虞冀哲 董學(xué)海 陳海丹 趙紅衛(wèi)
間充質(zhì)干細(xì)胞應(yīng)用于軟骨組織工程的研究進(jìn)展
虞冀哲 董學(xué)海 陳海丹 趙紅衛(wèi)
本文主要回顧了不同來(lái)源的間充質(zhì)干細(xì)胞作為種子細(xì)胞的軟骨組織工程學(xué)研究進(jìn)展,并討論自體軟骨細(xì)胞移植技術(shù)和誘導(dǎo)間充質(zhì)干細(xì)胞成軟骨分化的軟骨組織再生技術(shù)各自的優(yōu)缺點(diǎn),并展望其臨床應(yīng)用前景。
間充質(zhì)干細(xì)胞;軟骨;組織工程;誘導(dǎo)分化;支架
由于自身少細(xì)胞,無(wú)血管淋巴分布的結(jié)構(gòu)特點(diǎn),軟骨損傷后其自發(fā)再生和修復(fù)的能力十分有限,因此軟骨缺損是臨床骨關(guān)節(jié)疾病中常見(jiàn)的難題。傳統(tǒng)的外科修復(fù)方法有關(guān)節(jié)鏡下清創(chuàng)灌洗術(shù)、微骨折術(shù)、開(kāi)放性自體骨膜移植術(shù)、自體骨軟骨移植術(shù)和自體軟骨細(xì)胞移植(autologouschondrocyteimplantation,ACI)等。其中ACI在臨床中已經(jīng)應(yīng)用了幾十年,雖然可以取得滿意療效,但仍存在很多問(wèn)題,而且這種方法無(wú)法應(yīng)用于大面積軟骨缺損的再生修復(fù)。
對(duì)軟骨再生修復(fù)技術(shù)的迫切需求推動(dòng)了軟骨組織工程的發(fā)展,而將種子細(xì)胞或種子細(xì)胞復(fù)合支架材料在體外條件下經(jīng)生物活性物質(zhì)誘導(dǎo)形成軟骨組織以應(yīng)用于軟骨修復(fù)是軟骨組織工程的主要內(nèi)容。近年來(lái),組織工程學(xué)的工作主要集中于干細(xì)胞的研究,而獲取足量的、具有多向分化潛能的干細(xì)胞是關(guān)鍵。干細(xì)胞主要分為兩種類型:一種是胚胎干細(xì)胞(ESCs);另一種為成體干細(xì)胞。成體干細(xì)胞是指存在于一種已經(jīng)分化組織中的未分化細(xì)胞,主要包括造血干細(xì)胞、間充質(zhì)干細(xì)胞和神經(jīng)干細(xì)胞,其中間充質(zhì)干細(xì)胞已被證實(shí)具有多向分化潛能。人類胚胎干細(xì)胞(ESCs)來(lái)源于囊胚的內(nèi)層細(xì)胞團(tuán),是全能型多向潛能干細(xì)胞。相對(duì)于MSCs,ESCs在體外可表現(xiàn)出更強(qiáng)的自我更新能力和多向分化潛能,可作為肌肉骨骼組織再生修復(fù)的一種潛在細(xì)胞來(lái)源[1]。然而,即使在體外特定誘導(dǎo)條件下,胚胎干細(xì)胞仍然有產(chǎn)生畸胎瘤的趨勢(shì)[2],這迫使科學(xué)家和臨床醫(yī)生對(duì)其任何臨床應(yīng)用都保持謹(jǐn)慎。此外,與之相關(guān)的倫理和法律障礙也使其臨床應(yīng)用更加困難,許多國(guó)家已明令禁止將胚胎干細(xì)胞應(yīng)用于臨床治療。為了規(guī)避研究胚胎干細(xì)胞所面臨的倫理和法律問(wèn)題,Kazutoshi Takahashi和ShinyaYamanaka等[3-6]研究人員利用病毒載體向小鼠成纖維細(xì)胞導(dǎo)入Oct3/4、Sox2、c-Myc和Klf這四種外源性轉(zhuǎn)錄因子基因,誘導(dǎo)成纖維細(xì)胞轉(zhuǎn)化為多向潛能干細(xì)胞。產(chǎn)生的誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells, iPSCs)在形態(tài)、基因和蛋白表達(dá)、表觀遺傳修飾狀態(tài)、細(xì)胞倍增能力、類胚體和畸胎瘤生成能力、分化能力等方面都與胚胎干細(xì)胞相似[7]。雖然iPSCs大有希望作為組織再生醫(yī)學(xué)的另一種細(xì)胞來(lái)源[8],但在用于臨床治療之前,仍需要開(kāi)展更多的研究并制定相關(guān)技術(shù)規(guī)范。
本文主要回顧了以間充質(zhì)干細(xì)胞為種子細(xì)胞來(lái)源的軟骨組織工程學(xué)研究進(jìn)展,并討論自體軟骨細(xì)胞移植技術(shù)和誘導(dǎo)間充質(zhì)干細(xì)胞成軟骨分化的軟骨組織再生技術(shù)各自的優(yōu)缺點(diǎn),并展望其應(yīng)用前景。
軟骨組織由軟骨細(xì)胞、基質(zhì)(ECM)及水分所構(gòu)成。軟骨細(xì)胞僅占軟骨組織總體積的1%~2%[9]。軟骨基質(zhì)的化學(xué)組成主要為軟骨粘蛋白和膠原纖維(II型膠原蛋白為主),其中軟骨粘蛋白的主干為透明質(zhì)酸分子,其蛋白核心結(jié)合了大量糖胺多糖類物質(zhì)如硫酸角質(zhì)蛋白和硫酸軟骨素。軟骨內(nèi)無(wú)血管,但由于軟骨組織內(nèi)富含水分,易于與周圍關(guān)節(jié)滑液及細(xì)胞外液進(jìn)行營(yíng)養(yǎng)物質(zhì)或代謝廢物的交換。
根據(jù)軟骨組織內(nèi)所含纖維成分的不同,可將軟骨分為透明軟骨、彈性軟骨和纖維軟骨三種。透明軟骨基質(zhì)主要成分為水、粘蛋白和 II型膠原蛋白,主要分布于關(guān)節(jié)軟骨和肋軟骨,在人體中起到承重負(fù)荷,減少關(guān)節(jié)間骨骼摩擦等重要的作用[10];彈性軟骨基質(zhì)中含有彈性蛋白,主要分布于耳廓及呼吸道等處,起著結(jié)構(gòu)支撐的作用;纖維軟骨分布于椎間盤、關(guān)節(jié)盤及恥骨聯(lián)合等處,其基質(zhì)中所含I型膠原比例較高。由于軟骨內(nèi)無(wú)血管,無(wú)論是哪種軟骨發(fā)生損傷,其自我修復(fù)能力都十分有限。
運(yùn)動(dòng)損傷、創(chuàng)傷、感染、先天性畸形等因素均可導(dǎo)致關(guān)節(jié)軟骨損傷或缺損,軟骨損傷后,自我修復(fù)能力很差,當(dāng)關(guān)節(jié)軟骨缺損超過(guò)一定面積持續(xù)發(fā)展會(huì)導(dǎo)致骨性關(guān)節(jié)炎,給病人帶來(lái)很大痛苦。目前臨床上對(duì)于軟骨損傷的治療措施包括關(guān)節(jié)鏡下清創(chuàng)灌洗術(shù)、微骨折術(shù)、開(kāi)放性自體骨膜移植術(shù)、自體骨軟骨移植術(shù)和自體軟骨細(xì)胞移植 (ACT)等。然而,雖然軟骨細(xì)胞移植術(shù)在臨床上以應(yīng)用了十幾年,但仍面臨了許多問(wèn)題,如供體不足、供體位點(diǎn)壞死、疼痛、瘢痕形成等;而其它類型移植物如同種異體軟骨和異質(zhì)性支架材料,由于排斥反應(yīng),很容易引發(fā)感染或移植物吸收,最終導(dǎo)致修復(fù)失敗。此外,軟骨移植術(shù)通常需要外科手術(shù)切開(kāi)操作,會(huì)影響局部肢體的美觀。骨關(guān)節(jié)退變性疾病或創(chuàng)傷所致軟骨缺損的再生修復(fù)已成為骨外科修復(fù)技術(shù)的一種挑戰(zhàn),而體外重建軟骨組織有望從根本上解決軟骨缺損修復(fù)的難題,為軟骨組織供體來(lái)源的研究開(kāi)辟一條新的途徑。
近幾年來(lái),應(yīng)用種子細(xì)胞或種子細(xì)胞復(fù)合支架材料經(jīng)細(xì)胞因子的誘導(dǎo)作用在體外重建軟骨移植物成為了軟骨組織工程的主要內(nèi)容[11]。誘導(dǎo)干細(xì)胞分化的生物性因素包括生物化學(xué)信號(hào)因子,細(xì)胞外基質(zhì),環(huán)境因素如壓應(yīng)力刺激以及細(xì)胞間信號(hào)轉(zhuǎn)導(dǎo)等。多種因素的共同作用促進(jìn)了細(xì)胞的增殖和分化,但其潛在的信號(hào)通路及生物學(xué)機(jī)制仍需要得到進(jìn)一步的闡明。
為了滿足組織工程學(xué)要求,種子細(xì)胞必須具有較強(qiáng)的自我更新和定向分化潛能。目前有多種細(xì)胞可用于軟骨組織工程,包括自體軟骨細(xì)胞、骨髓來(lái)源的間充質(zhì)干細(xì)胞、脂肪來(lái)源的間充質(zhì)干細(xì)胞、臍帶干細(xì)胞、胚胎干細(xì)胞等,這些細(xì)胞在特定誘導(dǎo)培養(yǎng)條件下分化為軟骨組織。在選擇種子細(xì)胞時(shí),必須考慮細(xì)胞的增值能力、細(xì)胞表型是否穩(wěn)定、免疫原性等因素。目前美國(guó)食品與藥品管理委員會(huì) (FDA)僅批準(zhǔn)將軟骨細(xì)胞用于軟骨缺損再生修復(fù)的治療。
2.1 自體軟骨細(xì)胞移植的應(yīng)用現(xiàn)狀
1987年,Peterson等[12]首次將自體軟骨細(xì)胞移植用于臨床,而B(niǎo)rittberg等[13]發(fā)表對(duì)軟骨缺損修復(fù)技術(shù)最初的研究報(bào)告。自體軟骨細(xì)胞移植術(shù)中使用的軟骨細(xì)胞取自患者非負(fù)重關(guān)節(jié)面,通過(guò)4~6周的體外培養(yǎng)及增殖使軟骨細(xì)胞達(dá)到足夠數(shù)量,然后將細(xì)胞注入清創(chuàng)后的關(guān)節(jié)軟骨缺損部位,從而用于自體軟骨缺損的再生修復(fù);由于新注入的軟骨細(xì)胞無(wú)法立即附著,臨床上通常將骨膜瓣縫合至關(guān)節(jié)軟骨缺損處[14]。雖然經(jīng)體外擴(kuò)增的自體軟骨細(xì)胞不會(huì)引起免疫排斥反應(yīng),但體外培養(yǎng)的軟骨細(xì)胞可能出現(xiàn)去分化現(xiàn)象[15],這是因?yàn)樵趩螌优囵B(yǎng)模式下,軟骨細(xì)胞離開(kāi)了特定的細(xì)胞外基質(zhì)環(huán)境,失去了軟骨特異性細(xì)胞表型,導(dǎo)致I型膠原表達(dá)增多而II型膠原表達(dá)減少[16,17]。最近研究表明利用瓊脂糖凝膠、藻酸鹽微球、膠原載體等將軟骨細(xì)胞在體外進(jìn)行三維培養(yǎng),可以使軟骨細(xì)胞保持表型特征[18];也有研究表明可在培養(yǎng)基中添加轉(zhuǎn)化生長(zhǎng)因子 (TGF-)和胰島素樣生長(zhǎng)因子1(IGF-1)可延長(zhǎng)或恢復(fù)單層培養(yǎng)軟骨細(xì)胞的再分化能力[19]。
盡管有臨床研究報(bào)道90%的軟骨缺損患者經(jīng)自體軟骨細(xì)胞移植后恢復(fù)良好[20],但應(yīng)注意的是它僅適用于50歲以上由于創(chuàng)傷所致的關(guān)節(jié)軟骨缺損患者。此外,用于分離細(xì)胞的取活檢部位必須為正常軟骨組織,而這都是以犧牲自體健康組織為代價(jià)。臨床中向軟骨缺損部位注入經(jīng)體外擴(kuò)增培養(yǎng)的軟骨細(xì)胞后,通常再使用骨膜瓣進(jìn)行封蓋,然而這仍然難以避免注入細(xì)胞受沖擊或震蕩,這也是術(shù)后軟骨細(xì)胞存活率低 (僅10%~30%)的主要原因[21]?;|(zhì)誘導(dǎo)自體軟骨細(xì)胞移植 (matrix-induced autologous chondrocyte implantation, MACI)改進(jìn)傳統(tǒng)ACI中將體外培樣軟骨細(xì)胞直接注入軟骨缺損位點(diǎn)的做法,MACI先將軟骨細(xì)胞在體外接種至生物膜上,再將貼覆有軟骨細(xì)胞的生物膜覆蓋至軟骨缺損處,這種事先固定細(xì)胞的方法有效提高了術(shù)后軟骨細(xì)胞的存活率[22]。
2.2 間充質(zhì)干細(xì)胞在軟骨缺損修復(fù)中的應(yīng)用
間充質(zhì)干細(xì)胞 (MSCs)是來(lái)源于中胚層的具有多向分化潛能的成體干細(xì)胞。MSCs最早由Friedenstein等[23]于上世紀(jì)60年代從骨髓中分離出來(lái),隨后世界各國(guó)研究者們又陸續(xù)在各種組織、臟器之間和表面 (如骨膜)、骨髓、血管周圍及疏松結(jié)締組織等組織中發(fā)現(xiàn)間充質(zhì)干細(xì)胞的存在[24,25],其中骨髓組織中含量最為豐富。隨著間充質(zhì)干細(xì)胞存在的部位不同,它們的分化潛能也有所差別,近年發(fā)現(xiàn)以骨髓中間充質(zhì)干細(xì)胞的分化潛能最強(qiáng)[26]。然而,由于間充質(zhì)干細(xì)胞屬于混雜細(xì)胞,目前尚未發(fā)現(xiàn)特異性細(xì)胞表面標(biāo)記,許多有關(guān)間充質(zhì)干細(xì)胞的分子生物學(xué)特征還有待進(jìn)一步研究。
2.2.1 骨髓間充質(zhì)干細(xì)胞 (BMSCs)
大量研究表明,在體外特定培養(yǎng)條件下BMSCs能向成骨細(xì)胞,軟骨細(xì)胞、脂肪細(xì)胞、神經(jīng)細(xì)胞等分化[27],因此BMSCs在組織工程領(lǐng)域有著廣闊的應(yīng)用前景。目前以細(xì)胞治療為目的而開(kāi)展的骨髓間充質(zhì)干細(xì)胞體外基礎(chǔ)研究已得到迅速發(fā)展[28-32],而臨床上也有大量應(yīng)用骨髓間充質(zhì)干細(xì)胞治療節(jié)段性骨缺損、軟骨病變、脊髓損傷[33-36]、血液系統(tǒng)疾病[37]及移植抗宿主病的成功案例。
大量研究表明TGF-在間充質(zhì)干細(xì)胞向軟骨細(xì)胞分化的過(guò)程中發(fā)揮重要作用。在TGF-的存在的情況下,MSCs逐漸由纖維樣細(xì)胞演變?yōu)槌墒燔浌羌?xì)胞形態(tài),并伴有軟骨特異性細(xì)胞外基質(zhì)蛋白包括 II型膠原、糖胺聚糖和軟骨粘蛋白的生成[38]。Wakitani等[39]通過(guò)膠原凝膠三維培養(yǎng)體系,誘導(dǎo)BMSCs分化為軟骨細(xì)胞并應(yīng)用于9例髕股關(guān)節(jié)軟骨缺損患者的治療,6個(gè)月后3位患者關(guān)節(jié)功能得到明顯改善;Nejadnik等[40]將72例關(guān)節(jié)軟骨缺損患者隨機(jī)分為兩組,一組使用BMSCs膠原凝膠三維培養(yǎng)誘導(dǎo)形成的軟骨細(xì)胞修復(fù)缺損部位,而另一組使用自體軟骨細(xì)胞移植,兩年隨訪結(jié)果表明兩種軟骨修復(fù)方法效果相當(dāng),但第一組無(wú)需進(jìn)行軟骨活檢這一侵入性操作;而Davatchi等[41]發(fā)現(xiàn)將體外擴(kuò)增的BMSCs直接注入膝關(guān)節(jié)腔內(nèi)也可明顯改善骨性關(guān)節(jié)炎癥狀。
然而,用骨髓穿刺方法獲取的骨髓組織中BMSCs含量極低 (僅占0.001%~0.01%),且骨髓中BMSCs的數(shù)量和質(zhì)量都會(huì)隨著年齡的增長(zhǎng)或疾病的發(fā)生而下降[42]。Narcisi R[43]等將 BMSCs體外培養(yǎng)并大量擴(kuò)增并進(jìn)行成軟骨誘導(dǎo)培養(yǎng),結(jié)果發(fā)現(xiàn)隨著B(niǎo)MSCs的不斷擴(kuò)增,其成軟骨細(xì)胞分化的潛力逐漸下降,因此很大程度上阻礙了其臨床應(yīng)用。鑒于BMSCs應(yīng)用過(guò)程中出現(xiàn)的這些問(wèn)題,需要尋找比骨髓間充質(zhì)干細(xì)胞更合適且容易獲取的種子細(xì)胞,從而進(jìn)一步推動(dòng)組織工程學(xué)的發(fā)展。
2.2.2 臍帶間充質(zhì)干細(xì)胞(umbilicalcord-derived mesenchymal stem cells,UC-MSCs)
人體臍帶長(zhǎng)約60cm,直徑1.0~2.5cm,表面覆蓋羊膜,內(nèi)含動(dòng)靜脈,血管周圍被半透明的基質(zhì)包繞著,這種基質(zhì)稱之為華通膠 (Wharton's jelly)。以往研究顯示,臍帶血、臍帶血管內(nèi)皮、Wharton'sjelly等可分離出間充質(zhì)干細(xì)胞[44-46]。Romanov等[47]研究發(fā)現(xiàn)從Wharton's jelly中分離出MSCs (即臍帶間充質(zhì)干細(xì)胞)的比率達(dá)100%,而從臍帶其它部分中分離出MSCs的比例僅30%。Ishige等[48]研究發(fā)現(xiàn)臍血間充質(zhì)干細(xì)胞(UCB-MSCs)與臍帶間充質(zhì)干細(xì)胞(UC-MSCs)細(xì)胞形態(tài)和免疫表型無(wú)明顯區(qū)別。UC-MSCs與BMSCs的分化潛能相差無(wú)異,在體內(nèi)外也可分化為多種細(xì)胞和組織,然而其優(yōu)勢(shì)在于臍帶是胎兒出生后的廢棄組織,來(lái)源比較充足且不會(huì)給供者帶來(lái)痛苦或傷害,且UC-MSCs具有不涉及醫(yī)學(xué)倫理問(wèn)題的優(yōu)勢(shì)。Wang等[49]將體外培養(yǎng)的BMSCs和UC-MSCs進(jìn)行對(duì)比,發(fā)現(xiàn)UC-MSCs在單層培養(yǎng)時(shí)可形成更密集的成纖維樣細(xì)胞集落單位(colony-formingunit,CFU),因此細(xì)胞增值速度更快。此外,臍帶內(nèi)間充質(zhì)干細(xì)胞的含量很高,可在原代即獲取足量的細(xì)胞。因此,相對(duì)于自體軟骨細(xì)胞和BMSCs,UC-MSCs的組織工程學(xué)應(yīng)用前景更為廣闊。
2.2.3 脂肪間充質(zhì)干細(xì)胞 (adipose-derived mesenchymal stem cells,ADMSCs)
脂肪間充質(zhì)干細(xì)胞是從脂肪組織中分離出的MSCs,平均300mL脂肪組織中可分離出2.0×108~6.0×108個(gè)ADMSC,其分化潛能也與BMSCs相當(dāng)。Lee等[50]報(bào)道軟骨細(xì)胞可有效誘導(dǎo)ADMSCs向軟骨細(xì)胞分化。Musumeci等[51]的研究表明體外誘導(dǎo)培養(yǎng)21天是ADMSCs分化為軟骨細(xì)胞的最佳時(shí)間。國(guó)內(nèi)鄭東等[52]的研究結(jié)果顯示通過(guò)慢病毒載體將TGF-3轉(zhuǎn)染至ADMSCs可高速有效地促進(jìn)其成軟骨分化進(jìn)程。
2.3 間充質(zhì)干細(xì)胞的成軟骨誘導(dǎo)及軟骨生長(zhǎng)因子
誘導(dǎo)間充質(zhì)干細(xì)胞成軟骨分化,是對(duì)軟骨組織工程最為重要和相關(guān)的實(shí)際問(wèn)題。目前已發(fā)現(xiàn)多種細(xì)胞因子可誘導(dǎo)MSCs成軟骨分化,其中包括胰島素樣生長(zhǎng)因子(IGFs)、TGF-、軟骨來(lái)源的形態(tài)形成蛋白(cartilagederivedmorphogenetic proteins,CDMPs)、骨形態(tài)形成蛋白 (BMPs)、bFGF及整合素等。IGFs是最早被確認(rèn)的可作用于軟骨的生長(zhǎng)因子之一,其中IGF-1是軟骨基質(zhì)合成的主要刺激因子。體外實(shí)驗(yàn)表明[53],IGF-1可以增加軟骨組織的膠原和蛋白多糖的合成,同時(shí)抑制軟骨基質(zhì)降解。BMPs在軟骨發(fā)育的多個(gè)環(huán)節(jié)中均發(fā)揮調(diào)節(jié)作用;bFGF是軟骨細(xì)胞最強(qiáng)力的有絲分裂原,可以刺激軟骨細(xì)胞增殖及誘導(dǎo)體內(nèi)的關(guān)節(jié)軟骨缺損修復(fù);TGF-的作用較為復(fù)雜,其功能的實(shí)現(xiàn)依賴于其它生長(zhǎng)因子之間的相互作用。地塞米松是MSCs分化的非特異性誘導(dǎo)劑,它既可以誘導(dǎo)MSCs成軟骨分化,也可使MSCs分化成骨細(xì)胞或脂肪細(xì)胞等。檢測(cè)培養(yǎng)細(xì)胞中 II型膠原的表達(dá)情況,可以幫助判斷MSCs向軟骨分化的程度。
2.4 軟骨組織工程支架材料
對(duì)于關(guān)節(jié)軟骨缺損來(lái)說(shuō),無(wú)論細(xì)胞,還是以生長(zhǎng)因子為基礎(chǔ)來(lái)進(jìn)行組織工程軟骨的修復(fù)與重建,在缺損區(qū)植入支架都是必要的。如果沒(méi)有支架存在,植入細(xì)胞在較大的缺損空間內(nèi)無(wú)法進(jìn)行有序的組織與增殖。理想的支架材料應(yīng)滿足以下要求:具有良好的生物相容性;可生物降解;擁有足夠的孔隙結(jié)構(gòu);具備承載生長(zhǎng)因子的能力;能與周圍組織融為一體等。然而目前還沒(méi)有一種支架能完全滿足這些條件,當(dāng)前常用作軟骨組織工程的支架材料主要有天然的膠原、纖維蛋白材料和人工合成的高分子聚合物如 PGA、PLA、瓊脂糖凝膠、透明質(zhì)酸凝膠及藻酸鹽凝膠等 (表1)。
表1 可用于軟骨組織工程的支架材料
由于具有來(lái)源廣泛、取材方便、安全性高、對(duì)機(jī)體損傷小、低免疫源性等優(yōu)點(diǎn),間充質(zhì)干細(xì)胞已被認(rèn)為是組織工程學(xué)理想的種子細(xì)胞。和軟骨細(xì)胞相比,MSCs具有更強(qiáng)的增殖能力,因此能夠通過(guò)體外擴(kuò)增獲得組織工程所需的大量細(xì)胞。目前,將組織工程和干細(xì)胞技術(shù)相結(jié)合已成為研究軟骨和骨關(guān)節(jié)疾病治療措施的一種新途徑。盡管應(yīng)用MSCs的軟骨組織再生醫(yī)學(xué)發(fā)展了很長(zhǎng)時(shí)間,但MSCs在臨床應(yīng)用中仍有許多需要解決的問(wèn)題,其遺傳穩(wěn)定性目前也仍有爭(zhēng)議[54]。
未來(lái)軟骨組織工程的工作重點(diǎn)應(yīng)一方面規(guī)范MSCs的分離、體外培養(yǎng)及擴(kuò)增技術(shù),另一方面進(jìn)一步研究MSCs成軟骨分化的確切機(jī)制及軟骨分化相關(guān)信號(hào)轉(zhuǎn)導(dǎo)通路;同時(shí)還需尋找或研發(fā)更適合于軟骨修復(fù)的天然或人工合成支架材料,使體外培養(yǎng)的組織工程軟骨的生物學(xué)及機(jī)械特性與自體軟骨更加接近,從而更進(jìn)一步推動(dòng)軟骨再生修復(fù)醫(yī)學(xué)的發(fā)展。
[1] RoobrouckVD,KVanuytsel,etal.Concise review:culture mediated changes in fate and/or potency of stem cells[J].Stem Cells, 2011,29(4):583-589.
[2] JukesJM,CAvanBlitterswijk,etal.Skeletaltissueengineeringusing embryonic stem cells[J].J Tissue Eng Regen M,2010,4(3):165-180. [3] Takahashi K,K Tanabe,et al.Induction of pluripotent stem cells fromadult humanfibroblastsbydefinedfactors[J].Cell,2007,131 (5):861-872.
[4] Nakagawa M,M Koyanagi,et al.Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J]. Nat Biotech,2008,26(1):101-106.
[5] Meissner A,M Wernig,et al.Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells[J].Nat Biotech, 2007,25(10):1177-1181.
[6] YuJ,MAVodyanik,et al.Inducedpluripotentstem cell linesderived from human somatic cells[J].Science,2007,318(5858):1917-1920.
[7] Guenther MG,GM Frampton,et al.Chromatin structure and gene expression programsof humanembryonic and induced pluripotent stem cells[J].Cell Stem Cell,2010,7(2):249-257.
[8] Illich DJ,N Demir,et al.Concise review:induced pluripotent stem cells and lineage reprogramming:prospects for bone regeneration [J].Stem Cells,2011,29(4):555-563.
[9] Hunziker,EB,TM Quinn,et al.Quantitative structural organization of normal adult human articular cartilage[J].Osteoarthritis Cartilage,2002,10(7):564-572.
[10]SaintignyY,Cruet-hennequart S,Hamdi D H,et al.Impact of therapeutic irradiation on healthy articular cartilage[J].Radiat Res, 2015,183(2):135-146.
[11]Caldwell K L,Wang J.Cell-based articular cartilage repair:the link between development and regeneration[J].Osteoarthritis Cartilage,2015,239(3):351-362.
[12]Peterson L,T Minas,et al.Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation:results at two to ten years[J].J Bone Joint Surg Am,2003,85-A(Suppl 2):17-24.
[13]Brittberg M,A Lindahl,et al.Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J].N Engl J Med,1994,331(14):889-895.
[14]van der Linden,M H,Saris D,et al.Treatment of cartilaginous defects in the knee:recommendations from the Dutch Orthopaedic Association[J].Nederlands tijdschrift voor geneeskunde,2013,157 (3):5719.
[15]Cheng T,NC Maddox,et al.Comparison of gene expression patterns in articular cartilage and dedifferentiated articular chondrocytes[J].J Orthop Res,2012,30(2):234-245.
[16]Diaz-Romero J,JP Gaillard,et al.Immunophenotypic analysis of human articular chondrocytes:changes in surface markers associated with cell expansion in monolayer culture[J].J Cell Physiol, 2005,202(3):731-742.
[17]Cournil-Henrionnet C,C Huselstein,et al.Phenotypic analysis of cell surface markers and gene expression of human mesenchymal stem cells and chondrocytes during monolayer expansion[J].Biorheology,2008,45(3-4):513-526.
[18]Alexander P G,Gottardi R,Lin H,et al.Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases[J].Exp Biol Med,2014,239 (9):1080-1095.
[19]Patil A S,Sable R B,Kothari RM.Role of insulin-like growthfactors(IGFs),their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage[J].J Cell Physiol,2012,227(5):1796-1804.
[20]Peterson L,T Minas,et al.Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation:results at two to ten years[J].J Bone Joint Surg Am,2003,85-A(Suppl 2):17-24.
[21]Beris AE,MG Lykissas,et al.Advances in articular cartilage repair [J].Injury,2005,36(Suppl 4):14-23.
[22]Bartlett,W,J Skinner,et al.Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee a prospective,randomised study [J].Journal of Bone and Joint Surgery,British Volume,2005,87 (5):640-645.
[23]Friedenstein AJ,KV Petrakova,et al.Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J].Transplantation,1968,6(2):230-247.
[24]Jorgensen C,DNoel.Mesenchymal stemcells in osteoarticular diseases[J].Regen Med,2011,6(6 Suppl):44-51.
[25]Kern S,H Eichler,et al.Comparative analysis of mesenchymal stem cells from bone marrow,umbilical cord blood,or adipose tissue[J].Stem Cells,2006,24(5):1294-1301.
[26]Hodgkiss-Geere,HM,DJ Argyle,et al.Characterisation and differentiation potential of bone marrow derived canine mesenchymal stem cells[J].Vet J,2012,194(3):361-368.
[27]NothU,LRackwitz,etal.Celldeliverytherapeuticsformusculoskeletal regeneration[J].Adv Drug Deliv Rev,2010,62(7-8):765-783.
[28]Satija NK,VK Singh,et al.Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine[J].J Cell Mol Med, 2009,13(11-12):4385-4402.
[29]Kuraitis D,M Ruel,et al.Mesenchymal stem cells for cardiovascular regeneration[J].Cardiovasc Drugs Ther,2011,25(4):349-362.
[30]Si YL,YL Zhao,et al.MSCs:Biological characteristics,clinical applications and their outstanding concerns[J].Ageing Res Rev, 2011,10(1):93-103.
[31]Albersen,M,M Kendirci,et al.Multipotent stromal cell therapy for cavernous nerve injury-induced erectile dysfunction[J].J Sex Med,2012,9(2):385-403.
[32]Ricart E.Current status of mesenchymal stem cell therapy and bone marrow transplantation in IBD[J].Dig Dis,2012,30(4):387-391.
[33]HuiJH,HWOuyang,etal.Mesenchymalstemcellsinmusculoskeletaltissueengineering:areviewofrecentadvancesinNationalUniversity of Singapore[J].Ann Acad Med Singapore,2005,34(2):206-212.
[34]Kraus KH,C Kirker-Head.Mesenchymal stem cells and bone regeneration[J].Vet Surg,2006,35(3):232-242.
[35]Mobasheri A,C Csaki,et al.Mesenchymal stem cells in connective tissue engineering and regenerative medicine:applications in cartilage repair and osteoarthritis therapy[J].Histol Histopathol, 2009,24(3):347-366.
[36]SykovaE,PJendelova,et al.Bone marrowstemcells andpolymer hydrogels--two strategies for spinal cord injury repair[J].Cell Mol Neurobiol,2006,26(7-8):1113-1129.
[37]Fouillard L,A Chapel,et al.Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation[J].Leukemia,2007,21(3):568-570.
[38]Danisovic L,I.Varga,S Polak.Growth factors and chondrogenic differentiation of mesenchymal stem cells[J].Tissue Cell,2012,44 (2):69-73.
[39]Wakitani S,M Nawata,et al.Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation:three case reports involving nine defects in five knees[J].J Tissue Eng Regen Med,2007,1(1):74-79.
[40]Nejadnik H,JH Hui,et al.Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study[J].Am J Sports Med,2010,38(6): 1110-1116.
[41]Davatchi F,BS Abdollahi,et al.Mesenchymal stem cell therapy for knee osteoarthritis.Preliminary report of four patients[J].Int J Rheum Dis,2011,14(2):211-215.
[42]Caplan AI.Why are MSCs therapeutic?New data:new insight[J]. J Pathol,2009,217(2):318-324.
[43]Narcisi R,Cleary M A,Brama P A,et al.Long-term expansion,enhanced chondrogenic potential,and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation [J].Stem cell reports,2015,4(3):459-472.
[44]Covas DT,JL Siufi,et al.Isolation and culture of umbilical vein mesenchymal stem cells[J].Braz J Med Biol Res,2003,36(9): 1179-1183.
[45]Sarugaser R,D Lickorish,et al.Human umbilicalcordperivascular (HUCPV)cells:a source of mesenchymal progenitors[J].Stem Cells,2005,23(2):220-229.
[46]Karahuseyinoglu S,O Cinar,et al.Biology of stem cells in human umbilical cord stroma:in situ and in vitro surveys[J].Stem Cells, 2007,25(2):319-331.
[47]RomanovYA,VASvintsitskaya,etal.Searchingforalternativesources ofpostnatalhuman mesenchymalstem cells:candidateMSC-likecells fromumbilical cord[J].Stem Cells,2003,21(1):105-110.
[48]Ishige I,T Nagamura-Inoue,et al.Comparison of mesenchymal stem cellsderivedfromarterial,venous,andWharton'sjellyexplantsofhuman umbilical cord[J].Int J Hematol,2009,90(2):261-269.
[49]WangL,I Tran,et al.Acomparisonof human bonemarrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering[J].Tissue Eng Part A,2009,15(8):2259-2266.
[50]Lee,JS and GI Im.Influence of chondrocytes onthe chondrogenic differentiation of adipose stem cells[J].Tissue Eng Part A,2010, 16(12):3569-3577.
[51]Musumeci G,Mobasheri A,Trovato F M,et al.Biosynthesis of collagen I,II,RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue[J].Acta Histochem,2014,116(8):1407-1417.
[52]Zheng D,Dan Y,Yang S H,et al.Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-beta3 fusion protein in peptide scaffolds[J].Acta biomater, 2015,11:191-203.
[53]Pasold J,Zander K,Heskamp B,et al.Positive impact of IGF-1-coupled nanoparticles on the differentiation potential of human chondrocytes cultured on collagen scaffolds[J].Int J Nanomed, 2015,10:1131-1143.
[54]Larsen K H,Andersen T E,Kassem M.Bone and cartilage repair using stem cells][J].Ugeskrift for laeger,2010,172(38):2616-2619.
Reviewed the research progress of cartilage tissue engineering using mesenchymal stem cells
Yu Jizhe,Dong Xuehai,Chen Haidan,et al.Department of Orthopedics,the First Clinical Medical College of Sanxia University(the Central People's Hospital of Yichang),Yichang Hubei,443003,China
In this article,we mainly reviewed the research progress of cartilage tissue engineering using mesenchymal stem cells,and discussed the advantages and disadvantages of autologous chondrocyte implantation and cartilage tissue regeneration based on chondrogenic induction of mesenchymal stem cells respectively,and its application prospect in clinical therapy.
Mesenchymal stem cells;Cartilage;Tissue engineering;Induced differentiation;Scaffold
R318
B
10.3969/j.issn.1672-5972.2015.04.019
swgk2015-03-00055
虞冀哲(1984-)男,醫(yī)學(xué)博士,主治醫(yī)師。工作方向:骨外科。
2015-03-19)
三峽大學(xué)第一臨床醫(yī)學(xué)院(宜昌市中心人民醫(yī)院),湖北宜昌443003