.
目標(biāo)檢測(cè)概率;EBPSK;多普勒擴(kuò)展;距離-多普勒耦合效應(yīng);模糊函數(shù)
短波(HF)頻段對(duì)于目標(biāo)的超視距探測(cè)[1]具有獨(dú)特優(yōu)勢(shì),但傳統(tǒng)的LFM雷達(dá)[2-3]存在著距離-多普勒耦合效應(yīng),因而短波信道中也會(huì)產(chǎn)生多普勒擴(kuò)展[4].雖然短波頻段在系統(tǒng)結(jié)構(gòu)和測(cè)量精度等方面[5-7]具有優(yōu)勢(shì),但干擾能力不強(qiáng).
文獻(xiàn)[8-11]揭示的EBPSK調(diào)制脈沖信號(hào)及其3種特例,均與連續(xù)波測(cè)距或脈沖測(cè)距有密切關(guān)聯(lián).文獻(xiàn)[12-14]提出基于窄帶帶通濾波器的EBPSK解調(diào)方法,突出了EBPSK調(diào)制信號(hào)的相位變化,在連續(xù)波背景中再現(xiàn)目標(biāo)的雷達(dá)脈沖回波,從而解調(diào)輸出大量程的測(cè)距信息.而EBPSK信號(hào)調(diào)制解調(diào)器(MODEM)[15]作為雷達(dá)測(cè)距系統(tǒng),可根據(jù)實(shí)際目標(biāo)環(huán)境,靈活改變調(diào)制參數(shù),得到不同的測(cè)距精度和目標(biāo)探測(cè)性能.同時(shí),相對(duì)于傳統(tǒng)的LFM雷達(dá)系統(tǒng),EBPSK調(diào)制雷達(dá)系統(tǒng)不存在多普勒擴(kuò)展問題與距離-多普勒耦合效應(yīng),系統(tǒng)結(jié)構(gòu)更為簡(jiǎn)單[16].
因此,本文分別通過理論分析和仿真實(shí)驗(yàn)論證在不同調(diào)制參數(shù)下EBPSK調(diào)制雷達(dá)測(cè)距系統(tǒng)的優(yōu)勢(shì).首先,介紹了EBPSK調(diào)制脈沖雷達(dá)信號(hào)在幾種情況下基于CFAR的目標(biāo)檢測(cè)概率性能;其次,分析并通過仿真驗(yàn)證了EBPSK調(diào)制脈沖雷達(dá)信號(hào)在短波信道中不存在多普勒擴(kuò)展;最后,仿真驗(yàn)證所提EBPSK調(diào)制脈沖信號(hào)在不同參數(shù)下測(cè)距精度和目標(biāo)探測(cè)性能,以及EBPSK調(diào)制脈沖信號(hào)的模糊函數(shù),表明不存在距離-多普勒耦合效應(yīng).
1.1 已知目標(biāo)距離及速度
當(dāng)目標(biāo)距離和速度已知時(shí),目標(biāo)檢測(cè)采用恒虛警檢測(cè)(CFAR)方式,假設(shè)事件H0與事件H1分別表示目標(biāo)不存在與存在,檢測(cè)算法為
(1)
式中,y為接收信號(hào)的離散采樣;s∈CN×1為發(fā)送雷達(dá)脈沖信號(hào)的離散采樣,N為載波數(shù);γ0為CFAR檢測(cè)閾值, 其中接收信號(hào)的離散采樣y可表示為
y=s+n
(2)
如果發(fā)送雷達(dá)脈沖信號(hào)的離散采樣s采用EBPSK調(diào)制脈沖雷達(dá)信號(hào)sEBPSK,即s=sEBPSK,回波信號(hào)受到高斯白噪聲n~N(0,σ2I)的干擾,則虛警概率可以表示為
(3)
γ0=Q-1(Pfa)σ‖s‖2
(4)
相應(yīng)的目標(biāo)檢測(cè)概率可以表示為
(5)
將式(4)代入式(5),可得
(6)
由信噪比的定義可知
(7)
式中,N0為脈沖個(gè)數(shù).所以EBPSK調(diào)制脈沖雷達(dá)信號(hào)目標(biāo)檢測(cè)概率為
(8)
當(dāng)EBPSK調(diào)制脈沖雷達(dá)信號(hào)與其他體制信號(hào)的信噪比和脈沖長(zhǎng)度相同時(shí),其CFAR目標(biāo)檢測(cè)性能相同.
1.2 未知目標(biāo)速度
當(dāng)目標(biāo)速度未知時(shí),采用CFAR檢測(cè)算法,對(duì)目標(biāo)運(yùn)動(dòng)所帶來(lái)的頻偏不進(jìn)行估計(jì)時(shí),則式(1)中的回波信號(hào)可以表示為
y=sD+n
(9)
式中,sD為EBPSK調(diào)制Doppler頻偏信號(hào).CFAR中檢測(cè)閾值與式(4)相同,則目標(biāo)檢測(cè)概率可以表示為
(10)
將式(4)代入式(10)中,可得
(11)
當(dāng)EBPSK調(diào)制脈沖雷達(dá)與其他體制雷達(dá)進(jìn)行性能對(duì)比時(shí),只需對(duì)比
(12)
當(dāng)信號(hào)脈沖能量相同時(shí),在不同的Doppler條件下,只需要對(duì)比脈沖壓縮的結(jié)果,即
g(s)=sHsD
(13)
1.3 未知目標(biāo)位置距離
當(dāng)目標(biāo)距離未知時(shí),采用CFAR進(jìn)行目標(biāo)檢測(cè),回波信號(hào)可以表示為
y=sR+n
(14)
式中,sR為不同時(shí)延的雷達(dá)脈沖信號(hào).對(duì)該信號(hào)做脈沖壓縮后的CFAR檢測(cè)概率為
(15)
其中檢測(cè)閾值與式(4)相同,所以目標(biāo)檢測(cè)概率可以表示為
(16)
將EBPSK調(diào)制脈沖雷達(dá)信號(hào)與其他體制雷達(dá)信號(hào)進(jìn)行性能對(duì)比,當(dāng)信號(hào)能量相同時(shí),需要對(duì)比不同時(shí)延條件下脈沖壓縮的結(jié)果,即
g(s)=sHsR
(17)
對(duì)于EBPSK調(diào)制脈沖雷達(dá)信號(hào),其復(fù)基帶可以表示為
I(t-(n-1)Tc)
(18)
式中,fc為參數(shù)載波頻率;Tc為載波周期;Cn為第n個(gè)編碼數(shù)的編碼信號(hào),Cn=CB?C0,CB為Barker碼或者偽隨機(jī)碼,C0為EBPSK等效編碼,即
(19)
指示函數(shù)
(20)
取Cn=1或Cn=0的概率各為1/2,幅值為1和0,所有碼元互相獨(dú)立.EBPSK信號(hào)碼元“1”的載波數(shù)為N,相位跳變數(shù)為K,載波周期為Tc,NTc為單元EBPSK信號(hào)碼元寬度,N0為一個(gè)脈沖內(nèi)EBPSK信號(hào)碼元個(gè)數(shù).由于目標(biāo)移動(dòng)所帶來(lái)的多普勒頻移可表示為
(21)
式中,v為被測(cè)目標(biāo)速度;c為光速.通過分析圖1中LFM信號(hào)的多普勒模糊函數(shù)可知,隨著LFM脈沖信號(hào)帶寬的增加,其多普勒主瓣變窄,速度分辨力變高,同時(shí)目標(biāo)檢測(cè)性能變差.而EBPSK脈沖信號(hào)的主要能量集中在超窄帶內(nèi),因而EBPSK調(diào)制的脈沖雷達(dá)信號(hào)不存在多普勒擴(kuò)展.
(a) 信號(hào)帶寬為20 kHz
(b) 信號(hào)帶寬為1 MHz
取參數(shù)載波頻率fc=20 MHz;采樣頻率fs=200 MHz;EBPSK調(diào)制中N=20,K=2; 13位Barker碼編碼;LFM脈沖信號(hào)帶寬為20 kHz.圖2為不同多普勒頻移對(duì)目標(biāo)回波脈沖壓縮后的影響.
圖2 多普勒頻移對(duì)EBPSK和LFM脈沖雷達(dá)的影響
由圖2可知,多普勒頻移對(duì)EBPSK以及LFM脈沖信號(hào)在時(shí)延已知條件下脈沖壓縮影響相同.圖3給出了不同時(shí)延條件下對(duì)目標(biāo)回波脈沖壓縮的影響,圖3(b)為時(shí)延在0~1.4 μs的放大圖.
(a) 全局圖
由圖3可見,LFM信號(hào)距離模糊函數(shù)主峰寬度為0.5 μs,歸一化旁瓣高度約為0.2,而EBPSK信號(hào)距離模糊函數(shù)表現(xiàn)出了周期性,主峰寬度為13 μs,次主峰寬度為0.1 μs.所以在時(shí)延小于0.1 μs時(shí),EBSPK信號(hào)的距離模糊函數(shù)的次主峰寬度小于LFM信號(hào),距離分辨率更優(yōu).當(dāng)時(shí)延大于0.1 μs時(shí),LFM信號(hào)的主峰寬度更窄,其分辨率優(yōu)于EBPSK信號(hào).因此,在較大脈沖回波時(shí)延估計(jì)誤差的前提下,EBPSK信號(hào)的脈沖壓縮性能依然高于LFM的脈沖壓縮結(jié)果,從而提高了目標(biāo)的檢測(cè)性能.
圖4(a)和(b)給出了時(shí)延分別為0.05和0.5 μs時(shí),不同信噪比下EBPSK信號(hào)和LFM信號(hào)的目標(biāo)檢測(cè)概率.由圖4(a)可見,當(dāng)Pd=0.9、時(shí)延為0.05 μs時(shí),EBSPK信號(hào)所需SNR比LFM信號(hào)的SNR多1 dB;而由圖4(b)可見,當(dāng)Pd=0.9、時(shí)延為0.5 μs時(shí),EBSPK信號(hào)所需SNR比LFM信號(hào)少25 dB.由于雷達(dá)回波信號(hào)的時(shí)延0.5 μs僅對(duì)應(yīng)著150 m的目標(biāo)距離,因此,在有意義的目標(biāo)距離上,EBPSK雷達(dá)的目標(biāo)探測(cè)性能更佳,這也是超視距雷達(dá)所需的探測(cè)性能.
EBPSK調(diào)制雷達(dá)信號(hào)的特點(diǎn)是,其調(diào)制參數(shù)可以靈活改變.如當(dāng)K=10,N=20時(shí),其距離模糊函數(shù)如圖5(a)所示.當(dāng)K=20,N=20時(shí),其距離模糊函數(shù)如圖5(b)所示.由圖5可以看出,不同的K值下, EBPSK 信號(hào)距離模糊函數(shù)的主峰寬度不同,即通過改變信號(hào)調(diào)制參數(shù),可以靈活改變其測(cè)距精度和目標(biāo)探測(cè)性能.當(dāng)K=10,N=20或K=20,N=20(此時(shí)即為經(jīng)典BPSK)時(shí),其頻率模糊函數(shù)如圖6所示.由圖可知,取不同的K值,EBPSK信號(hào)的頻率模糊函數(shù)相同.
(a) 時(shí)延0.05 μs
(b) 時(shí)延0.5 μs
(a) K=10,N=20
(b) K=20,N=20
圖6 多普勒頻移對(duì)EBPSK與LFM的目標(biāo)檢測(cè)概率
1) 存在時(shí)延的情況下,EBPSK調(diào)制脈沖雷達(dá)信號(hào)的CFAR的目標(biāo)檢測(cè)性能優(yōu)于LFM雷達(dá)信號(hào).
2) 通過分析模糊函數(shù)可知,對(duì)于EBPSK調(diào)制脈沖雷達(dá)信號(hào),可采用隨機(jī)相位編碼來(lái)加以克服周期性距離的模糊.
3) EBPSK調(diào)制脈沖雷達(dá)信號(hào)不存在距離和速度之間的耦合,也不受加窗等因素的影響.該脈沖雷達(dá)信號(hào)能更精確測(cè)定遠(yuǎn)距目標(biāo)和高速目標(biāo).
4) EBPSK調(diào)制脈沖雷達(dá)信號(hào)如采用無(wú)周期性的碼字,則回波能被連續(xù)使用,在每個(gè)周期中不存在能量損失,因而EBPSK調(diào)制脈沖雷達(dá)信號(hào)具有更高的回波能量利用率.
References)
[1]吳瑕, 陳建文, 鮑拯, 等. 天波超視距雷達(dá)探測(cè)彈道目標(biāo)關(guān)鍵因素與技術(shù)研究[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(11): 2297-2302. Wu Xia, Chen Jianwen, Bao Zheng, et al.Study on key factor and technology for detecting ballistic target in sky wave over-the-horizon radar[J].SystemsEngineeringandElectronics, 2013, 35(11): 2297-2302. (in Chinese)
[2]馬寧, 王建新, 董寧?kù)? 基于正交匹配追蹤的欠采樣 LFM 信號(hào)參數(shù)估計(jì)[J]. 電子與信息學(xué)報(bào), 2013, 35(8): 1888-1893. Ma Ning, Wang Jianxin, Dong Ningfei. Parameter estimation of sub-sampling LFM signal based on orthogonal matching pursuit[J].JournalofElectronics&InformationTechnology, 2013, 35(8): 1888-1893. (in Chinese)
[3]Govoni M A, Li H B, Kosinski J A. Range-Doppler resolution of the linear-FM noise radar waveform[J].IEEETransactionsonAerospaceandElectronicSystems, 2013, 49(1): 658-664.
[4]Zhao X C, Peng T, Yang M, et al. Doppler spread estimation by tracking the delay-subspace for OFDM systems in doubly selective fading channels[J].IEEESignalProcessingLetters, 2009, 16(3): 212-215.
[5]宋軍, 劉渝, 薛妍妍. LFM-BPSK 復(fù)合調(diào)制信號(hào)識(shí)別與參數(shù)估計(jì)[J]. 南京航空航天大學(xué)學(xué)報(bào), 2013, 45(2): 217-224. Song Jun, Liu Yu, Xue Yanyan. Parameter estimation and recognition of hybrid modulated signal combining BPSK with LFM[J].JournalofNanjingUniversityofAeronautics&Astronautics, 2013, 45(2): 217-224. (in Chinese)
[6]潘小義, 王偉, 馮德軍,等.基于全脈沖分段轉(zhuǎn)發(fā)的 LFM 雷達(dá)干擾方法[J]. 國(guó)防科技大學(xué)學(xué)報(bào), 2013, 35(3): 119-125. Pan Xiaoyi, Wang Wei, Feng Dejun, et al. Repeat jamming against LFM radars based on pulse separation[J].JournalofNationalUniversityofDefenseTechnology, 2013, 35(3): 119-125. (in Chinese)
[7]黃翀鵬, 王劍, 徐保國(guó). 線性調(diào)頻脈沖雷達(dá)轉(zhuǎn)發(fā)干擾研究[J]. 電子與信息學(xué)報(bào), 2013, 35(12): 2874-2881. Huang Chongpeng, Wang Jian, Xu Baoguo. Repeater jamming against LFM pulse radar[J].JournalofElectronics&InformationTechnology, 2013, 35(12): 2874-2881.(in Chinese)
[8]王紅星, 王洪利, 毛忠陽(yáng),等. 基于循環(huán)譜特性的擴(kuò)展二元相移鍵控解調(diào)算法[J]. 電波科學(xué)學(xué)報(bào), 2010, 25(5): 934-939. Wang Hongxing, Wang Hongli, Mao Zhongyang, et al. Demodulation algorithm for EBPSK based on cyclic spectrum characteristic[J].ChineseJournalofRadioScience, 2010, 25(5): 934-939. (in Chinese)
[9]Yao Y, Wu L N, Wang J. Composite broadcasting and ranging via a satellite dual-frequency MPPSK system[J].MathematicalProblemsinEngineering, 2013, 2013: 404357-1-404357-8.
[10]Feng Man, Wu Lenan. High efficiency transmission scheme based on improved CP-EBPSK modulation [C]//The8thInternationalConferenceonComputingTechnologyandInformationManagement. Seoul, Korea, 2012:585-589.
[11]Chen Xianqing, Wu Lenan. A novel detection scheme for EBPSK system [J].MathematicalProblemsinEngineering, 2012, 2012: 956191-1-956191-14.
[12]Sun J, Fang W, Xu W B. A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two-dimensional IIR digital filters[J].IEEETransactionsonCircuitsandSystems, 2010, 57(2): 141-145.
[13]Jin Yi, Wu Lenan, Chen Yifang, et al. Design of digital impacting filter in CP-EBPSK with random-polar communication System [J].JournalofElectronics(China), 2012, 29(3/4): 328-333.
[14]Feng Man, Wu Lenan, Gao Peng. From special analogous crystal filters to digital impacting filters [J].DigitalSignalProcessing, 2012, 22(4): 690-696.
[15]姚譽(yù), 吳樂南, 常虹. 基于二元相移鍵控體制的短波信道快速估計(jì)[J]. 電波科學(xué)學(xué)報(bào), 2013, 28(3): 425-429. Yao Yu, Wu Lenan, Chang Hong. Fast estimation of HF channels based on EBPSK scheme[J].ChineseJournalofRadioScience, 2013, 28(3): 425-429. (in Chinese).
[16]吳樂南, 應(yīng)鵬魁. 擴(kuò)展的二元相移鍵控調(diào)制參數(shù)性能比較[J]. 電波科學(xué)學(xué)報(bào), 2011, 26(5): 961-966. Wu Lenan, Ying Pengkui. Extended BPSK comparison with various modulation parameters[J].ChineseJournalofRadioScience, 2011, 26(5): 961-966. (in Chinese)
Detection performance of EBPSK modulated pulse radar signal
Yao Yu Chen Peng Wu Lenan
(School of Information Science and Engineering, Southeast University, Nanjing 210096, China)
The detection performance of the EBPSK (extended binary phase shift keying) modulated pulse radar signal is studied. First, the target detection performances based on CFAR (constant false alarm rate) of the proposed signal are analyzed under several conditions. The detection performance of the proposed signal is better than that of the LFM radar signal under the condition with unknowntarget distance. EBPSK pulse radar signal can combat the effect of Doppler spread on system performance in HF (high frequency) channel. The ambiguity function of the proposed signal is symmetric, so Range-Doppler coupling effect does not exist. Secondly, the signal modulator in EBPSK modulation radar system is flexible. According to different requirements of ranging, the ranging accuracy and target detection performance of the system are varied by setting different modulation parameters. Finally, the correctness and rationalization of the theoretical considerations is verified by the results of experiment. The pulse compression performance of the EBPSK radar signal is better than that of the LFM radar signal under the condition of larger delay estimation error of echo pulse. To obtain the same detection performance, the required SNR of the proposed signal is less than that of the LFM signal when the echo delay is greater than 0.05 μs. The required SNR of the proposed signal can be decreased by approximately 25 dB compared with that of the LFM radar signal when the echo delay is 0.5 μs.
target detection probability;EBPSK(extended binary phase shift keying);Doppler spread;range-Doppler coupling effect; ambiguity function
10.3969/j.issn.1001-0505.2015.03.002
2014-12-12. 作者簡(jiǎn)介: 姚譽(yù)(1986—),男,博士生;吳樂南(聯(lián)系人),男,博士,教授,博士生導(dǎo)師,shell8696@hotmail.com.
國(guó)家自然科學(xué)基金資助項(xiàng)目(61571204).
姚譽(yù),陳鵬,吳樂南.EBPSK調(diào)制脈沖雷達(dá)信號(hào)的探測(cè)性能[J].東南大學(xué)學(xué)報(bào):自然科學(xué)版,2015,45(3):423-427.
10.3969/j.issn.1001-0505.2015.03.002
TN911.3
A
1001-0505(2015)03-0423-05