• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    類似花狀結(jié)構(gòu)介晶鈷的大規(guī)??刂坪铣杉按判阅?/h1>
    2015-06-01 10:45:19關(guān)明云孫建華
    關(guān)鍵詞:花狀化工學(xué)院配位

    關(guān)明云 簡 妍 孫建華 徐 正

    (1江蘇理工學(xué)院化學(xué)與環(huán)境工程學(xué)院,江蘇省貴金屬深加工及應(yīng)用重點(diǎn)建設(shè)實(shí)驗(yàn)室,常州213001)

    (2南京大學(xué)化學(xué)與化工學(xué)院,配位化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京210093)

    類似花狀結(jié)構(gòu)介晶鈷的大規(guī)模控制合成及磁性能

    關(guān)明云1,2簡 妍1孫建華1,2徐 正*,2

    (1江蘇理工學(xué)院化學(xué)與環(huán)境工程學(xué)院,江蘇省貴金屬深加工及應(yīng)用重點(diǎn)建設(shè)實(shí)驗(yàn)室,常州213001)

    (2南京大學(xué)化學(xué)與化工學(xué)院,配位化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京210093)

    以二乙烯三胺(DETA)作為配位劑,快速合成了納米粒子定向組裝構(gòu)成的類似花狀的介晶鈷。通過控制反應(yīng)的速率和配位劑的種類,依次獲得了精美的鈷花、差形貌的枝晶、由納米粒子或納米片構(gòu)成的微球。配位劑在介晶鈷的形成過程中起了很重要的作用。探討了介晶鈷花的形成機(jī)理。介晶鈷不但具有鈷納米晶的性能(在300 K時(shí)矯頑力260 Oe),而且擁有塊體鈷的性能(飽和磁化強(qiáng)度168 emu·g-1)。合成方法簡便、有效且具有較高的產(chǎn)率。

    鈷;晶體組裝;介晶;取向搭接

    Mesocrystals defined by C?lfenet al.[1-3]have attractedgreatattentionforpotentiallyexciting applications,such as biominerals and their minetics, functional ceramics,sensors,lithium-ion battery,andphotovoltaic devices etc.In contrast to ion-mediated classical growth mechanism of a single crystal,the mesocrystals are constructed by nanocrystals instead of atoms/molecules as building blocks in orientedattachment fashion.They not only have the properties from the nanocrystals but also display collective properties produced by their interaction[4].Further intensive study on formation mechanism of mesocrystals is helpful for constructing novel materials by bottomup approaches.The number of reports on mesocrystals rapidly increases[5-25],but the types of mesocrystals are quite limited,such as carbonate[1,19],metal oxide[11], copper oxalate[15],Ag[22]etc.It is urgent to explore a facilemethodtoextendthespectrumofthe mesocrystals.

    Asoneoftheimportantmagneticmetal materials,cobalt has been the focus of intensive researchowingtotheirphysicalpropertiesand technological applications:such as high-density data storage,medical diagnosis,andbio-separation[26-29]. Various morphologies,such as nanoparticle,nanorod, nanotube,dendrite and snowflake microcrystal,have been synthesized[26-32].Here,we report a facile synthesis method in large scale for well-defined 3D flower-like cobalt mesocrystals.The time for Co mesocrystal formation is very short,only~10 min.The formation mechanism is investigated carefully.In addition,nicelookflowers,poor-lookdendrite,microsphere composed of Co nanoparticles or nanoplatesare obtained by simply adjusting reduction rate of Co2+.

    1 Experimental

    Cobalt chloride(CoCl2),diethylenetriamine(DETA), ethylenediamine(EN),sodium hydroxide(NaOH),and diamine hydrate(N2H4·H2O)were purchased from the Sinopharm Chemical Reagent Company.All chemical reagents were of analytical grade and were used without further purification.

    1.1 Synthesis

    2.5 mL CoCl2aqueous solution(1.429 mol·L-1) were mixed with 7.5 mL DETA under stirring,10 mL of NaOH aqueous solution(5 mol·L-1)and 5 mL of N2H4·H2O(85%)were added into the above solution under stirring for 1 min.The resultant solution was transferred into autoclave,and maintained at 100℃for 10 min.The black precipitates at the bottom were collected and washed with absolute ethanol and then dried in a vacuum oven at 80℃.

    1.2 Characterizations

    Products were characterized by X-ray powder diffraction(XRD)(Shimadzu XD-3A X-ray diffractometer with Ni filter,Cu Kα radiation(λ=0.154 18 nm) accelerating voltage of 40 kV,emission current 20 mA,scanning range 30°~80°,scanning rate of 0.06°· s-1).Thetransmission electron microscopy(TEM) images,high-resolution TEM(HRTEM)images and selected-area electron diffraction(SAED)patterns were obtained on a FEI Tecnai G220 S-TWIN highresolution transmission electron microscope,using an accelerating voltage of 200 kV.Scanning electron microscopy(SEM)images were taken with a JEOL JSM 5610LV apparatus with an accelerating voltage of 15 kV.Magnetization measurements of the products wereperformedonasuperconductingquantum interference device(SQUID)magnetometer(MPMS XL-7 Quantum Design).Zero-field-cooling(ZFC)and field-cooling(FC)curves were recorded under 100 Oe applied field between 575 K and 750 K.

    2 Results and discussion

    2.1 Morphology and structure characterization

    Thelow-magnificationSEMimages(Fig.1 a) clearly reveal the three-dimensional(3D)feature of the Co flower-like structure.The high-magnification SEM and field emission SEM(FESEM)images in Fig. 1b,c respectively show perfect flower-like structure and snowflake structure composed of several petals with a thick main trunk and many secondary trunks on both sides of the main trunk.The surface of the petals is not flat with many grooves,which is not expected for a single crystal.The length of the main trunks and the secondary branches are 2~8 μm and 0.1~2.6 μm respectively.The thickness of the petals is about severalhundrednanometers.TheXRD pattern of the products(Fig.1 d)indicates that all the diffraction peaks are indexed to the hexagonal phaseof Co(PDF No.05-0727)in good agreement with the literaturereports[31-32].No other impurity phase is detected.The energy-dispersive X-ray spectroscopy (EDS)analysis of the product(supporting information (SI)-1)shows that the sample is essentially pure cobalt which is consistent with the XRD results.The small amount of oxygen might attribute to the absorption oxygen or the oxidation of the Co surface partly.

    Fig.1 (a)Low-magnification SEM image of Co flower-like mesocrystals,(b)High-magnification SEM images of 3D Co flower-like mesocrystals,(c)FESEM images of Co snowflake mesocrystals,(d)XRD pattern of Co flower-like mesocrystals

    TEM images in SI-2a,b further reveal a welldefined flower-like structure with a thick main trunk and highly ordered second and third generation trunk. After closer look at the FESEM image of Fig.2 a,we can clearly see that the main trunk,the second and third generation trunk are composed of many spines. Dark field TEM image of Co petal in Fig.2 b also shows that the petal is composed of nanoparticles.It seems like polycrystalline.Fig.2 c shows the TEM image of a Co petal.The three parts of HRTEM images marked as A,B and C in Fig.2 d,e,f show the lattice fringes at the tip A of the main trunk and at the tips B and C of the secondary branches on the left and right sides of the main trunk,respectively.The lattice spacing of 0.22 nm between adjacent planes in each of these images corresponds to the distance between two(100)crystal planes.Figs.2g~I(xiàn) show the SAED patterns of three areas A,B,and C of an individual petal and Fig.2 J exhibits the ED pattern recorded from the whole petal.The SAED patterns recorded from different areas of the individual petal are almost identical.Zone axis projection is along [001].The main trunk and secondary trunks on both side of the main trunk of the petal have equivalent growth directions:such as the main trunk oriented along[110]with the two branches along[210]and [120][33].HRTEM image and the sharp diffraction spots show that cobalt flower composed of nanoparticles seems to be the single-crystalline.It may be deduced thatthenanoparticlesconstitutedCoflowerare aligned in a common crystallographic axis,which, therefore,exhibits scattering property similar to a singlecrystal.Itisthecharacterofthe mesocrystalline.

    Fig.2 (a)FESEM image of a Co petal,(b)Dark field TEM image of a Co petal,(c)TEM image of a Co petal[mark A: the tip of the main trunk;B:the tip of left secondary branch;C:tip of right secondary branch],(d,e,f)HRTEM images recorded from the A,B,C respectively in Fig.2 c.(g,h,I)SAED patterns recorded from A,B,C of Fig.2 c respectively,(J)ED patterns recorded from a petal of Co flower

    2.2 SEM and TEM characterization of the sample obtained under different experimental conditions

    Theinfluencefactorsontheformationof mesocrystal include surfactants,particles formation rate and reaction medium etc.As we learn from equation(1),

    the reducibility of N2H4depends on the concentration of OH-and N2H4.That is,the NH2NH2reductibility increases with concentration of alkaline and NH2NH2increasing,therefore the reduction rate of Co2+to Co0increases significantly,which directly leads to the increase in the nucleation and formation rate of cobalt and is beneficial to form cobalt flower by nanoparticle mediated mechanism.Figs.3a,b show the SEM images of the sample reacted for 360 min at 0.25 mol·L-1and 0.75 mol·L-1of NaOH concentration,respectively, while keeping the other parameters constant.At a lower NaOH concentration,the irregular spherical aggregates of Co2+nanoparticles are formed(Fig.3 a) and the diameter of the spheres decreases with the reduction rate of Co2+increasing(Fig.3 b).At a lower concentration of NaOH,Co formation rate is slower.It is beneficial to aggregate into larger spheres.When increasing the concentration of NaOH,Co2+reduction rateincreases,leadingtoanincreaseinthe nucleation rate of Co,therefore,the diameter of cobalt microsphere decreases.When the concentration ofNaOH increases to 1.25 mol·L-1,the formation rate of cobalt farther increases,which is of benefit for 1D growth to form the dendrites-like structures composed of Co nanoparticles(Fig.3 c).Fig.3 d and inset show the corresponding TEM image and ED pattern.The diffraction circles in the ED pattern clearly indicate that the dendrites are polycrystalline.Further increasing the concentration of NaOH,the well-defined flowerlike structures(Fig.3 e)are formed after reaction for 10 min.It is reasonable that when the NaOH concentration ishighenough,thecobaltformedexplosively, therefore,there have enough cobalt for simultaneous growth of main trunk,second and third generation trunk to form nice cobalt flower-like structure.Similar results are obtained by increasing N2H4·H2O amount. Figs.4a~d and SI~3 show the evolution of the shape for the products with N2H4·H2O amount increasing, from poor-look branch structure to the exquisiteflower-like structure.The temperature significantly influences reaction rate of the system,and therefore the morphology of the products.Fig.4 e displays that the shape of the products obtained at 40℃is sphere composed of nanoplates.When temperature is very low, reaction rate is very low,which is beneficial to form spherical structure.The above results show that the cobalt morphologies can be well controlled by kinetic parameters such as reaction rate.

    Fig.3 SEM images of the products obtained under a various concentrations of NaOH and reaction times in the hydrothermal system composed of DETA(7.5 mL),CoCl2(1.429 mol·L-1)and N2H4·H2O(5 mL):(a)0.25 mol·L-1for 360 min; (b)0.75 mol·L-1for 360 min;(c)1.25 mol·L-1for 20 min;(d)TEM image of the products obtained at NaOH (1.25 mol·L-1)for 20 min(ED pattern insetting);(e)3.75 mol·L-1for 10 min

    Fig.4 SEM images of the products obtained under various amounts of N2H4·H2O and reaction times in the hydrothermal system of DETA(7.5 mL),CoCl2(1.429 mol·L-1)and NaOH(5 mol·L-1):(a),(b)0.3 mL and 0.5 mL respectively for 3 h;(c),(d) 3 mL and 5 mL respectively for 10 min,(e)SEM images of the products obtained at typically synthesis condition except using 40℃instead of 100℃for 12 h

    Influence of DETA on the morphology is shown in Fig.5 .The perfect flower-like superstructures are formedbyadding7.5mLofDETA(Fig.5 a). Decreasing the amount of DETA to 0.5 mL and to 0 mL,the morphology of the superstructures becomes poor-look(Figs.5a,b).Fig.5 a shows that Co flowers obtained without DETA are composed of several plates.Fig.5 c shows TEM image of the plates,which are composed of nanoparticles.Corresponding ED pattern displays clear spots,which indicates that the plates are mesocrystals.At present time,we do not know the exact role played by DETA,but it might be related to the coordination interaction with as-formed cobalt nanoparticles.

    2.3 Growth mechanism of Co mesocrystal

    In order to further understand the formation mechanism of Co mesocrystal,control experiments are carried out under atmosphere and 100℃,which is convenient to observe the reaction progress with time. After the reaction bottle containing reactants is put into the oil bath and heated at 100℃for 3 min,the formation rate of Co is quite slow,only very few black solid floated on the surface of solution.SEM image in Fig.6 a shows that the morphology of product is poor dendrite composed of Co nanoparticles and no flowerlike Co mesocrystals are observed.After heated for 6 min,the reaction rate increases rapidly,a few flowerlike Co mesocrystals appear(Fig.6 b).After that time, the color of the solution becomes very violet and the reaction completes in 10 min.The flower-like Co mesocrystals are formed in large scale(Fig.6 c).It provides further evidences for the above discussion. Taking a closer observation on SEM image of theproduct,we can find a few of snowflake microstructure and the main product with 3D flower-like microstructure.For the snowflake microstructure,the seed is a hexagonal nanoplate and the 1D fast growth along the six crystallographic equivalent{100}directions of the hexagonal seeds occurs simultaneously in orientedattachmentfashiontoformasixfold-symmetric“snowflake”.As we can see from Fig.1 c that there have some protruding composed of Co nanoparticles in the center of the snowflake due to the nanoparticle oriented-attachment.The fast growth of 1D on those facetstakesplacesimultaneouslyinorientedattachment fashion when the reduction rate of Co2+is high enough and cobalt atom is formed explosively, and then the flower-like mesocrystal forms.Flowerlike Co mesocrystal are obtained using ethylenediamine (EN)instead ofDETAwhilekeepingtheother experimental parameters constant(see SEM image of Co in the SI-4).

    Fig.6 SEM images of the products obtained at the different time:(a)3 min,(b)6 min,c)10 min under atmospheric pressure and 100℃,keeping other experimental parameters constant(DETA(7.5 mL),CoCl2(1.429 mol·L-1),NaOH(5 mol·L-1), N2H·4H2O(5 mL))

    2.4 Magnetic properties

    Themagneticpropertiesofthecobalt mesocrystals were measured.From M-H curves in Fig. 7,the coercivity(Hc),saturation magnetization(Ms),and remanent magnetization(Mr)are obtained as ca.401.3 Oe,154.6 emu·g-1,and 11.8 emu·g-1,respectively,at 1.8 K and ca.260 Oe,153 emu·g-1,and 12 emu·g-1, respectively,at 300 K.The saturation magnetization is comparable to the bulk value(168 emu·g-1)due to the micrometer scale(2~8 μm)of the Co flower mesocrystals[28,34],but it exhibits enhanced coercive force.Hc value of the bulk Co(a few tens Oe)is due to that Co flower mesocrystals are composed of smaller nanoparticles.It indicates that the Co flower mesocrystallines have not only properties of bulk Co but also the properties from the nanocrystals.Zero-field-cooling (ZFC)and field-cooling(FC)curves(575 K~750 K) for the Co mesocrystals in SI-5 exhibit that the ferromagnetic transition temperature Tcis higher than 750 K,which is beyond the measuring range of the magnetometer in our laboratory.

    Fig.7 Magnetic hysteresis loops of as-prepared cobalt mesocrystals at 1.8 K and 300 K respectively

    3 Conclusions

    In summary,we have developed a facile and effective method for fabricating the well-defined cobalt flower-like mesocrystal in large scale and very short time(only 10 min).The cobalt flower-like mesocrystals exhibit the electron diffraction character of single crystals.The shape of Co superstructure can be adjustedbykineticparameters.Thesaturation magnetization of the Co flower-like superstructure is comparable to the bulk cobalt metal because of the large size(2~8 μm),while the coercive force is higher than that of bulk metal due to properties from the nanocrystals.The exquisite structure is beneficial tofundamental research for the formation mechanism of the mesocrystals and potential application in the field of catalysis,high-density data storage and sensor etc.

    Supporting information is available at http://www.wjhxxb. cn/wjhxxbcn/ch/index.aspx.

    [1]Ma M G,C?lfen H.Curr.Opin.Colliod Interface Sci.,2014, 19:56-65

    [2]C?lfen H,Antonietti M.Angew.Chem.Int.Ed.,2005,44: 5576-5591

    [3]Meldrum F C,C?lfen H.Chem.Rev.,2008,108:4332-4432

    [4]Zhou L,O′Brien P.Small,2008,4:1566-1574

    [5]Zhou L,Smyth-Boyle D,O′Brien P.J.Am.Chem.Soc.,2008, 130:1309-1320

    [6]Li T,You H J,Xu M W,et al.Appl.Mater.Interfaces,2012, 4:6942-6948

    [7](a)Oaki Y,Imai H.Small,2006,2:66-70

    (b)Popovic J,Cakan R D,Tornow J,et al.Small,2011,7:1127-1135

    [8]Yao R M,Cao C B,Bai J.CrystEngComm,2013,15:3279-3283

    [9]Ye J F,Liu W,Cai J G,et al.J.Am.Chem.Soc.,2011,133: 933-940

    [10]Mo M S,Lim S H,Mai Y W,et al.Adv.Mater.,2008,20: 339-342

    [11](a)Li Z H,Gener André,Richters J P,et al.Adv.Mater., 2008,20:1279-1285

    (b)Wang S S,Xu A W.CrystEngComm,2013,15:376-381

    (c)Liu Z,Wen X D,Wu X L,et al.J.Am.Chem.Soc.,2009, 131:9405-9412

    [12]Zhou N,Uchaker E,Wang H Y,et al.RSC Adv.,2013,3: 19366-19374

    [13]Sun J X,Chen G,Pei J,et al.J.Mater.Chem.,2012,22: 5609-5614

    [14](a)Tachikawa T,Zhang P,Bian Z F,et al.J.Mater.Chem. A,2014,2:3381-3388

    (b)Thachepan S,Li M,Mann S.Nanoscale,2010,2:2400-2405

    [15]Jongen N,Bowen P,Lemaitre J,et al.J.Colloid Interface Sci.,2000,226:189-198

    [16]Johannes I,Bots P,Kulak A,et al.Adv.Funct.Mater., 2013,23:1965-1973

    [17]Yuwono V M,Burrows N D,Soltis J A,et al.J.Am.Chem. Soc.,2010,132:2163-2165

    [18]Zhou Y,Wang X Y,Wang H,et al.Dalton Trans.,2014,43: 4711-4719

    [19]Dang F,Hoshino T,Oaki Y Y,et al.Nanoscale,2013,5: 2352-2357

    [20]Song R Q,Xu A W,Antonietti M,et al.Angew.Chem.Int. Ed.,2009,48:395-399

    [21]Liu Y Q,Kumar A,Fan Z,et al.Appl.Phys.Lett.,2013, 102:232903(1-5)

    [22](a)Fang J X,Ding B J,Song X P.Appl.Phys.Let.,2007,91: 083108(1-3)

    (b)Fang J X,Ding B J,Song X P,et al.Appl.Phys.Lett., 2008,92:173120(1-3)

    (c)Fang J X,Ding B J,Song X P.Cryst.Grow.Des.,2008,8: 3617-3622

    [23]Fang Z,Long L Y,Hao S H,et al.CrystEngComm,2014, 16:2061-2069

    [24](a)Guo X H,Yu S H.Cryst.Grow.Des.,2007,7:354-359

    (b)Guan M Y,Zhu G X,Shang T M,et al.CrystEngComm, 2012,14,6540-6547

    [25](a)Wang M S,Zhang Y P,Zhou Y J,et al.CrystEngComm, 2013,15:754-763

    (b)Park N H,Wang Y F,Seo W S,et al.CrystEngComm, 2013,15:679-685

    [26]Puntes V F,Krishnan K M,Alivisatos A P.Science,2001, 291:2115-2117

    [27]Xiemuxiding Abula(謝木西丁·阿布拉),Beysen Sadeh(拜山·沙德克),Mutila Aman(木提拉·阿曼),et al.Chinese J. Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2012,28(7):1403-1408

    [28]HE Wen-Qi(賀文啟),XIAO Yong(肖勇),CHENG Jia-Liang (成嘉亮),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2010,26(9):1685-1689

    [29]An K,Lee N,Park J,et al.J.Am.Chem.Soc.,2006,128: 9753-9760

    [30]YANG Pei-Xia(楊培霞),AN Mao-Zhong(安茂忠),SU Cai-Na(蘇彩娜),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2007,23(9):1501-1504

    [31]Liu X,Yi R,Wang Y,et al.J.Phys.Chem.C,2007,111: 163-167

    [32]Zhu L P,Xiao H M,Zhang W D,et al.Cryst.Growth Des., 2008,8:1113-1118

    [33]Cao M H,Liu T F,Gao S,et al.Angew.Chem.Int.Ed., 2005,44:4197-4201

    [34]Bao J C,Tie C Y,Xu Z,et al.Adv.Mater.,2002,14:44-47

    Flower-Like Mesocrystal Cobalt:Controllable Synthesis in Large Scale and Magnetic Property

    GUAN Ming-Yun1,2JIAN Yan1SUN Jian-Hua1,2XU Zheng*,2
    (1Jiangsu Key Laboratory of Precious Metals Chemistry,School of Chemistry and Environmental Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China)
    (2State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering, Nanjing University,Nanjing 210093,China)

    Using diethylenetriamine(DETA)as coordination agent,a well-defined flower-like cobalt mesocrystal was synthesized rapidly by nanoparticles self assembly in oriented fashion.By adjusting reaction rate and kind of coordination agents,morphologies of cobalt can be transformed from nice-look flower,via poor-look dendrite,to microsphere composed of nanoparticles or nanoplates.DETA plays an important role in the formation process of cobalt mesocrystal.The possible formation mechanism is proposed.The cobalt mesocrystals not only exhibit Co nanocrystals property(an enhanced coercive force being 260 Oe at 300 K),but also have bulk Co property (saturation magnetization being 168 emu·g-1).The synthesis method in large scale is facile and effective with high yield.

    cobalt;crystallization assembly;mesocrystal;oriented attachment

    TQ050.4

    A

    1001-4861(2015)03-0619-08

    10.11862/CJIC.2015.084

    2014-11-03。收修改稿日期:2014-12-23。

    國家973重點(diǎn)建設(shè)項(xiàng)目基礎(chǔ)研究項(xiàng)目(No.2007CB936302),國家自然科學(xué)基金-面上項(xiàng)目(No.21373103),江蘇省自然科學(xué)基金-面上項(xiàng)目(No.BK2011260)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:zhengxu@nju.edu.cn

    猜你喜歡
    花狀化工學(xué)院配位
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    德不配位 必有災(zāi)殃
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    《化工學(xué)報(bào)》贊助單位
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    三維花狀Fe2(MoO4)3微米球的水熱制備及電化學(xué)性能

    亚洲免费av在线视频| 国产成人精品无人区| 国产精品一区二区三区四区久久 | 久久久国产成人精品二区| 久久久久国内视频| 黄色视频不卡| 亚洲片人在线观看| 国产私拍福利视频在线观看| 国产xxxxx性猛交| 国产三级黄色录像| 高清毛片免费观看视频网站| 成人亚洲精品av一区二区| 精品国内亚洲2022精品成人| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产欧美日韩av| 亚洲熟妇熟女久久| 两性夫妻黄色片| 成人18禁在线播放| 又紧又爽又黄一区二区| 国产欧美日韩一区二区三| 狠狠狠狠99中文字幕| 免费在线观看亚洲国产| 久久午夜亚洲精品久久| 成熟少妇高潮喷水视频| 激情在线观看视频在线高清| 亚洲片人在线观看| 亚洲精品久久国产高清桃花| 人妻久久中文字幕网| netflix在线观看网站| 免费在线观看影片大全网站| 国产黄a三级三级三级人| a在线观看视频网站| 色av中文字幕| 一本综合久久免费| 村上凉子中文字幕在线| 露出奶头的视频| 久久香蕉激情| 窝窝影院91人妻| 亚洲 欧美 日韩 在线 免费| 欧美av亚洲av综合av国产av| 久久香蕉国产精品| 麻豆国产av国片精品| 美女扒开内裤让男人捅视频| 欧美激情久久久久久爽电影 | 中文字幕色久视频| 欧美国产精品va在线观看不卡| 神马国产精品三级电影在线观看 | 国产真人三级小视频在线观看| 国产精品av久久久久免费| 女警被强在线播放| 亚洲午夜理论影院| www.自偷自拍.com| 丝袜美腿诱惑在线| 欧美色欧美亚洲另类二区 | 最近最新中文字幕大全免费视频| 亚洲欧美精品综合久久99| 国产熟女xx| 亚洲全国av大片| АⅤ资源中文在线天堂| 国产av又大| 国内精品久久久久精免费| 亚洲成人免费电影在线观看| 91精品三级在线观看| av网站免费在线观看视频| 中文字幕色久视频| av免费在线观看网站| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| 国产精品久久电影中文字幕| 亚洲五月色婷婷综合| 日本 av在线| 大型av网站在线播放| 色综合欧美亚洲国产小说| 91在线观看av| 中文字幕人成人乱码亚洲影| 国产精品久久视频播放| 黑人欧美特级aaaaaa片| 男人舔女人的私密视频| 欧美激情高清一区二区三区| 亚洲avbb在线观看| 欧美成人午夜精品| 天堂√8在线中文| 成人手机av| 91大片在线观看| 少妇 在线观看| 日韩 欧美 亚洲 中文字幕| 一夜夜www| 欧美中文日本在线观看视频| 亚洲av五月六月丁香网| 1024香蕉在线观看| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 美女大奶头视频| 男女之事视频高清在线观看| 老司机午夜福利在线观看视频| 国产亚洲精品一区二区www| 神马国产精品三级电影在线观看 | 岛国视频午夜一区免费看| 久久久久国内视频| 啦啦啦韩国在线观看视频| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 欧美丝袜亚洲另类 | 国产91精品成人一区二区三区| 这个男人来自地球电影免费观看| 一级毛片精品| 午夜福利高清视频| 51午夜福利影视在线观看| 成年女人毛片免费观看观看9| 免费在线观看视频国产中文字幕亚洲| 欧美av亚洲av综合av国产av| 一边摸一边抽搐一进一小说| 国产激情欧美一区二区| 亚洲国产毛片av蜜桃av| 日日干狠狠操夜夜爽| 婷婷丁香在线五月| 中文亚洲av片在线观看爽| 岛国视频午夜一区免费看| 精品欧美国产一区二区三| 一级毛片女人18水好多| 无遮挡黄片免费观看| 国产高清有码在线观看视频 | 69av精品久久久久久| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看视频国产中文字幕亚洲| 午夜免费观看网址| 真人一进一出gif抽搐免费| 欧美最黄视频在线播放免费| 亚洲国产毛片av蜜桃av| 禁无遮挡网站| 热re99久久国产66热| 波多野结衣高清无吗| 国产av精品麻豆| 国产精品亚洲av一区麻豆| 免费在线观看视频国产中文字幕亚洲| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 午夜福利在线观看吧| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 此物有八面人人有两片| av视频在线观看入口| 婷婷丁香在线五月| 欧美亚洲日本最大视频资源| 国产伦人伦偷精品视频| 女人被狂操c到高潮| 757午夜福利合集在线观看| 少妇被粗大的猛进出69影院| 欧美色视频一区免费| 久久国产亚洲av麻豆专区| 18禁观看日本| 18禁美女被吸乳视频| 亚洲国产中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 在线免费观看的www视频| 一区二区三区精品91| 国产精品电影一区二区三区| 巨乳人妻的诱惑在线观看| 免费看十八禁软件| 久久精品国产综合久久久| 巨乳人妻的诱惑在线观看| 日韩高清综合在线| 国产成人精品久久二区二区免费| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 99久久99久久久精品蜜桃| 午夜影院日韩av| 最近最新中文字幕大全免费视频| 99精品在免费线老司机午夜| av中文乱码字幕在线| 欧美日韩乱码在线| 国产精品一区二区在线不卡| ponron亚洲| 亚洲狠狠婷婷综合久久图片| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 黄频高清免费视频| 久久午夜综合久久蜜桃| 欧美一区二区精品小视频在线| 精品国产乱码久久久久久男人| 午夜久久久在线观看| 亚洲中文字幕日韩| 色综合站精品国产| 亚洲第一电影网av| 91字幕亚洲| 久久中文字幕人妻熟女| 日韩欧美国产在线观看| 国产野战对白在线观看| 久久久久九九精品影院| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 亚洲一卡2卡3卡4卡5卡精品中文| 曰老女人黄片| 国产一区二区三区在线臀色熟女| 级片在线观看| 男女午夜视频在线观看| 一本久久中文字幕| 在线十欧美十亚洲十日本专区| 男女做爰动态图高潮gif福利片 | 老熟妇乱子伦视频在线观看| 男女床上黄色一级片免费看| 午夜福利成人在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 高清毛片免费观看视频网站| 搡老熟女国产l中国老女人| av欧美777| 99香蕉大伊视频| 在线十欧美十亚洲十日本专区| 88av欧美| 国产精品久久电影中文字幕| 女人高潮潮喷娇喘18禁视频| 好男人在线观看高清免费视频 | 波多野结衣av一区二区av| 一边摸一边抽搐一进一小说| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线av高清观看| 久久精品国产99精品国产亚洲性色 | 韩国av一区二区三区四区| 久热这里只有精品99| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看66精品国产| 黄色视频不卡| 最新美女视频免费是黄的| 自线自在国产av| 99国产精品一区二区蜜桃av| 一级毛片高清免费大全| 在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 岛国在线观看网站| 免费高清在线观看日韩| 国产在线精品亚洲第一网站| 国产三级在线视频| 欧美色视频一区免费| 岛国在线观看网站| 精品久久久久久久毛片微露脸| 99香蕉大伊视频| 热re99久久国产66热| av在线播放免费不卡| 精品欧美国产一区二区三| 久久精品国产综合久久久| 日韩免费av在线播放| 精品国产乱码久久久久久男人| 精品欧美一区二区三区在线| 亚洲一区中文字幕在线| 亚洲第一青青草原| 法律面前人人平等表现在哪些方面| 12—13女人毛片做爰片一| 国产成人精品无人区| 中文字幕av电影在线播放| 午夜福利欧美成人| 久久这里只有精品19| 国产亚洲精品久久久久久毛片| 久久久久久大精品| 在线播放国产精品三级| 搡老岳熟女国产| 99精品久久久久人妻精品| 精品福利观看| 国产一区二区三区在线臀色熟女| 91大片在线观看| 美女大奶头视频| 99精品久久久久人妻精品| 午夜激情av网站| 久久久久久久午夜电影| 久久伊人香网站| 成人av一区二区三区在线看| 亚洲av熟女| 91精品国产国语对白视频| 男女下面进入的视频免费午夜 | 狂野欧美激情性xxxx| 妹子高潮喷水视频| 啪啪无遮挡十八禁网站| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 黄色丝袜av网址大全| 午夜影院日韩av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美激情在线| 久久中文字幕一级| 精品国内亚洲2022精品成人| 亚洲av美国av| 日韩欧美国产在线观看| 久久精品aⅴ一区二区三区四区| 性少妇av在线| 好男人电影高清在线观看| 99riav亚洲国产免费| 99国产精品一区二区三区| 久久久水蜜桃国产精品网| 免费久久久久久久精品成人欧美视频| 美女大奶头视频| 国产麻豆成人av免费视频| 一边摸一边做爽爽视频免费| 18禁美女被吸乳视频| 免费观看精品视频网站| 1024香蕉在线观看| 婷婷丁香在线五月| 日韩成人在线观看一区二区三区| 免费不卡黄色视频| 久久人人97超碰香蕉20202| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 久久香蕉国产精品| 亚洲 欧美一区二区三区| 免费av毛片视频| 狂野欧美激情性xxxx| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 在线十欧美十亚洲十日本专区| 久久久国产精品麻豆| 黄片播放在线免费| 精品乱码久久久久久99久播| 正在播放国产对白刺激| 午夜福利一区二区在线看| 女人精品久久久久毛片| 此物有八面人人有两片| 国产国语露脸激情在线看| 妹子高潮喷水视频| 中国美女看黄片| 国产免费男女视频| 精品国产乱码久久久久久男人| 中文字幕av电影在线播放| 在线免费观看的www视频| www.精华液| 美女大奶头视频| 亚洲人成伊人成综合网2020| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 可以在线观看毛片的网站| 99热只有精品国产| 久久热在线av| 一区二区日韩欧美中文字幕| 午夜福利成人在线免费观看| 99re在线观看精品视频| 狂野欧美激情性xxxx| 日本五十路高清| 可以在线观看的亚洲视频| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 夜夜爽天天搞| 日韩精品中文字幕看吧| 18禁美女被吸乳视频| 女人爽到高潮嗷嗷叫在线视频| 女生性感内裤真人,穿戴方法视频| 91大片在线观看| 久久婷婷人人爽人人干人人爱 | 国产私拍福利视频在线观看| 色尼玛亚洲综合影院| 男人舔女人下体高潮全视频| 亚洲男人的天堂狠狠| 啦啦啦免费观看视频1| 最新在线观看一区二区三区| 无遮挡黄片免费观看| 国内精品久久久久久久电影| 久久久久亚洲av毛片大全| 可以在线观看的亚洲视频| 亚洲成人久久性| 又大又爽又粗| 亚洲人成网站在线播放欧美日韩| 视频在线观看一区二区三区| 亚洲欧美激情在线| 两性夫妻黄色片| 日韩中文字幕欧美一区二区| 在线观看免费日韩欧美大片| 亚洲成人免费电影在线观看| 91国产中文字幕| 麻豆成人av在线观看| 国产亚洲精品久久久久5区| 一区二区三区国产精品乱码| 露出奶头的视频| 一区二区三区国产精品乱码| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 亚洲精品美女久久av网站| 啦啦啦观看免费观看视频高清 | 亚洲一区二区三区不卡视频| 久久中文字幕人妻熟女| 老司机深夜福利视频在线观看| 亚洲人成77777在线视频| 国产精品电影一区二区三区| 色综合站精品国产| 午夜日韩欧美国产| 久久人妻福利社区极品人妻图片| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩黄片免| 黄片大片在线免费观看| 精品一区二区三区视频在线观看免费| 国产色视频综合| 999久久久精品免费观看国产| 久久性视频一级片| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 国产亚洲精品久久久久久毛片| 这个男人来自地球电影免费观看| 在线观看www视频免费| 91国产中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av成人一区二区三| 免费高清在线观看日韩| 亚洲自偷自拍图片 自拍| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 久久久久久久久久久久大奶| 亚洲人成网站在线播放欧美日韩| 后天国语完整版免费观看| 欧美日韩黄片免| 午夜精品久久久久久毛片777| 久久久久久人人人人人| 黄色片一级片一级黄色片| 自线自在国产av| 日韩一卡2卡3卡4卡2021年| 村上凉子中文字幕在线| 中出人妻视频一区二区| 在线观看免费视频网站a站| 欧美中文综合在线视频| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 亚洲无线在线观看| 国产伦一二天堂av在线观看| 国产高清有码在线观看视频 | 成人亚洲精品av一区二区| 亚洲自拍偷在线| 性欧美人与动物交配| 啦啦啦免费观看视频1| 国产精品久久电影中文字幕| 亚洲第一青青草原| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 免费在线观看视频国产中文字幕亚洲| 电影成人av| 亚洲三区欧美一区| 免费在线观看黄色视频的| 乱人伦中国视频| 性欧美人与动物交配| 国产不卡一卡二| 法律面前人人平等表现在哪些方面| 久久天堂一区二区三区四区| 级片在线观看| 黄色视频不卡| 亚洲专区字幕在线| a在线观看视频网站| 亚洲专区国产一区二区| 精品欧美国产一区二区三| 18禁观看日本| 中文字幕色久视频| 色综合亚洲欧美另类图片| 9色porny在线观看| 久久久久久大精品| 亚洲自偷自拍图片 自拍| 亚洲黑人精品在线| 久久香蕉精品热| 国产熟女午夜一区二区三区| 亚洲 国产 在线| 女人被狂操c到高潮| 日韩精品免费视频一区二区三区| 欧美久久黑人一区二区| 国产三级黄色录像| 欧美绝顶高潮抽搐喷水| 一边摸一边抽搐一进一小说| 欧美一区二区精品小视频在线| 性少妇av在线| avwww免费| xxx96com| 久久久精品欧美日韩精品| 757午夜福利合集在线观看| 国产色视频综合| 老熟妇仑乱视频hdxx| av片东京热男人的天堂| 亚洲精品久久成人aⅴ小说| 两个人看的免费小视频| 久久久久久久午夜电影| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 少妇粗大呻吟视频| 日本撒尿小便嘘嘘汇集6| 久久狼人影院| 黄色a级毛片大全视频| 亚洲中文av在线| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久国产高清桃花| 欧美一区二区精品小视频在线| 久久久久久亚洲精品国产蜜桃av| av视频免费观看在线观看| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 精品久久久久久久人妻蜜臀av | 亚洲色图综合在线观看| 午夜亚洲福利在线播放| 亚洲熟女毛片儿| 无人区码免费观看不卡| 免费少妇av软件| www.熟女人妻精品国产| 久久久久久国产a免费观看| 超碰成人久久| av视频在线观看入口| 国产亚洲精品av在线| 亚洲狠狠婷婷综合久久图片| 真人做人爱边吃奶动态| 久久久国产精品麻豆| 色综合婷婷激情| 久久精品国产亚洲av高清一级| 一二三四在线观看免费中文在| 真人一进一出gif抽搐免费| 欧美日本亚洲视频在线播放| 正在播放国产对白刺激| 露出奶头的视频| 免费无遮挡裸体视频| 午夜福利视频1000在线观看 | 精品欧美一区二区三区在线| 欧美激情 高清一区二区三区| 中文字幕最新亚洲高清| 日韩欧美三级三区| 精品高清国产在线一区| 久久久精品欧美日韩精品| 午夜激情av网站| 精品熟女少妇八av免费久了| 中文字幕人成人乱码亚洲影| 一级毛片女人18水好多| 亚洲av第一区精品v没综合| 亚洲 欧美 日韩 在线 免费| 亚洲免费av在线视频| 亚洲视频免费观看视频| 成人欧美大片| 大型av网站在线播放| 999精品在线视频| 亚洲成国产人片在线观看| 黄片小视频在线播放| 成人精品一区二区免费| av超薄肉色丝袜交足视频| 一区二区三区高清视频在线| 人妻久久中文字幕网| 老汉色av国产亚洲站长工具| 亚洲最大成人中文| 久久精品成人免费网站| 波多野结衣高清无吗| 欧美国产日韩亚洲一区| 淫秽高清视频在线观看| 欧美不卡视频在线免费观看 | 视频在线观看一区二区三区| 日韩精品青青久久久久久| 日本三级黄在线观看| 国产精品日韩av在线免费观看 | 久久久国产成人免费| 美女免费视频网站| 黑人欧美特级aaaaaa片| 久久人妻熟女aⅴ| 不卡一级毛片| 大码成人一级视频| 深夜精品福利| 不卡av一区二区三区| 国产亚洲av嫩草精品影院| 亚洲自拍偷在线| 人人澡人人妻人| 51午夜福利影视在线观看| 国产一级毛片七仙女欲春2 | 老司机深夜福利视频在线观看| 国产色视频综合| 美女免费视频网站| 亚洲色图综合在线观看| 啪啪无遮挡十八禁网站| 韩国精品一区二区三区| 国产高清videossex| 久久久精品欧美日韩精品| 欧美成人午夜精品| 性欧美人与动物交配| 国产精品一区二区三区四区久久 | 成人特级黄色片久久久久久久| 一边摸一边抽搐一进一小说| 免费看a级黄色片| 久久国产精品人妻蜜桃| 性色av乱码一区二区三区2| 999精品在线视频| 校园春色视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久,| 91老司机精品| 亚洲精品中文字幕一二三四区| 12—13女人毛片做爰片一| 欧美中文综合在线视频| 嫩草影院精品99| 亚洲 欧美 日韩 在线 免费| 精品欧美一区二区三区在线| 国产一区二区激情短视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美激情综合另类| 亚洲av美国av| 亚洲一区中文字幕在线| 国产成人一区二区三区免费视频网站| 91麻豆精品激情在线观看国产| 黑人操中国人逼视频| 亚洲成av人片免费观看| 久久狼人影院| 亚洲av成人一区二区三| 国产色视频综合| 男人舔女人下体高潮全视频| 午夜日韩欧美国产| 禁无遮挡网站| 国产又色又爽无遮挡免费看| 一级毛片高清免费大全| 黄片大片在线免费观看| 国产真人三级小视频在线观看| 精品久久久久久久人妻蜜臀av | 757午夜福利合集在线观看| 18禁黄网站禁片午夜丰满| 91麻豆精品激情在线观看国产| 欧美 亚洲 国产 日韩一| 可以在线观看的亚洲视频| 91麻豆精品激情在线观看国产| 老司机深夜福利视频在线观看| 日韩有码中文字幕| 亚洲成人国产一区在线观看| 757午夜福利合集在线观看|