• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compressive failure of spruce wood rings reinforced with glass epoxy composite

    2015-06-05 08:54:05NurdanetinYerlikayaAlaattinAktas
    Journal of Forestry Research 2015年2期

    Nurdan C?etin Yerlikaya?Alaattin Aktas?

    Compressive failure of spruce wood rings reinforced with glass epoxy composite

    Nurdan C?etin Yerlikaya1?Alaattin Aktas?2

    We experimentally tested under radial compressive loads and statistically analyzed rings constructed from spruce wood and reinforced with glass fiber.We used the Weibull distribution in statistical analysis,and tested five types of rings including unreinforced and composite reinforced(CR)as wound around the ring,oriented as two layers atangles of 45°,60°,75°and 90°to the column axis. We calculated 95%reliability of load carrying capacity of the rings by Weibulldistribution.The highestload carrying capacity was obtained with CR rings at60°to the axialaxis of the ring.Load carrying capacities of rings at CR90, CR75,CR60 and CR45 were 137,192,215 and 126% greater,respectively,than unreinforced rings.For unreinforced rings,failures resulted from catastrophic breaking of wood materials.None of the reinforced rings failed catastrophically because the outer surface of the rings was reinforced with glass–epoxy composite fiber.Cracks began at the core of the materials under the composite layer for all specimens and resulted in failure of the rings.

    Reinforced ring·Composite material· Composite reinforced·Spruce wood

    Introduction

    Haller(2007)developed and patented a procedure for manufacturing wooden profiles.Circular hollow sections perform well when subjected to axial forces so they are well suited for use as columns(Heiduschke et al.2008). Fiber-reinforced plastic(FRP)glued to the outer surface of the profile can strengthen the wood in a transverse direction and prevent the wood from splitting.A wooden core can eliminate local buckling effects and strengthen the FRP profile in an axial direction.In addition,the wooden core stiffens the compound section and prevents thin composite layers from buckling(Cabrero et al.2010a;Heiduschke et al.2008;Haller 2007).

    Wood benefits from the mechanical characteristics of FRP.Wood profiles are well suited for use in light-weight structures,the classic field of FRP composites.Furthermore,the orientation of the fiber reinforcement copes with the anisotropy of wood and preserves itagainstweathering. The fiber or textile reinforcement benefits from the low price of wood,its aesthetic appearance,and its environmental friendliness(Fam et al.2010).

    The formed profiles can be reinforced with technical fibers and/or textiles laminated to the outer wood surface. The purpose of such composite confinement is to strengthen the wood profile in the circumferential direction and to protect wood against environmentally induced damage(Heiduschke and Haller 2010).Cabrero et al. (2010b)concluded that the maximum failure stress for a compressive force is achieved for fiber reinforcement at±0°(reinforcement perpendicular to the longitudinal direction of the wood).They stated that the maximum strength was obtained for a fiber reinforcement of±25°. Heiduschke and Haller(2010)stated thatbrittle failure was observed for unreinforced columns,whose longitudinalsplitting was due to the expansion of the tubes in a circumferentialdirection,resulting in tension perpendicular to the grain failure.Cabrero et al.(2010a)concluded that the analyticalresults were within an error less than 10%of the available experimental results,with a mean error ratio less than 3%.Shin et al.(2002)concluded that without any triggering mechanism,the failure mode at 90°ply orientation was stable and progressive,while catastrophic failure resulted at 0oand mixed mode at 0°/90°and±45°ply orientation.Heiduschke et al.(2008)concluded that, compared to unreinforced columns,the load carrying capacity and ductility of reinforced tubes increased by factors of 1.46 and 1.22,respectively.Han etal.(2007)considered the height and thickness of a rib and the spacing between two adjacent ribs as factors affecting the buckling strength of a pipe.

    Weibull distribution has the capability to model experimental data of very different character.Dodson(1994) described developments regarding the estimation approaches for Weibull distribution parameters.Barbero et al.(2000) applied thisanalysis in modeling the mechanicalproperties of composite materials and suggested Weibull distribution as a practical method for determining 90 and 95%reliability values used in composite materialmechanics.Yerlikaya and Aktas(2012)analyzed statistically the testresults by Weibull distribution to obtain a 95%reliability levelfor failure load. They concluded thatthe 95%reliability value foreach corner jointconfiguration was approximately equivalent to the 0.53 average value ofthe failure load.

    The aim of this study was to obtain the buckling and failure strength of rings constructed with spruce wood,and to determine the effects of the rings reinforced by a composite layer having differentangles(45°,60°,75°and 90°). Four bearing tests were performed for each specimen configuration.Using test data,we determined a Weibull distribution to delimit the 99%reliability of each compressive failure load value.

    Materials and methods

    Materials

    The experimental materials were spruce wood,adhesive, and glass fiber.We used spruce boards of approximately 4 cm thickness and 7 cm width and 53–60 cm length to fabricate cylinders.The oven-dry density of specimens was 0.40 g cm-3.The moisture content of boards was about 11%.The epoxy resin used in the matrix material was Bisphenol ACY-225 and the hardener was Anhydride HY-225.Cylinders were assembled with the polyvinyl acetate(PVAc)adhesive.The mass of glass-fibers was 130 g km-1.

    Methods

    Spruce boards were machined in a planer.Thus,the boards whose thickness were 30 mm and width were 25 mm were obtained.Then,as shown in Fig.1,these boards were cut in width of 22.6 mm with 5°angle and in length of 530–600 mm using a diamond saw blade in a circular saw. The cleaned angular surfaces of 36 boards were glued by hand with PVAc adhesive.The glued boards were assembled into a cylinder by inserting them into a plastic mold (Fig.2)in which they were left to dry for two days. Cylinder outside diameters measured 26 cm and lengths were 50,and 58 cm.The outer and inner surfaces of the resulting cylinders were sanded.

    The outer surface of composite-reinforced(CR)cylinders was glued with a mixture of epoxy adhesive and hardener.Glass-fiber yarn was then wound around the ring in two layers,each 1 mm in thickness,at angles of±45° (CR45),±60°(CR60),±75°(CR75)and±90°(CR90)to the column axis.These specimens were left to dry for 3 days.We prepared five cylinders for testing,one unreinforced(UR)and the other four composite-reinforced (Fig.3).Rings for testing were cut to lengths of 80 mm from the 500 mm cylinders.Four replicate ring samples were prepared for each of five test groups.

    Before testing,all specimens were conditioned to approximately 12%moisture content in an environment chamber at(20±2)°C and 65±5%relative humidity until weights were constant.

    Tests were carried out under radialcompression loading at room temperature of 20°C with a 10 kN loading capacity universal testing machine at a speed of 1.5 mm min-1(Fig.4).The load was applied on the axial center of the specimen.Load was applied to each specimen until a significant decrease in strength was observed.The load and displacement graphs were computer-plotted at±0.0001 N sensitivity for all tests.

    Fig.1 Specimen geometry

    Fig.2 Preparing cylinder

    Fig.3 Examples of wooden cylinders reinforced by fabrics:unreinforced(a),90°surrounding fiber(b),75°surrounding fiber(c),45° surrounding fiber(d),60°surrounding fiber(e)

    Fig.4 Loading type

    Weibull distribution

    We used a two-parameter Weibull distribution,which is appropriate for bearing strength studies.The distribution function used in this case was that of Kim and Heffernan (2008):

    F(x;b,c),represents the probability that the bearing strength is less than or equalto x.Using the equality F(x;b, c)+R(x;b,c)=1,the reliability R(x;b,c),that is,the probability that the bearing strength is at least x,was defined by Chellis(1961)as:

    The parameters b and c ofthe distribution function F(x;b, c)are estimated from observations.Linear regression was used for parameter estimation using MicroSoft ExelTM(Chellis 1961;Ibrahim etal.2000;Guden etal.2007;Aktas 2007).This method is based on transforming Eq.1 and calculating double logarithms forboth sides.Hence,a linear regression model in the form Y=mX+r is obtained:

    F(x;b,c)is an unknown in Eq.(4)and therefore it is estimated from observed values:order n observations from smallest to largest,and let x(i)denote the i th smallest observation(i=1 corresponds to the smallest and i=n corresponds to the largest).Then a good estimator of F(x(i);b,c)is the median rank of x(i):

    Results and discussion

    Load carrying capacity

    Mean load-carrying capacities and 95%reliability obtained by Weibull distribution are shown in Fig.5.Loadcarrying capacity was greatest at CR60,in experimental tests and statisticalanalyses.Lowestload-carrying capacity was recorded for unreinforced rings in experimental and statistical analyses.In experimental tests load-carrying capacity declined in rank order as CR60>CR75>CR90>CR45.In statistical analyses load-carrying capacity declined in rank order as CR60>CR75>CR45>CR90.

    The average load-carrying capacities of rings CR90, CR75,CR60 and CR45 were 137,192,215 and 126% greater than for unreinforced rings.Mean load-carrying capacities were obtained at 53,52,52,52 and 53%of reliability(for unreinforced,CR90,CR75,CR60,and CR45,respectively).

    Weibull distribution

    The results of the experiments are given in Table 1.Values b and c were calculated by firstranking them from smallest to largest and then computing(Xi,Y)values.We then applied linear regression to the computed(X,Y)values to produce linear regression models(Fig.6).The firstpointin Fig.6 does not appear to fit the line well.This is an expected situation when using linear regression:among consecutive(Y(i),Y(i+1))pairs,(Y(1),Y(2))has the largest absolute difference from the mean.The slope of the regression line was 6.01(for CR90),which is the value of the shape parameter c.

    Fig.5 Load carrying capacity

    When c<1.0,the material displayed a decreasing failure rate,c=0 indicates constant failure,and c>1.0 indicates an increasing failure rate.The value b was computed as b=1934 using the Y axis intercept(=-45.498)in b=e(-Y/c).Therefore,when c=0.368,there was a higher probability that the material would fracture with every unit of decrease in applied compression.The scale parameter b measures the spread in the distribution of data.As a theoretical property R(b;b,c)=0.368. Therefore,R(1934;1934,6.01)=exp(-(x/b)c)=0.368, that is,36.8%of the tested specimens had a load carrying capacity of at least 1934 N.

    The plot of R(x;b,c)is shown in Fig.7.The reliability curve in Fig.7 shows that load-carrying capacities less than or equal to 450,700,700,750 and 1,000 N(for unreinforced,CR90,CR75,CR60,and CR45,respectively) would provide high reliability.For a more certain assessment,consider 0.95 a reliability level.When these values are put as R(x;b,c)in Eq.3,and the equation is solved for x,the load carrying capacity values 613,1,180,1,375, 1,410 and 1,343 N(for unreinforced,CR90,CR75,CR60, and CR45,respectively)are obtained.In other words,this material will fail with 0.95 probability under loads of 613, 1,180,1,375,1,410 and 1,343 N(for unreinforced,CR90, CR75,CR60,and CR45,respectively)or more.

    Failure mode

    Figure 8 shows photographs of failed rings.For unreinforced rings,failures resulted from breaking of wood materials,not from separation of glued surfaces.In other words,specimens failed catastrophically.In addition,for all composite reinforced rings,specimens were not completely broken because of the outer surface of composite reinforcement.Wood was only cracked under thecomposite material.The edges of the rings were squeezed and compressed fibers were moved outward.

    Fig.6 Regression line for CR90.a the load-carrying capacity values (N);b median rank

    Table 1 Load-carrying capacity values(N)

    Fig.7 Weibull reliability distribution for failure load

    Fig.8 Photography of failed rings

    Conclusion

    We quantified the load-bearing capacities of four types of rings constructed of spruce wood and reinforced by glass fiber under radial compressive loads both experimentally and statistically.Load-carrying capacity was highest at CR60 for both experimental and statistical analyses.The lowest value was recorded for unreinforced rings in both experimental and statistical analyses.During ring failure, cracks began in the core materials for all specimens. Failures forunreinforced rings were formed by catastrophic breaking of wood materials.No composite-reinforced rings failed catastrophically.

    Aktas A(2007)Statistical analysis of bearing strength of glass-fiber composite materials.J Reinf Plast Compos 26:555–564

    Barbero E,Fernandez-Saez J,Navarro C(2000)Statisticalanalysis of the mechanical properties of composite materials.Compos B 31:375–381

    Cabrero JM,Heiduschke A,Haller P(2010a)Analytical assessment of the load carrying capacity of axially loaded wooden reinforced tubes.Compos Struct 92:2955–2965

    Cabrero JM,Heiduschke A,Haller P(2010)Parametric analysis of composite reinforced wood tubes under axial compression.In: World conference on timber engineering

    Chellis RD(1961)Deterioration and preservation of piles.Pile foundations.McGraw-Hill,New York,pp 339–372

    Dodson B(1994)Weibull analysis.American Society for Quality, Milwaukee

    Fam A,Kim YJ,Son J(2010)A numerical investigation into the response of free end tubular composite poles subjected to axial and lateral loads.Thin-Wall Struct 48:650–659

    Guden M,Yuksel S,Tasdemirci A,Tanoglu M(2007)Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes.Compos Struct 81:480–490

    Haller P(2007)Concepts for textile reinforcements for timber structures.Mater Struct 40:107–118

    Han TH,Han SY,Kang YJ(2007)Elastic buckling behavior characteristics of GFRP pipe with reinforced ribs,composites and polycon.American Composites Manufacturers Association, 17–19 Oct,Tampa

    Heiduschke A,Haller P(2010)Fiber-reinforced plastic-confined wood profiles under axial compression.Int Assoc Bridge Struct Eng 3:246–253

    Heiduschke A,Cabrero JM,Manthey C,Haller P,Gu¨nther E(2008) Mechanical behaviour and life cycle assessment of fibrereinforced timber profiles.In:Braganca L,Koukkari H,Blok H,Cervasio R,Velkovic M,Plewako RUV,Landolfo Z,Silva L, Haller P(eds)Cost C25 sustainability of constructions-integrated approach to lifetime engineering.COST C-25.European Commission,Dresden,pp 3.38–3.46

    Ibrahim S,Polyzois D,Hassan SK(2000)Developmentof glass fiber reinforced plastic poles for transmission and distribution lines. Can J Civil Eng 27:850–858

    Kim YJ,Heffernan PJ(2008)Fatigue behavior of externally strengthened concrete beams with fiber-reinforced polymers: state of the art.J Compos Constr 12(3):246–256

    Shin KC,Lee JJ,Kim KH,Song MC,Huh JS(2002)Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability.Compos Struct 57:279–287

    Yerlikaya NC,Aktas A(2012)Enhancement of load-carrying capacity of corner joints in case-type furniture.Mater Des 37:393–401

    23 November 2013/Accepted:7 February 2014/Published online:28 April 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    The online version is available at http://www.springerlink.com

    Corresponding editor:Yu Lei

    ?Nurdan C?etin Yerlikaya ncyerlikaya@gmail.com

    1Department of Industrial Design,Faculty of Artand Design, Yalova University,77100 Yalova,Turkey

    2Department of Mechanical Engineering,Faculty of Engineering,Istanbul University,Avc?lar,34320 Istanbul, Turkey

    亚洲成人精品中文字幕电影| 国产日本99.免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲性夜色夜夜综合| 免费搜索国产男女视频| 美女 人体艺术 gogo| 法律面前人人平等表现在哪些方面| 观看免费一级毛片| 99国产精品一区二区三区| 精品国产亚洲在线| 国产精品久久久久久亚洲av鲁大| 国产蜜桃级精品一区二区三区| 国产精品一区二区三区四区久久| 精品国产乱码久久久久久男人| 中国美女看黄片| 久99久视频精品免费| 黄色片一级片一级黄色片| 99久久综合精品五月天人人| 天堂av国产一区二区熟女人妻| 国产精品国产高清国产av| 成人欧美大片| 一个人看的www免费观看视频| 日本黄色视频三级网站网址| 超碰成人久久| 欧美+亚洲+日韩+国产| avwww免费| 国产av不卡久久| а√天堂www在线а√下载| 欧美成狂野欧美在线观看| 国产单亲对白刺激| 国产成人av激情在线播放| 看黄色毛片网站| 国产精品一区二区精品视频观看| 亚洲av成人不卡在线观看播放网| 美女午夜性视频免费| 日韩三级视频一区二区三区| 欧美在线一区亚洲| 欧美中文日本在线观看视频| 高潮久久久久久久久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 91九色精品人成在线观看| 国产精品亚洲一级av第二区| 国产一区二区在线观看日韩 | 日本一本二区三区精品| 欧美日韩精品网址| 国产av在哪里看| 久久中文看片网| 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| 成人亚洲精品av一区二区| 午夜精品一区二区三区免费看| 又黄又粗又硬又大视频| 1000部很黄的大片| 天天添夜夜摸| 成人三级做爰电影| 变态另类成人亚洲欧美熟女| 日韩欧美三级三区| 真人一进一出gif抽搐免费| 最近最新中文字幕大全电影3| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 高清毛片免费观看视频网站| 啦啦啦韩国在线观看视频| 日本黄大片高清| 欧美黄色片欧美黄色片| av视频在线观看入口| 成人av在线播放网站| 国产高清videossex| 一级毛片精品| 人妻夜夜爽99麻豆av| 色综合亚洲欧美另类图片| 国产精品精品国产色婷婷| 亚洲色图 男人天堂 中文字幕| 精品日产1卡2卡| 亚洲av片天天在线观看| 12—13女人毛片做爰片一| 一区福利在线观看| 少妇裸体淫交视频免费看高清| 无人区码免费观看不卡| 国产1区2区3区精品| 欧美日韩综合久久久久久 | 女生性感内裤真人,穿戴方法视频| 亚洲精品中文字幕一二三四区| 久99久视频精品免费| 日本在线视频免费播放| 手机成人av网站| 久久久国产欧美日韩av| 观看美女的网站| 欧美色视频一区免费| 亚洲男人的天堂狠狠| 黑人操中国人逼视频| 国产精品一区二区三区四区免费观看 | 久久久成人免费电影| av在线天堂中文字幕| 高清毛片免费观看视频网站| 亚洲国产中文字幕在线视频| 婷婷亚洲欧美| 少妇人妻一区二区三区视频| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 久久人妻av系列| 99国产精品一区二区三区| 大型黄色视频在线免费观看| 国产精品爽爽va在线观看网站| tocl精华| 女人被狂操c到高潮| 天堂av国产一区二区熟女人妻| 国产午夜福利久久久久久| 无遮挡黄片免费观看| 国产午夜精品久久久久久| a在线观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品影院| 91麻豆精品激情在线观看国产| 一个人免费在线观看电影 | 女同久久另类99精品国产91| 美女黄网站色视频| 久久九九热精品免费| 亚洲天堂国产精品一区在线| 夜夜看夜夜爽夜夜摸| av国产免费在线观看| 国内毛片毛片毛片毛片毛片| 午夜激情福利司机影院| 一级毛片高清免费大全| 人妻夜夜爽99麻豆av| 日韩欧美三级三区| 俺也久久电影网| 欧美国产日韩亚洲一区| 久久精品91蜜桃| 国产免费av片在线观看野外av| 51午夜福利影视在线观看| aaaaa片日本免费| 国产激情欧美一区二区| 成人精品一区二区免费| 一区二区三区高清视频在线| 黄片小视频在线播放| 最近最新免费中文字幕在线| 亚洲欧美精品综合久久99| 色视频www国产| 亚洲在线观看片| 嫩草影院入口| 久久久久久大精品| 九九热线精品视视频播放| 亚洲五月天丁香| 国产麻豆成人av免费视频| 成人三级做爰电影| 一级毛片女人18水好多| 黑人欧美特级aaaaaa片| 精品久久久久久成人av| 国产aⅴ精品一区二区三区波| 国产视频内射| 99久久国产精品久久久| 狂野欧美白嫩少妇大欣赏| 首页视频小说图片口味搜索| 又爽又黄无遮挡网站| 99热这里只有精品一区 | 免费看美女性在线毛片视频| 狠狠狠狠99中文字幕| 露出奶头的视频| 日本免费a在线| 国产精品久久久久久人妻精品电影| av视频在线观看入口| 久久久色成人| www.精华液| 国产精品乱码一区二三区的特点| 色噜噜av男人的天堂激情| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区三| 久久久国产成人免费| 搞女人的毛片| 亚洲精品色激情综合| 非洲黑人性xxxx精品又粗又长| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 老司机福利观看| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 免费在线观看日本一区| 黄色女人牲交| 色视频www国产| 女同久久另类99精品国产91| 亚洲欧美一区二区三区黑人| 99热精品在线国产| 巨乳人妻的诱惑在线观看| 国产亚洲精品久久久com| 搡老熟女国产l中国老女人| 一进一出好大好爽视频| 首页视频小说图片口味搜索| 日韩中文字幕欧美一区二区| 性色av乱码一区二区三区2| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 欧美日韩一级在线毛片| 变态另类成人亚洲欧美熟女| 91av网站免费观看| 啦啦啦韩国在线观看视频| www日本黄色视频网| 久久久久九九精品影院| 欧美精品啪啪一区二区三区| 一二三四社区在线视频社区8| 久久精品国产99精品国产亚洲性色| 午夜两性在线视频| 岛国在线免费视频观看| 国产1区2区3区精品| 美女午夜性视频免费| 一级作爱视频免费观看| 精品不卡国产一区二区三区| 一夜夜www| 久久久精品大字幕| 国产精品久久久人人做人人爽| 国产精品美女特级片免费视频播放器 | 人人妻人人澡欧美一区二区| 久久精品91无色码中文字幕| 成人永久免费在线观看视频| 长腿黑丝高跟| 日本在线视频免费播放| 久久人人精品亚洲av| 在线观看午夜福利视频| 欧美精品啪啪一区二区三区| 国产精品爽爽va在线观看网站| 伦理电影免费视频| 欧美在线黄色| xxxwww97欧美| 999久久久国产精品视频| 久久亚洲真实| 国产精品亚洲美女久久久| 深夜精品福利| 黄色丝袜av网址大全| 国产三级中文精品| 最近在线观看免费完整版| 又黄又爽又免费观看的视频| 噜噜噜噜噜久久久久久91| 制服人妻中文乱码| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器 | 欧美日韩中文字幕国产精品一区二区三区| 在线播放国产精品三级| 国产成人系列免费观看| 国产成人av教育| 小说图片视频综合网站| 岛国在线免费视频观看| 亚洲一区二区三区不卡视频| 欧美日韩中文字幕国产精品一区二区三区| 99热这里只有是精品50| 久久精品国产清高在天天线| 99热这里只有精品一区 | 1024手机看黄色片| 三级男女做爰猛烈吃奶摸视频| 国产精品精品国产色婷婷| 国产成人av激情在线播放| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 亚洲一区二区三区色噜噜| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| a级毛片a级免费在线| xxx96com| 国产伦精品一区二区三区视频9 | 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 色综合欧美亚洲国产小说| 18禁观看日本| 别揉我奶头~嗯~啊~动态视频| 白带黄色成豆腐渣| 91av网站免费观看| 在线观看舔阴道视频| 波多野结衣高清作品| 99久国产av精品| 久久久久久人人人人人| 好男人在线观看高清免费视频| 精品福利观看| 亚洲aⅴ乱码一区二区在线播放| 欧美最黄视频在线播放免费| 黄片小视频在线播放| 国产成人欧美在线观看| 村上凉子中文字幕在线| 99热6这里只有精品| 不卡一级毛片| 成年人黄色毛片网站| 日韩精品中文字幕看吧| 观看美女的网站| 天堂网av新在线| 国产av在哪里看| 女生性感内裤真人,穿戴方法视频| 97人妻精品一区二区三区麻豆| 久久久国产精品麻豆| 一个人观看的视频www高清免费观看 | 国产精品久久视频播放| 日本一本二区三区精品| 精品人妻1区二区| 亚洲七黄色美女视频| 午夜久久久久精精品| 国产精品98久久久久久宅男小说| 精品国产美女av久久久久小说| 三级毛片av免费| 国产精品1区2区在线观看.| 精品人妻1区二区| 一个人免费在线观看电影 | 亚洲 欧美 日韩 在线 免费| 国产精品久久久久久人妻精品电影| 国产熟女xx| 亚洲精品美女久久av网站| 国产精品久久电影中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 99热6这里只有精品| 欧美日韩黄片免| 欧美黑人巨大hd| 又黄又粗又硬又大视频| 制服丝袜大香蕉在线| 午夜日韩欧美国产| 中文字幕熟女人妻在线| 9191精品国产免费久久| 舔av片在线| 啦啦啦韩国在线观看视频| 亚洲,欧美精品.| 丰满人妻熟妇乱又伦精品不卡| 国产一区在线观看成人免费| 99久久综合精品五月天人人| 99re在线观看精品视频| 国产v大片淫在线免费观看| 婷婷精品国产亚洲av在线| 一本久久中文字幕| 国产黄片美女视频| 国产精品久久久久久人妻精品电影| 国产成+人综合+亚洲专区| 久久久久久大精品| 久久精品国产综合久久久| 国产一区二区激情短视频| 精品国产乱子伦一区二区三区| 美女黄网站色视频| 国产高清三级在线| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 99热只有精品国产| 国产高清三级在线| 亚洲熟妇中文字幕五十中出| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 日韩欧美在线二视频| 午夜福利欧美成人| 亚洲精品乱码久久久v下载方式 | a在线观看视频网站| 亚洲欧美精品综合一区二区三区| 啪啪无遮挡十八禁网站| 网址你懂的国产日韩在线| 久久久久久久精品吃奶| 国语自产精品视频在线第100页| 欧美激情在线99| 亚洲欧美日韩东京热| 一个人免费在线观看电影 | 午夜免费激情av| 国产精品亚洲一级av第二区| 给我免费播放毛片高清在线观看| 三级国产精品欧美在线观看 | 精品人妻1区二区| 非洲黑人性xxxx精品又粗又长| 日本免费一区二区三区高清不卡| 国产精品美女特级片免费视频播放器 | 91麻豆精品激情在线观看国产| 日本五十路高清| 久久性视频一级片| 日韩国内少妇激情av| 久久精品影院6| 最新在线观看一区二区三区| h日本视频在线播放| 99在线人妻在线中文字幕| 狂野欧美激情性xxxx| 三级男女做爰猛烈吃奶摸视频| 淫秽高清视频在线观看| 精品午夜福利视频在线观看一区| 99视频精品全部免费 在线 | 麻豆一二三区av精品| 搡老岳熟女国产| 国产成人影院久久av| 国产亚洲精品一区二区www| 99久久精品热视频| 国产精品美女特级片免费视频播放器 | 香蕉av资源在线| 国产人伦9x9x在线观看| 岛国视频午夜一区免费看| 淫妇啪啪啪对白视频| 美女高潮喷水抽搐中文字幕| 成人欧美大片| 亚洲无线在线观看| 欧美乱色亚洲激情| 两个人视频免费观看高清| 两性午夜刺激爽爽歪歪视频在线观看| 日韩av在线大香蕉| av天堂中文字幕网| 午夜精品在线福利| 老汉色∧v一级毛片| 午夜精品久久久久久毛片777| 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 97碰自拍视频| 国产成人欧美在线观看| 国产主播在线观看一区二区| 男女那种视频在线观看| 国产一区二区激情短视频| 看黄色毛片网站| 成人特级av手机在线观看| 欧美最黄视频在线播放免费| 国产一区二区三区在线臀色熟女| 特级一级黄色大片| 夜夜爽天天搞| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 国产一区二区三区视频了| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| tocl精华| 午夜福利在线在线| 成熟少妇高潮喷水视频| 18禁国产床啪视频网站| 一级毛片精品| 免费观看人在逋| 成人国产综合亚洲| 日本一二三区视频观看| 91字幕亚洲| 日本黄色片子视频| 久久精品aⅴ一区二区三区四区| 中文在线观看免费www的网站| 99热只有精品国产| 中文字幕av在线有码专区| 国内毛片毛片毛片毛片毛片| 老熟妇乱子伦视频在线观看| 久久久久九九精品影院| 日韩人妻高清精品专区| 美女高潮的动态| 少妇丰满av| 久久午夜综合久久蜜桃| 国产精品日韩av在线免费观看| 在线国产一区二区在线| 岛国在线免费视频观看| 亚洲中文字幕日韩| 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 黄色丝袜av网址大全| 黄片小视频在线播放| 成人欧美大片| 日本免费a在线| 国产乱人伦免费视频| 禁无遮挡网站| www.自偷自拍.com| 午夜福利成人在线免费观看| 99热只有精品国产| 国产亚洲精品综合一区在线观看| 亚洲一区高清亚洲精品| 国产一区在线观看成人免费| xxx96com| 舔av片在线| 欧美激情久久久久久爽电影| 日韩高清综合在线| 欧美+亚洲+日韩+国产| www国产在线视频色| 国产蜜桃级精品一区二区三区| 天堂网av新在线| 亚洲av电影在线进入| 757午夜福利合集在线观看| 性色avwww在线观看| 三级国产精品欧美在线观看 | 日韩欧美一区二区三区在线观看| 啦啦啦韩国在线观看视频| 听说在线观看完整版免费高清| 757午夜福利合集在线观看| 国产成人影院久久av| 日本免费一区二区三区高清不卡| 中出人妻视频一区二区| 亚洲,欧美精品.| 看黄色毛片网站| 亚洲欧美日韩卡通动漫| 国产99白浆流出| 在线看三级毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区三区四区免费观看 | 久99久视频精品免费| 亚洲成人精品中文字幕电影| 中文在线观看免费www的网站| 国产三级黄色录像| 免费看光身美女| 久久久久九九精品影院| 亚洲精品在线观看二区| 成人18禁在线播放| 国产一区二区激情短视频| 不卡av一区二区三区| 桃红色精品国产亚洲av| 18禁观看日本| 国产激情久久老熟女| 亚洲精品美女久久久久99蜜臀| 亚洲无线观看免费| 99riav亚洲国产免费| 嫩草影视91久久| 91麻豆av在线| 欧美黑人欧美精品刺激| 无限看片的www在线观看| 亚洲五月天丁香| 精品电影一区二区在线| 久久久久国产一级毛片高清牌| 丰满的人妻完整版| 亚洲av片天天在线观看| 日本 欧美在线| 国产爱豆传媒在线观看| 精品日产1卡2卡| 国产免费av片在线观看野外av| 国产精品野战在线观看| 欧美激情在线99| 成年女人看的毛片在线观看| 欧美3d第一页| 美女高潮喷水抽搐中文字幕| 国产精品亚洲美女久久久| 国模一区二区三区四区视频 | 狂野欧美激情性xxxx| 黄片小视频在线播放| 亚洲av成人一区二区三| 天天躁日日操中文字幕| 国产一区二区三区视频了| 美女高潮的动态| 美女黄网站色视频| 国产伦在线观看视频一区| 男插女下体视频免费在线播放| www.自偷自拍.com| 久久久久精品国产欧美久久久| 长腿黑丝高跟| 国产精品国产高清国产av| 精品一区二区三区视频在线 | 男人舔女人下体高潮全视频| tocl精华| 人人妻人人看人人澡| 亚洲中文字幕一区二区三区有码在线看 | 久久精品综合一区二区三区| 国产亚洲精品综合一区在线观看| 在线观看美女被高潮喷水网站 | 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 国产主播在线观看一区二区| 99久久成人亚洲精品观看| 免费电影在线观看免费观看| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 国产精品电影一区二区三区| 色综合站精品国产| 精品久久久久久久人妻蜜臀av| 色综合站精品国产| 久久精品国产综合久久久| 黄色视频,在线免费观看| 免费在线观看视频国产中文字幕亚洲| aaaaa片日本免费| 欧美又色又爽又黄视频| 三级毛片av免费| 亚洲精品一区av在线观看| 在线看三级毛片| 久久久久久人人人人人| 狂野欧美白嫩少妇大欣赏| 久久欧美精品欧美久久欧美| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久亚洲av鲁大| 无人区码免费观看不卡| 男人舔奶头视频| 99久久精品国产亚洲精品| 国产野战对白在线观看| www国产在线视频色| 一级a爱片免费观看的视频| 亚洲欧美精品综合久久99| 国产一区二区在线观看日韩 | 一本久久中文字幕| 动漫黄色视频在线观看| 毛片女人毛片| 国产精品综合久久久久久久免费| 可以在线观看的亚洲视频| 亚洲专区中文字幕在线| 久久久久性生活片| 在线视频色国产色| 精品午夜福利视频在线观看一区| 91av网一区二区| 亚洲avbb在线观看| 久久婷婷人人爽人人干人人爱| 在线播放国产精品三级| 国产成年人精品一区二区| 看免费av毛片| 久久香蕉国产精品| 中文字幕av在线有码专区| 精品久久久久久久毛片微露脸| 欧美乱码精品一区二区三区| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 色精品久久人妻99蜜桃| 国产精品98久久久久久宅男小说| a在线观看视频网站| 两个人的视频大全免费| 可以在线观看的亚洲视频| 亚洲精品一区av在线观看| 亚洲欧美精品综合久久99| 国产伦精品一区二区三区视频9 | 精品熟女少妇八av免费久了| 国产99白浆流出| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 精华霜和精华液先用哪个| www.精华液| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| 欧美一区二区国产精品久久精品| 91九色精品人成在线观看| 狠狠狠狠99中文字幕| 一二三四在线观看免费中文在| 亚洲欧美日韩高清专用| www.自偷自拍.com| 免费在线观看亚洲国产| 亚洲真实伦在线观看| 人妻久久中文字幕网| 91麻豆精品激情在线观看国产| 精品一区二区三区av网在线观看|