• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of plant roots on soilpreferentialpathways and soilmatrix in forest ecosystems

    2015-06-05 08:54:04
    Journal of Forestry Research 2015年2期

    Effects of plant roots on soilpreferentialpathways and soilmatrix in forest ecosystems

    Yinghu Zhang?Jianzhi Niu?Weili Zhu?Xiaoqing Du?Jiao Li

    To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD) and root biomass(RB)in Jiufeng National Forest Park, Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10, 10–20,20–30,30–40,40–50,50–60 cm)in all experimentalplots.RLD was greater in soilpreferentialpathways than in the surrounding soil matrix and was 69.5,75.0 and 72.2%for plant roots of diameter(d)<1,1<d<3 and 3<d<5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forestecosystem.In allexperimentalplots,RB contentwas the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm)in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was 68.2%in all plots.

    Preferential flow·Preferential pathways· Soil matrix·Root length density·Root biomass

    Introduction

    Studies of plant roots with respect to edaphology and plant hydrological responses have been hampered by difficulties associated with mechanisms of water movementand solute transport,especially preferential flow(Bundt et al.2001). Preferential flow describes preferential channels for water movement and solute transport from soils to roots.Pores formed by plant roots play an important role in hydrologicalresponses.Studies of the functions of plantroots began in the early eighteenth century and gradually increased in number.Plant roots play a pivotal role in water uptake, nutrients acquisition,solute retention and soilconservation during plant growth.Plant roots grow into soil pores to form continuous channels for water and nutrient uptake (Tracy et al.2011).The relationships between plant roots and soil preferential flow were described by Aber et al. (1985),Steudle(1994),Stokes et al.(2009),and Ceccon et al.(2011).Li and Ghodrati(1994)used breakthrough curve methods to demonstrate the effects of channels formed by plant roots on preferential transport of nitrates. Price and Hendrick(1998)found that root biomass(RB) varied by season and that living root length density(RLD) was greatest in autumn while dead RLD was greatest in winter.Volkmar(1993)confirmed that RLD had no absolute correlation with soil bulk density.J?rgensen et al. (2002)reported that soil profiles containing root channels enhanced solute transportand water movement to a greater extent than soilprofiles without root channels.Dusˇek et al. (2006)reported that plant root zones led to more water movement.Bogner et al.(2010)used stained patterns to determine that RLD reflected preferential flow extent and that RLD was larger in preferential pathways than in the soil matrix.Both living and decayed roots provide preferred paths for soil water and solute transport(Tippku¨tter1983;Angers and Caron 1998),and there is an important relationship between living and decayed roots.Bottner et al.(1999)demonstrated that living roots had effects on soil carbon metabolism during decayed root decomposition.Compared with decayed roots,living roots released more dissolved organic carbon(DOC)(Hsieh and Yang 1992)and this accelerated decomposition of dead roots. However,decayed roots prompted more water movement than living roots(Mitchell et al.1995).Edwards et al. (1988)demonstrated that the proportion of decayed root channels of diameter<1 mm was 80%per m2in soil preferential pathways.

    There are increased interests in evaluating plant roots of forest ecosystems because of their role in regulating the cycling of water and nutrients for plants growth,but plant roots are difficult to measure in any forest ecosystems (Cairns et al.1997).The upper diameter limit of fine roots varies among differentstudies and ranges from 1 to 5 mm. Following the original studies,data are available for two diameter limits:roots<2 mm and roots<5 mm(Kurz etal. 1996).Tufekcioglu et al.(1999)reported that fine and small roots(<5 mm)and coarse roots(>5 mm)are two major components of plant roots,and their vertical distributions modified soil physical and biological properties. Meanwhile,they sorted roots into diameter classes of 0–2 mm(fine root)and 2–5 mm(small root).Vanninen and Ma¨kela¨(1999)classified fine root compartments as: small fine roots(diameter 0–2 mm),large fine roots (diameter 2–5 mm)and total fine roots(diameter 0–5 mm). Fine roots’share of total biomass rarely represents more than 5%of total biomass of trees(Lo′pez et al.2001), while Santantonio et al.(1977)and Fogel(1983)reported that coarse and fine roots as a proportion of total tree biomass varied between 18 and 45%.Brassard et al. (2011)stated that coarse root biomass(diameter>1 mm) could account for approximately 30%of total biomass in forestecosystems.Maybe fine plantroots has been found to vary above in relation to forest stand characteristics,i.e. tree species,stand age,density,basal area and soil properties,or environmental factors,chiefly air temperature, amount of precipitation,geographical location and elevation(Vogt et al.1996;Jackson et al.1997;Leuschner and Hertel 2003).Jackson et al.(1997)estimated fine root biomass and reported that live fine root biomass ranged from 130 g m-2in deserts to 950 g m-2in temperate grasslands.

    Many studies of the relation of plantroots to preferential flow have been conducted in farmland ecosystems to characterize the effects of soil compaction,tillage systems and management on preferential flow.Few studies concentrated on forest soils that contain more plant roots and stones.Noguchi et al.(1997)reported that at least 70%of the macropores(>2 mm)in topsoil and 55%in subsoil in forest soils were associated with plantroots.Hagedorn and Bundt(2002)showed that preferential flow paths in a structured forest soil persisted for decades.Beven and Germann(1982)observed that macropores formed by forest tree roots could persist for at least 50–100 years. Studies on preferential flow in forest ecosystems,especially stony lands,are few.In these systems,soil matrix flow and preferential flow are pivotal flow patterns influencing water and solute transport.In forest ecosystems, channels formed by plant roots can contribute to physical non-equilibrium at the individual plot scale(Jarvis et al. 2012).Our study aimed to determine if plant roots have greater biomass and/or occur in greater density in preferential pathways than in the soil matrix.We conducted field dye tracing experiments in a forest ecosystem in Jiufeng National Forest Park,Beijing,China,using the food dye Brilliant Blue FCF(Colour Index 42090)to trace preferential flow(stained areas)and soil matrix flow(unstained areas)(Hagedorn and Bundt2002).Jiufeng National Forest Park is an important water conservation area which influences the groundwater security of Beijing.The objectives of our study were to:(1)compare RLD and RB of roots of diameter<1,1–3,and 3–5 mm between preferential pathways and the soilmatrix;and(2)determine which root diameter class contributes most to preferential flow.

    Materials and methods

    Study area

    Our study was a forest ecosystem in Jiufeng National Forest Park(116°28′E,39°34′N),Beijing,China.Jiufeng National Forest Park is part of Beijing Forestry University and is used for teaching and scientific research.Elevation ranges from 60 to 1,100 m a.s.l.The climate is temperate continental with mean annual precipitation of 630 mm, mean annual temperature 11.6°C,and mean annual potential evapo-transpiration of 19,000 mm.The dominant vegetation at elevations<800 m a.s.l.was plantation of Platycladas orientalis,Pinus tabulaeformis,Quercus spp., Robinia pserdoacacia containing shrubs Prunus armniaca and Vitex chinensis.Above 800 m a.s.l.,P.tabulaeformis, Popular chinensis,Lespedeza bicolon,Spiraca trilobata, Caragana rosea dominated the sparse forest cover.The soil has been described as sandy loam containing approximately 30%rock fragments and gravels(Li et al.2013).

    Experimental treatment

    In July 2012,we established six experimentalplots within a 10×10 m quadrat situated in representative vegetation at 260 m a.s.l.Plots 1 and 2 were located in Sophorajaponica,plots 3 and 4 in P.orientalis,and plots 5 and 6 in Quercus dentata sections of the quadrat.Preferential flow was identified by monitoring the movement of coloured solution added to each plot.Brilliant Blue FCF dye solution(5 g L-1)was applied to the experimentalplots during the growth season.The solution was uniformly applied to a 1.2×1.2 m area centered on the experimental trees to avoid border effects(Hagedorn and Bundt 2002;Legout et al.2009).Horizontal and vertical soil profiles were excavated when the solution had infiltrated the soil(Hu et al.2013).Horizontal profiles were extracted from 0.5×0.5 m quadrats and vertical profiles with maximum dying depth were extracted from points centered on the experimental trees one day after dye tracer application (Hagedorn and Bundt2002).For the horizontaland vertical sections,soil cores were extracted from preferential pathways and the soil matrix.Preferential pathways were identified by stained areas and soil matrices by unstained areas(Hagedorn and Bundt 2002).We used a camera to record preferential pathway distributions(Fig.1).

    Root parameters

    RLD and RB are pivotal indices of water and solute transport in forest ecosystems,especially of preferential flow.Soil-free roots were dried for 48 h in an oven at 70°C to constant weight(Castellanos et al.2001;Helmisaari et al.2007)and then weighed using an electronic balance(DV215CD(81 g/0.01 mg))to obtain plant roots. RB(g m-2)(Makkonen and Helmisaari 2001)was usually measured by oven drying(Livesley etal.1999).Fine RB is calculated on the basis of the cross-sectional area of soil cores.RLD(totalrootlength per soilvolume)(Mosaddeghi et al.2009;Glab 2013)was measured using WinRHIZO (STD4800)(Himmelbauer et al.2004;Yan et al.2011).

    Fig.1 Identification of preferential pathways and soil matrix from stained areas and unstained areas by applying Brilliant Blue solution. The flow patterns show the stained flow paths in black:stained areas as preferential pathways and unstained areas as soil matrix.Part A was used as a horizontal profile and part B as a vertical profile

    Root sampling

    Each plot was excavated from horizontal cross sections in 10 cm depth increments 24 h after application of Brilliant Blue FCF dye solution.Undisturbed soil samples were taken at each depth using soil corers(7 cm diameter, 5 cm height,200 cm3volume)with two replications in preferential pathways and the soil matrix.Samples were taken to a depth of 60 cm(0–10,10–20,20–30,30–40, 40–50,50–60 cm)in all experimental plots.Soil cores were stored at-2°C(Castellanos et al.2001)and soil was separated from roots using 5 mm sieves.When necessary,samples were placed in dishes with 4–5 mm deep water so that roots spread and soil particles could easily be removed(Castellanos et al.2001;Yan et al. 2011).We defined fine root diameter as≤5 mm,as commonly used in other studies(Kurz et al.1996;Fine′r et al.2011).

    Root contribution to preferential flow

    The contribution of plant roots to preferential flow represented an index evaluating which kinds of root diameter functions the largest positively.Firstly,all plantroots from preferentialpathways in each plotwere described,and total sum of plant roots in preferential pathways obtained. Afterwards,the contribution of plant roots to preferential flow was monitored:total sum of plantroots in preferential pathways divided by plant roots d<1,1<d<3, 3<d<5 mm,respectively.

    Root general comparison

    General comparison(GC)evaluated in this paper represented an index determining the difference of plant roots content between preferential pathways and the soil matrix. On the basis of the index,it is not complex to discriminate which one of plantroots contentwas greater in preferential pathways and the soil matrix.The simplified equation will be given as follows:

    whereηis GC(%),αPPis plantroots contentin preferential pathways,αSMis plant roots content in the soil matrix.In general,willbe applied to whenαPPis smaller thanαSM,while whenαPPis larger thanαSM,will be applied to.

    Fig.2 Proportion of RLD by three classes of root diameter(d<1,1–3,3–5 mm)in preferential pathways and in the soil matrix in six plots, Sophora japonica Linn for plots 1 and 2,Platycladus orientalis Franco for plots 3 and 4,Quercus dentata Thunb for plots 5 and 6

    Statistical analysis

    One-way ANOVA was used to assess differences in mean RLD and RB between preferential pathways and the soil matrix and to characterize the effects of root parameters on preferential flow.Data were analzyed using SPSS software.

    Results

    RLD in preferential pathways and the soil matrix

    Differences in RLD by root diameter class(<1,1–3 and 3–5 mm)in six experimental plots containing three types of vegetation are shown in Fig.2.On the whole,RLDdeclined with increasing soil depth for all three root diameter classes.RLD from soil preferential pathways and the soil matrix in each soil depth also showed a similar tendency.From Fig.2,greatest RLD was recorded in the upper soil layers to a depth 30 cm(topsoil).Meanwhile, plantroots of diameter<1 mm were mostly distributed on the soil surface.With respect to all experimental plots, RLD content for plant roots of diameter(d)<1,1<d<3 and 3<d<5 mm was also the sum of RLD from soil preferentialpathways and the soilmatrix in each soildepth. For 6 soil depth gradient(0–10,10–20,20–30,30–40, 40–50,50–60 cm)in each plot,the number of soil depth gradient that RLD content for plant roots of diameter (d)<1,1<d<3 and 3<d<5 mm was greater in soil preferential pathways than in the soil matrix was quantified.The characterizing results were illustrated in Table 1. The proportion of RLD in preferential pathways was greater than in the soil matrix in 69.5%of plots for roots of diameter<1 mm,in 75%of plots for roots of diameter 1–3 mm,and in 72.2%of plots for roots of diameter 3–5 mm.As shown in Fig.2 and Table 2,roots of diameter<1 mm were the predominant component for preferential flow in all experimental plots.Roots of diameter<1 mm accounted for almost 95.0%of preferential flow.

    Table 1 The proportion of the number of soil depth gradients(0–10, 10–20,20–30,30–40,40–50,50–60 cm)where RLD content was greater in soil preferential pathways than in the soil matrix among those 6 soil depth gradients(0–10,10–20,20–30,30–40,40–50, 50–60 cm)in each experimental plot

    Table 2 Root contribution to preferential flow in all experimental plots

    RB in preferential pathways and the soil matrix

    RB of fine roots(d<5 mm)was densely concentrated in the upper soil layers and varied by forest type.On the whole,RB declined with increasing soil depth whether in soilpreferentialpathways or in the soilmatrix(Table 3).In allexperimental plots,RB contentwas the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respectto six soildepth gradient(0–10,10–20, 20–30,30–40,40–50,50–60 cm)in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was 68.2%in all plots.The difference of plant roots content(e.g.,RB,d<5 mm) between preferential pathways and the soil matrix was illustrated in Fig.3.From Table 3,22 surveyed data of RB from soil preferential pathways and the soil matrix in all experimental plots were characterized.And GC was also calculated by means of Eq.(1).Average GC was 83% calculated from 22 surveyed data.As it was shown in Fig.3,shaded circles represented that root general comparison of RB was higher than 83%;and the other open circles are below 83%.From Fig.3,the number of shaded circles whose root general comparison of RB higher than 83%was thirteen,while the number of open circles was nine.Those surveyed data whose GC was above 83% accounted for 59.1%among 22 surveyed data.However,it was ambivalent when GC was below 83%.From Fig.3, we implied that there were nine surveyed data whose GC was below 83%.

    Discussion

    In our results,on the whole,plant roots(e.g.,root length density and root biomass)declined with increasing soil depth whether in preferential pathways and in the soil matrix.These results were in agreementwith Himmelbauer et al.(2010)and Bengough(2012).Meanwhile,greatest plant roots were recorded in the upper soil layer to a depth of 30 cm(topsoil).This result was similar to that reported by Lipiec et al.(2003)and Bonger et al.(2008,2010).

    Our results also confirmed thatplantroots in preferential pathways were higher than in the soil matrix to some extent,particularly those distributed in the upper soil layers,because plant roots there were mostly decayed or decaying to form more preferential channels.During root decomposition,more channels are formed along the root surface.Preferential pathways provide pores or cracks and this encourages rootgrowth.The surrounding soilmatrix is too compacted for rootgrowth.Meanwhile,our results also implied thatmore and more fine plantroots were located on the soilsurface.This resultsupports the findings of Raizadaet al.(2013).With respect to fine plant roots in this paper, its growth cycle is shorter than coarse plantroots.Thus fine plant roots will become decaying even decayed roots gradually.During the process,plant roots will decompose more organic matters to form more root channels.

    Table 3 Root biomass(g m-2) in preferential pathways and the soil matrix by soil depth(0–10, 10–20,20–30,30–40,40–50, 50–60 cm)

    Fig.3 Root general comparison of RB in all experimental plots. Shaded circles representthatrootgeneralcomparison of RB is higher than 83%;and the other open circles is below 83%

    Preferential pathways in forest ecosystems include higher organic carbon content and microbial biomass compared with soil matrix(Backna¨s et al.2012).By accumulating soil organic matters and redistributing nutrients in the soil profile,preferential pathways play significantrole in their surrounding environments,particularly the soil matrix(Persson 2000).Our field experiments were carried outduring heavy rain,soilwater flow in preferential pathways and cracks increases,and fine roots may become asphyxiated even die.Clusters of fine roots are sometimes observed along or atthe end of coarse roots and correspond to zones of major organic nutrients and water uptake.Fine roots have high decay and emission rates,and clusters may soak up water during rainy season and may contribute to decayed flow paths(Ghestem et al.2011).

    Conclusions

    RLD and RB declined with increasing depth of soil.Roots were concentrated in topsoil(0–30 cm).RLD and RB were greater in topsoil than in deeper soils.Roots of diameter<1 mm accounted for the greatest proportion of all roots. RLD and RB were larger in soil preferential pathways than in the soil matrix.The contribution to preferential flow of roots of diameter<1 mm was greatest.

    AcknowledgmentsWe thank the Key Laboratory Soil and Water Conservation and Desertification Combating,Ministry of Education, China for laboratory assistance.

    Aber JD,Melillo JM,Nadelhoffer KJ,McClaugherty CA,Paster J (1985)Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability:a comparison of two methods.Oecologia(Berlin)66:317–321

    Angers DA,Caron J(1998)Plant-induced changes in soil structure: processes and feedbacks.Biogeochemistry 42:55–72

    Backna¨s S,Laine-Kaulio H,Kl?ve B(2012)Phosphorus forms and related soil chemistry in preferential flow paths and the soil matrix of a forested podzolic till soil profile.Geoderma 189–190:50–64

    Bengough AG(2012)Water dynamics of the root zone:rhizosphere biophysics and its control on soil hydrology.Vadose Zone J 11(2),doi:10.2136/vzj2011.0111

    Beven K,Germann P(1982)Macropores and water flow in soils. Water Resour Res 18:1311–1325

    Bogner C,Wolf B,Schlather M,Huwe B(2008)Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics.Eur J Soil Sci 59:103–113

    Bogner C,Gaul D,Kolb A,Schmiedinger I,Huwe B(2010) Investigating flow mechanisms in a forest soil by mixed-effects modeling.Eur J Soil Sci 61:1079–1090

    Bottner P,Pansu M,Sallih Z(1999)Modelling the effect of active roots on soilorganic matter turnover.Plant Soil216:15–25

    Brassard BW,Chen HYH,Bergeron Y,Pare D(2011)Coarse root biomass allometric equations for Abies balsamea,Picea mariana,Pinus banksiana,and Populus tremuloides in the boreal forest of Ontario,Canada.Biomass Bioenergy 35:4189–4196

    Bundt M,Widmer F,Pesaro M,Zeyer J,Blaser P(2001)Preferential flow paths:biological‘hotspots’in soils.Soil Biol Biochem 33(6):729–738

    Cairns MA,Brown S,Helmer EH,Baumgardner GA(1997)Root biomass allocation in the world’s upland forests.Oecologia 111:1–11

    Castellanos J,Jaramillo VJ,Sanford RL Jr,Kauffman JB(2001) Slash-and-burn effects on fine rootbiomass and productivity in a tropical dry forestin Me′xico.For Ecol Manag 148:41–50

    Ceccon C,Panzacchi P,Scandellari F,PrandiL,Ventura M,Russo B, Millard P,Tagliavini M(2011)Spatial and temporal effects of soil temperature and moisture and the relation to fine rootdensity on rootand soilrespiration in a mature apple orchard.Plant Soil 342:195–206

    Dusˇek J,Vogel T,Lichner L,Dohnal M,′A(2006)Simulated cadmium transport in macroporous soil during heavy rainstorm using dual-permeability approach.Biologia 61:S251–S254

    Edwards WM,Norton LD,Redmond CE(1988)Characterizing macropores thataffectinfiltration into nontilled soil.Soil Sci Soc Am J 52:483–487

    Fine′r L,Ohashi M,Noguchi K,Hirano Y(2011)Fine rootproduction and turnover in forest ecosystems in relation to stand and environmental characteristics.For Ecol Manag 262:2008–2023

    Fogel R(1983)Root turnover and productivity of coniferous forest. Plant Soil71:75–85

    Ghestem M,Sidle RC,Stokes A(2011)The influence of plant root systems on subsurface flow:implications for slope stability. Bioscience 61:869–879

    Glab T(2013)Impact of soil compaction on root development and yield of meadow-grass.Int Agrophys 27:7–13

    Hagedorn F,Bundt M(2002)The age of preferential flow paths. Geoderma 108:119–132

    Helmisaari HS,Derome J,No¨jd P,Kukkola M(2007)Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.Tree Physiol 27:1493–1504

    Himmelbauer ML,Loiskandl W,Kastanek F(2004)Estimating length,average diameter and surface area of roots using two different image analyses systems.Plant Soil 260:111–120

    Himmelbauer ML,Loiskandl W,Rousseva S(2010)Spatial root distribution and water uotake of maize grown on field with subsoil compaction.J Hydrol Hydromech 58:163–174

    Hsieh YP,Yang CH(1992)A method for quantifying living roots of Spartina(Cordgrass)and Juncus(Needlerush).Estuaries Coasts 15(3):414–419

    Hu B,Han CL,Jia Y,Zhao ZH,Li FM,Siddique KHM(2013) Visualization ofthethree-dimensionalwater-flowpathsin calcareous soilusing iodide watertracer.Geoderma 200–201:85–89

    Jackson RB,Mooney HA,Schulze ED(1997)A global budget for fine root biomass,surface area and nutrient contents.Proc Natl Acad Sci USA 94:7362–7366

    Jarvis NJ,Moeys J,Koestel J,Hollis JM(2012)Preferentialflow in a pedological perspective.Hydropedology,75–120

    J?rgensen PR,Hoffmann M,Kistrup JP,Bryde C,Bossi R,Villholth KG(2002)Preferentialflow and pesticide transportin a clay-rich till:field,laboratory,and modeling analysis.Water Resour Res 38:1246–1261

    Kurz WA,Beukema SJ,Apps MJ(1996)Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector.Can J For Res 26:1973–1979

    Legout A,Nys C,Picard JF,Turpault MP,Dambrine E(2009)Effects of storm lothar(1999)on the chemicalo composition of soil solution and on herbaceous cover,humus and soils(Fougeres, France).For Ecol Mang 257:800–810

    Leuschner C,Hertel D(2003)Fine root biomass of temperate forests in relation to soil acidity and fertility,climate,age and species. Prog Bot 64:405–438

    Li YM,Ghodrati M(1994)Preferential transport of nitrate through soil columns containing root channels.Soil Sci Soc Am J 58(3):653–659

    LiX,Niu JZ,Xie BY(2013)Study on hydrologicalfunctions oflitter layers in North China.PLoS One 8(7):e70328.doi:10.1371/ journal.pone.0070328

    Lipiec J,Medvedev VV,Birkas M,Dumitru E,Lyndina TE, Rousseva S,Fulajtar E(2003)Effect of soilcompaction on root growth and crop yield in Central and Eastern Europe.Int Agrophys 17:61–69

    Livesley SJ,Stacey CL,Gregory PJ,Buresh RJ(1999)Sieve size effects on root length and biomass measurements of maize(Zea mays)and Grevillea robusta.Plant Soil 207:183–193

    Lo′pez B,Sabate′S,Gracia CA(2001)Annual and seasonal changes in fine root biomass of a Quercus ilex L.forest.Plant Soil 230:125–134

    Makkonen K,HelmisaariHS(2001)Fine rootbiomassand production in Scots pine stands in relation to stand age.Tree Physiol 21:193–198

    Mitchell AR,Ellsworth TR,Meek BD(1995)Effectof root systems on preferential flow in swelling soil.Commun Soil Sci Plant Anal 26:2655–2666

    Mosaddeghi MR,Mahboubi AA,Safadoust A(2009)Short-term effects of tillage and manure on some soil physical properties and maize rootgrowth in a sandy loam soilin western Iran.Soil Tillage Res 104:173–179

    Noguchi S,Tsuboyama Y,Sidle RC,Hosoda I(1997)Spatially distributed morphologicalcharacteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed,Japan.J For Res 2:207–215

    Persson H(2000)Adaptive tactics and characteristics of tree fine roots.Dev Plant Soil Sci 33:337–346

    Price JS,Hendrick RL(1998)Fine root length production,mortality and standing root crop dynamics in an intensively managed sweetgum(Liquidambar styraciflua L.)coppice.Plant Soil 205:193–201

    Raizada A,Jayaprakash J,Rathore AC,Tomar JMS(2013)Distribution of fine rootbiomass of fruitand forest tree species raised on old river bed lands in the north west Himalaya.Trop Ecol 54(2):251–261

    Santantonio D,Hermann RK,Overton WS(1977)Root biomass studies in forest ecosystems.Pedobiologia 17:1–31

    Steudle E(1994)Water transport across roots.Plant Soil 167:79–90

    Stokes A,Atger C,Bengough AG,Fourcaud T,Sidle RC(2009) Desirable plant root traits for protecting natural and engineered slopes against landslides.Plant Soil 324:1–30

    Tippku¨tter R(1983)Morphology,spatial arrangement and origin of macropores in some Hapludalfs,West Germany.Geoderma 29: 355–371

    Tracy SR,Black CR,Roberts JA,Mooney SJ(2011)Soilcompaction: a review of past and present techniques for investigating effects on root growth.J Sci Food Agric 91:1528–1537

    Tufekcioglu A,Raich JW,Isenhart TM,Schultz RC(1999)Fine root dynamics,coarse root biomass,root distribution,and soil respiration in a multispecies riparian buffer in Central Iowa, USA.Agrofor Syst 44:163–174

    Vanninen P,Ma¨kela¨A(1999)Fine rootbiomass of Scots pine stands differing in age and soil fertility in southern Finland.Tree Physiol 19:823–830

    Vogt KA,Vogt DJ,Palaiotto PA,Boon P,J,Asbjornsen H (1996)Review ofrootdynamics in forestecosystems grouped by climate,climatic forest type and species.Plant Soil187:159–219

    Volkmar KM(1993)A comparison of minirhizotron techniques for estimating root length density in soils of different bulk density. Plant Soil157:239–245

    Yan HF,Li K,Ding H,Liao CS,Li XX,Yuan LX,Li CJ(2011)Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N.J Plant Physiol 168:1067–1075

    23 January 2013/Accepted:19 October 2013/Published online:30 January 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    Project funding:This research was supported by a grant from the Natural Science Foundation of China(41271044).

    The online version is available at http://www.link.springer.com

    Corresponding editor:Hu Yanbo

    Y.Zhang·J.Niu(?)·W.Zhu·X.Du·J.Li

    Key Laboratory Soiland Water Conservation and Desertification Combating,Ministry of Education,College of Soil and Water Conservation,Beijing Forestry University,Beijing 100083, China e-mail:nexk@bjfu.edu.cn

    亚洲一卡2卡3卡4卡5卡精品中文| 丁香六月欧美| 夜夜骑夜夜射夜夜干| 激情视频va一区二区三区| 在线观看免费视频网站a站| 久久国产精品大桥未久av| 国产一区二区三区av在线| 久久久久视频综合| 精品第一国产精品| 水蜜桃什么品种好| 午夜免费观看性视频| 免费观看av网站的网址| e午夜精品久久久久久久| 中国国产av一级| 99久国产av精品国产电影| 久热爱精品视频在线9| 欧美成人午夜精品| 国产又爽黄色视频| 国产福利在线免费观看视频| 色吧在线观看| 精品少妇久久久久久888优播| 久久青草综合色| 久久久久精品国产欧美久久久 | 国产99久久九九免费精品| 亚洲精品久久午夜乱码| 9191精品国产免费久久| 中文字幕av电影在线播放| 亚洲 欧美一区二区三区| 日日摸夜夜添夜夜爱| 卡戴珊不雅视频在线播放| 午夜日韩欧美国产| 色视频在线一区二区三区| 丝袜美足系列| 久久久精品94久久精品| 人人妻,人人澡人人爽秒播 | 看非洲黑人一级黄片| 亚洲av成人精品一二三区| 久久这里只有精品19| 亚洲av成人精品一二三区| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷av一区二区三区视频| 七月丁香在线播放| 日日撸夜夜添| 亚洲精品乱久久久久久| 精品一区在线观看国产| 亚洲四区av| 亚洲少妇的诱惑av| 人体艺术视频欧美日本| 人人妻人人澡人人看| 精品少妇久久久久久888优播| 一区二区三区激情视频| 日本黄色日本黄色录像| 人人澡人人妻人| 日韩中文字幕视频在线看片| 欧美中文综合在线视频| 久久人人爽av亚洲精品天堂| 国语对白做爰xxxⅹ性视频网站| 国产 精品1| 中文字幕亚洲精品专区| 一区二区日韩欧美中文字幕| 美女脱内裤让男人舔精品视频| 亚洲美女视频黄频| av不卡在线播放| 亚洲少妇的诱惑av| 亚洲一码二码三码区别大吗| 成年女人毛片免费观看观看9 | 欧美精品av麻豆av| 最近的中文字幕免费完整| 少妇被粗大的猛进出69影院| 午夜日本视频在线| 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| 美女脱内裤让男人舔精品视频| 色婷婷av一区二区三区视频| 下体分泌物呈黄色| 黄片小视频在线播放| 又大又爽又粗| www.熟女人妻精品国产| 国产精品免费视频内射| 精品国产一区二区三区四区第35| 在线看a的网站| 久久精品久久久久久噜噜老黄| 国产成人av激情在线播放| 一级黄片播放器| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| av一本久久久久| 9热在线视频观看99| 天天影视国产精品| 欧美精品人与动牲交sv欧美| 色视频在线一区二区三区| 中文字幕亚洲精品专区| 狠狠婷婷综合久久久久久88av| 极品人妻少妇av视频| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 国产欧美亚洲国产| 色婷婷av一区二区三区视频| 丝袜美足系列| 九色亚洲精品在线播放| 丝袜人妻中文字幕| 精品亚洲成a人片在线观看| 精品一品国产午夜福利视频| 欧美日韩亚洲高清精品| 国产无遮挡羞羞视频在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品国产av蜜桃| 亚洲国产成人一精品久久久| 在线观看免费视频网站a站| 国产精品久久久人人做人人爽| 赤兔流量卡办理| 日本91视频免费播放| 欧美精品高潮呻吟av久久| 亚洲成人国产一区在线观看 | 免费黄频网站在线观看国产| 亚洲成av片中文字幕在线观看| 满18在线观看网站| 哪个播放器可以免费观看大片| 国产男人的电影天堂91| av国产精品久久久久影院| 2021少妇久久久久久久久久久| 悠悠久久av| 欧美黑人精品巨大| 久久国产精品大桥未久av| 男女之事视频高清在线观看 | 精品午夜福利在线看| 久久99精品国语久久久| 免费观看av网站的网址| 午夜日本视频在线| 桃花免费在线播放| 国产麻豆69| 欧美精品一区二区免费开放| 亚洲av国产av综合av卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产男女内射视频| 午夜免费鲁丝| 看免费av毛片| 精品亚洲乱码少妇综合久久| 久久99一区二区三区| 欧美中文综合在线视频| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 亚洲国产av影院在线观看| 久久韩国三级中文字幕| 亚洲欧美中文字幕日韩二区| 欧美精品av麻豆av| 日本猛色少妇xxxxx猛交久久| 操美女的视频在线观看| 久久人妻熟女aⅴ| 午夜av观看不卡| 高清不卡的av网站| 国产色婷婷99| 哪个播放器可以免费观看大片| 国产麻豆69| 日本欧美国产在线视频| 黄片播放在线免费| svipshipincom国产片| 综合色丁香网| 亚洲国产精品成人久久小说| 国产乱人偷精品视频| 伦理电影大哥的女人| 亚洲欧洲国产日韩| 黄色怎么调成土黄色| bbb黄色大片| 黄色毛片三级朝国网站| av一本久久久久| 久久久亚洲精品成人影院| 叶爱在线成人免费视频播放| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 日日撸夜夜添| 啦啦啦在线免费观看视频4| 女人被躁到高潮嗷嗷叫费观| 欧美日本中文国产一区发布| 久久性视频一级片| 少妇人妻 视频| 一二三四中文在线观看免费高清| 国产色婷婷99| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 亚洲国产精品成人久久小说| 在线观看免费视频网站a站| 亚洲精品,欧美精品| 亚洲av福利一区| 免费黄色在线免费观看| 亚洲男人天堂网一区| 婷婷色综合大香蕉| av国产精品久久久久影院| 一本久久精品| 久久天堂一区二区三区四区| 免费高清在线观看视频在线观看| 精品卡一卡二卡四卡免费| 久久久久久人妻| 国产精品二区激情视频| 各种免费的搞黄视频| 久久 成人 亚洲| 欧美97在线视频| 肉色欧美久久久久久久蜜桃| 黑人欧美特级aaaaaa片| 中文字幕亚洲精品专区| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 热re99久久精品国产66热6| 国产精品国产av在线观看| 久久99精品国语久久久| 在线观看免费高清a一片| 国产亚洲av高清不卡| 久热爱精品视频在线9| 在线精品无人区一区二区三| 极品少妇高潮喷水抽搐| 午夜免费观看性视频| 91成人精品电影| 精品亚洲成国产av| 成人亚洲欧美一区二区av| 亚洲美女黄色视频免费看| 爱豆传媒免费全集在线观看| 黄色毛片三级朝国网站| 精品久久久精品久久久| 欧美精品亚洲一区二区| 男女午夜视频在线观看| 国产又色又爽无遮挡免| 国产精品一区二区在线观看99| 免费高清在线观看视频在线观看| 国产精品秋霞免费鲁丝片| 热re99久久国产66热| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| 日本欧美国产在线视频| 久热这里只有精品99| 国产黄频视频在线观看| 色播在线永久视频| 国产精品二区激情视频| 久久久久视频综合| 亚洲专区中文字幕在线 | 国产成人欧美在线观看 | 国产极品粉嫩免费观看在线| 国产人伦9x9x在线观看| 丝袜脚勾引网站| 亚洲精品第二区| 国产成人系列免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看| 亚洲,欧美精品.| 最黄视频免费看| a 毛片基地| 亚洲人成网站在线观看播放| 国产熟女午夜一区二区三区| 精品卡一卡二卡四卡免费| 午夜福利一区二区在线看| 亚洲人成电影观看| av电影中文网址| 亚洲,欧美精品.| 两性夫妻黄色片| 女性被躁到高潮视频| 国产精品久久久人人做人人爽| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 久久久久精品人妻al黑| 十分钟在线观看高清视频www| 少妇人妻精品综合一区二区| 黄色一级大片看看| 9色porny在线观看| 国产在线一区二区三区精| 久久久久久久久久久久大奶| 国产av国产精品国产| 一边摸一边做爽爽视频免费| 国产av码专区亚洲av| 国产97色在线日韩免费| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 我的亚洲天堂| 国产精品久久久av美女十八| 欧美精品一区二区大全| 久久午夜综合久久蜜桃| 女的被弄到高潮叫床怎么办| 欧美日韩精品网址| av在线观看视频网站免费| 精品国产一区二区久久| 欧美精品亚洲一区二区| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 久久久久久久国产电影| 这个男人来自地球电影免费观看 | 成年av动漫网址| 在线看a的网站| 国产成人欧美在线观看 | 国产1区2区3区精品| 成人午夜精彩视频在线观看| 91国产中文字幕| 日韩免费高清中文字幕av| 久久99热这里只频精品6学生| 啦啦啦在线观看免费高清www| 精品一区二区免费观看| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 久久ye,这里只有精品| 97在线人人人人妻| a级毛片在线看网站| 丰满少妇做爰视频| 丝袜喷水一区| 婷婷色综合大香蕉| 亚洲欧美精品综合一区二区三区| 精品国产露脸久久av麻豆| 99热网站在线观看| 免费日韩欧美在线观看| 亚洲少妇的诱惑av| 少妇被粗大猛烈的视频| 成年人午夜在线观看视频| 自线自在国产av| 免费观看av网站的网址| 日本午夜av视频| 欧美日韩国产mv在线观看视频| 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 在线观看免费日韩欧美大片| av网站在线播放免费| 曰老女人黄片| 在线观看一区二区三区激情| 亚洲男人天堂网一区| 午夜老司机福利片| 国产成人a∨麻豆精品| 曰老女人黄片| 亚洲国产精品999| 国产精品国产三级专区第一集| 男男h啪啪无遮挡| 人妻一区二区av| 日韩制服骚丝袜av| 999精品在线视频| 亚洲av日韩在线播放| 一区二区三区乱码不卡18| 热99久久久久精品小说推荐| 国产亚洲欧美精品永久| 自线自在国产av| 国产熟女午夜一区二区三区| 在线免费观看不下载黄p国产| 久久人妻熟女aⅴ| 日韩av免费高清视频| 国产亚洲一区二区精品| 王馨瑶露胸无遮挡在线观看| 成年av动漫网址| 日本色播在线视频| 欧美日韩精品网址| 午夜福利网站1000一区二区三区| 黄色怎么调成土黄色| 熟女av电影| 久久性视频一级片| 麻豆精品久久久久久蜜桃| 国产有黄有色有爽视频| 国产免费视频播放在线视频| 岛国毛片在线播放| 一级毛片电影观看| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| 纯流量卡能插随身wifi吗| 狠狠婷婷综合久久久久久88av| 99九九在线精品视频| 巨乳人妻的诱惑在线观看| 99热网站在线观看| 九九爱精品视频在线观看| 亚洲美女黄色视频免费看| 免费日韩欧美在线观看| 国产成人精品无人区| 天堂8中文在线网| kizo精华| 七月丁香在线播放| 国产成人系列免费观看| 在线观看免费午夜福利视频| 自线自在国产av| 久久久久精品久久久久真实原创| 妹子高潮喷水视频| 91国产中文字幕| 一本大道久久a久久精品| 叶爱在线成人免费视频播放| 国精品久久久久久国模美| 国产在线视频一区二区| √禁漫天堂资源中文www| 精品一区二区三卡| 99热网站在线观看| videos熟女内射| 国产精品 国内视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 亚洲人成77777在线视频| 亚洲成人手机| 久久毛片免费看一区二区三区| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播 | 久久精品熟女亚洲av麻豆精品| 中文字幕色久视频| 女的被弄到高潮叫床怎么办| 免费在线观看黄色视频的| 热99国产精品久久久久久7| 波野结衣二区三区在线| 夫妻午夜视频| 在线观看一区二区三区激情| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 最新的欧美精品一区二区| av卡一久久| 18禁动态无遮挡网站| 亚洲激情五月婷婷啪啪| 七月丁香在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黑人精品巨大| 国产成人一区二区在线| 香蕉国产在线看| xxxhd国产人妻xxx| 九色亚洲精品在线播放| a级片在线免费高清观看视频| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 2018国产大陆天天弄谢| 777久久人妻少妇嫩草av网站| 国产精品麻豆人妻色哟哟久久| 十八禁网站网址无遮挡| 久久99一区二区三区| 国产一区二区 视频在线| 午夜福利视频在线观看免费| 大码成人一级视频| 日韩制服丝袜自拍偷拍| 最近最新中文字幕大全免费视频 | 在线天堂中文资源库| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| 国产日韩欧美亚洲二区| 视频区图区小说| 日韩制服丝袜自拍偷拍| 视频区图区小说| 精品人妻一区二区三区麻豆| 欧美日韩福利视频一区二区| 国产在线一区二区三区精| 日韩伦理黄色片| netflix在线观看网站| 美女脱内裤让男人舔精品视频| 精品少妇久久久久久888优播| 美女高潮到喷水免费观看| 亚洲欧洲精品一区二区精品久久久 | 秋霞伦理黄片| 精品久久蜜臀av无| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 国产精品香港三级国产av潘金莲 | 亚洲欧洲日产国产| 久久久久久人人人人人| 久久性视频一级片| 亚洲自偷自拍图片 自拍| 伦理电影大哥的女人| 欧美乱码精品一区二区三区| 久久女婷五月综合色啪小说| 超碰成人久久| 熟女av电影| 久久久久久久精品精品| 久久久国产精品麻豆| 午夜91福利影院| 交换朋友夫妻互换小说| 97人妻天天添夜夜摸| 欧美精品一区二区免费开放| 99久久人妻综合| 国产 一区精品| 国产深夜福利视频在线观看| bbb黄色大片| 搡老岳熟女国产| 亚洲av成人精品一二三区| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 国产免费现黄频在线看| 人人澡人人妻人| 亚洲,欧美,日韩| 久久韩国三级中文字幕| 国产精品一区二区在线观看99| 在线 av 中文字幕| 久久久久久久久久久免费av| 国产精品熟女久久久久浪| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 免费不卡黄色视频| 欧美日韩一级在线毛片| 黄色 视频免费看| 日韩大片免费观看网站| 国产一卡二卡三卡精品 | 国产免费一区二区三区四区乱码| 精品一区在线观看国产| www.自偷自拍.com| 永久免费av网站大全| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区视频在线观看| 视频区图区小说| 亚洲精品中文字幕在线视频| 国产伦人伦偷精品视频| 久久青草综合色| 国产精品二区激情视频| 国产男人的电影天堂91| 亚洲欧美日韩另类电影网站| 色网站视频免费| 亚洲精品,欧美精品| 校园人妻丝袜中文字幕| 午夜老司机福利片| 免费久久久久久久精品成人欧美视频| 亚洲三区欧美一区| 伦理电影大哥的女人| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 久久鲁丝午夜福利片| 久久97久久精品| 亚洲七黄色美女视频| 欧美日韩国产mv在线观看视频| 色精品久久人妻99蜜桃| av.在线天堂| 国产精品99久久99久久久不卡 | 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| 国产免费现黄频在线看| 一级a爱视频在线免费观看| 又大又爽又粗| 久久久久久免费高清国产稀缺| 街头女战士在线观看网站| 丝袜在线中文字幕| 午夜av观看不卡| 在线观看www视频免费| 最近最新中文字幕免费大全7| 精品国产超薄肉色丝袜足j| 最新在线观看一区二区三区 | 亚洲av中文av极速乱| 侵犯人妻中文字幕一二三四区| 国产精品无大码| 色播在线永久视频| 男女边摸边吃奶| 婷婷色av中文字幕| 国产国语露脸激情在线看| 国产成人欧美| 精品久久久久久电影网| 亚洲专区中文字幕在线 | 欧美人与性动交α欧美软件| 最近中文字幕2019免费版| 人人妻人人添人人爽欧美一区卜| 亚洲精品一区蜜桃| 母亲3免费完整高清在线观看| 一级黄片播放器| 美女大奶头黄色视频| 欧美人与性动交α欧美软件| 国产 一区精品| 亚洲国产精品成人久久小说| 在线精品无人区一区二区三| 国产精品一区二区在线不卡| 香蕉丝袜av| 久久久久久久精品精品| 永久免费av网站大全| 色综合欧美亚洲国产小说| av视频免费观看在线观看| 亚洲精品久久久久久婷婷小说| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 搡老岳熟女国产| 男女高潮啪啪啪动态图| 久久精品国产亚洲av涩爱| 精品少妇内射三级| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 国产一区二区激情短视频 | 成人午夜精彩视频在线观看| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 9191精品国产免费久久| 精品免费久久久久久久清纯 | 亚洲精品久久午夜乱码| 久久99一区二区三区| 咕卡用的链子| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 亚洲av成人精品一二三区| 日本91视频免费播放| 交换朋友夫妻互换小说| 男女边摸边吃奶| 久久久久久久精品精品| 国产成人欧美| 精品酒店卫生间| 91国产中文字幕| 亚洲自偷自拍图片 自拍| 极品少妇高潮喷水抽搐| 国产一区亚洲一区在线观看| 免费少妇av软件| 丰满迷人的少妇在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲精品一区二区精品久久久 | videos熟女内射| 亚洲国产av影院在线观看| 人妻一区二区av| 美女国产高潮福利片在线看| 中文欧美无线码| 亚洲精品久久成人aⅴ小说| 亚洲欧美一区二区三区久久| 亚洲av欧美aⅴ国产| 十八禁高潮呻吟视频| 制服人妻中文乱码| 久久久久精品人妻al黑| 一级a爱视频在线免费观看| 午夜日本视频在线| 国产一区有黄有色的免费视频| 午夜免费鲁丝| 国产一区二区激情短视频 | 国产精品亚洲av一区麻豆 | 色婷婷久久久亚洲欧美| 亚洲国产欧美一区二区综合| 在线观看人妻少妇| 高清不卡的av网站| 久久久国产精品麻豆| 免费看av在线观看网站| 大陆偷拍与自拍| 高清欧美精品videossex| 国产国语露脸激情在线看| 精品少妇内射三级|