• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    開(kāi)啟引力波天文物理高級(jí)探測(cè)器新紀(jì)元英

    2015-05-20 04:54:14AlbertLAZZARINI
    光學(xué)儀器 2015年2期
    關(guān)鍵詞:干涉儀

    Albert+LAZZARINI

    摘要: 激光干涉引力波觀察臺(tái)(LIGO)是世界卓越的干涉型引力波探測(cè)設(shè)備。最初的LIGO探測(cè)器已經(jīng)超出了設(shè)計(jì)的靈敏度,能夠用來(lái)探測(cè)相距大約40 Mpc的雙中子星的合并信號(hào),探測(cè)信噪比等于8。當(dāng)探測(cè)器還沒(méi)被建造時(shí),LIGO科研團(tuán)隊(duì)主要和Virgo團(tuán)隊(duì)合作,探究了大量天體物理學(xué)方面的上限。LIGO目前已經(jīng)步入了先進(jìn)探測(cè)的新領(lǐng)域,擁有升級(jí)版的先進(jìn)LIGO干涉型探測(cè)器。LIGO實(shí)驗(yàn)室也和眾多印度研究中心合作,在印度建立了一個(gè)先進(jìn)的LIGO干涉儀。從而LIGO探測(cè)網(wǎng)絡(luò)擴(kuò)展了,擁有3個(gè)遠(yuǎn)距分散的干涉儀在單一網(wǎng)絡(luò)中運(yùn)行。

    關(guān)鍵詞: 高級(jí)探測(cè)器; 第一代LIGO; 干涉儀; 天文物理

    中圖分類號(hào): P 159文獻(xiàn)標(biāo)志碼: Adoi: 10.3969/j.issn.10055630.2015.02.018

    Initiating the advanced detector era for gravitational wave astrophysics

    Albert LAZZARINI

    (California Institute of Technology, Pasadena, CA 91125)

    Abstract: The Laser Interferometric Gravitational Wave Observatory (LIGO) is the preeminent interferometric gravitational wave detector facility in the world. The initial LIGO detectors exceeded their design sensitivity and were able to search for signals from the coalescence and merger of compact neutron star binaries to a distance of ~40 Mpc (at SNR=8) for optimally oriented systems. While no detections were made, the LIGO Scientific Collaboration, mostly working jointly with the Virgo Collaboration, published a number of upper limits of astrophysical interest. LIGO is now poised to open the Era of Advanced Detectors with the commissioning of an upgraded Advanced LIGO interferometric detector. LIGO Laboratory is also collaborating with several Indian research centers to site an identical Advanced LIGO interferometer in that country, thereby expanding the LIGO detector network to three widely separated interferometers that will operate as a single network.

    Keywords: advanced detector; initial LIGO; inferferometer; astrophysics

    IntroductionLIGOs scientific mission is to explore the physics and astrophysics of gravitational waves by their direct detection.Beyond the first detections,LIGO aims to open a new window on the Universe,gravitational wave astronomy.The detection and exploitation of gravitational waves by a groundbased instrument requires the development of exquisitely sensitive kmscale interferometers operated as remotely separated facilities.At the current time LIGO operates two separated observatories:LIGO Hanford Observatory(LHO)is located in eastern Washington State in the northwest of the U.S.and LIGO Livingston Observatory(LLO)is located in Louisiana approximately 40 km east of Baton Rouge; the lighttravel time between the two LIGO sites is 10 ms[1].LIGO Laboratory together with the LIGO Scientific Collaboration(LSC)carry out in concert the data analysis and research and development that drives improvements in interferometry that are eventually applied to the LIGO instruments.The LSC is an international organization numbering more than 900 members,comprising more than 80 institutions from 14 countries,including scientists and engineers from LIGO Laboratory.1Gravitational wavesGravitational waves are a prediction of Einsteins General Theory of Relativity,and reflect the fact that the propagation of information is limited by the speed of light,as required by his earlier Special Theory of Relativity.Gravitational waves are effectively ripples in the fabric of spacetime that propagate at the speed of light.Their existence was first demonstrated by precision timing measurements of the binary pulsar system PSR1913+16 by Hulse and Taylor,for which discovery they were awarded the Nobel Prize in Physics for 1993.To date,however,there has been no direct detection of gravitational waves with an instrument designed to respond to their passage through the device:this is the mission of LIGO,as well as a number of other kmscale interferometer projects around the globe(Virgo,GEO,KAGRA).光學(xué)儀器第37卷

    第2期Albert Lazzarini:開(kāi)啟引力波天文物理高級(jí)探測(cè)器新紀(jì)元

    Fig.1Gravitational waves are quadrupolar in

    nature and come in two orthogonal polarizationsReferring to Fig.1,gravitational waves are quadrupolar in nature and come in two orthogonal polarizations,“+”,“×”.The upper is a gravitational wave impinges on an array of test masses along the normal to the plane of the ring.Lower:The ring of test masses will respond to passage of a gravitational wave by being alternately compressed and then distended along perpendicular directions.The series of figures correspond to the configuration of the ring at different times during one period of the gravitational wave of frequency ω=2πf.One polarization,+,is aligned with the coordinate axes(x,y)while the other,×,is aligned 45° to the coordinate axes.The magnitude of the distortion,h≡ΔLL,corresponds to the dimensionless strain amplitude of the wave.Gravitational strain is a tidal effect which perturbs spacetime and is detectable by measuring the distance between pairs of“test masses”arranged,e.g.,in an L configuration.Gravitational waves propagating from astrophysical sources at extragalactic distances produce extremely weak perturbations in the local spacetime here on earth,and are therefore very difficult to detect.To set the scale,one can use the quadrupole approximation to the GW radiation formula[2]:h≈32π2GMR2sepf2orbc4r(1)Here,G is Newtons constant of gravitation,M is the mass of one of the two(equal)bodies orbiting each other,Rsep is the separation distance between the centers of the bodies,forb is the orbital frequency with which they orbit each other,c is the speed of light,and r is the distance to the orbiting binary.A representative astrophysical source might be a pair of neutron stars,each having the mass M=1.4M⊙,where M⊙ is the solar mass.When they are separated by Rsep=40 km,they are orbiting each other at a frequency of forb=380 Hz.At a distance of 15 Mpc(corresponding to the distance to the local Virgo cluster of galaxies),the gravitational strain produced on earth would correspond to h≈10-21,tiny indeed.Referring again to Fig.1 the effect on a pair of test masses separated by 4 km would be to displace their separation by approximately to 1/1 000 the diameter of a proton!2GW detection with kmscale interferometersNonetheless,it is possible to apply precision interferometry to detect and measure such minute dimensional changes,which is what LIGO and the other largescale interferometer projects are designed to do.Fig.2 shows a schematic arrangement of suspended mirrors which serve as the test masses described earlier.The LIGO arm lengths are 4 km.Such an Lshaped interferometer acts as an antenna for gravitation radiation.Fig.3 shows the corresponding antenna patterns for the two polarization states as well as the polarizationaveraged response.The polarization averaged(RMS)response is shown in the rightmost panel.The “peanut” shaped pattern as a ~2∶1 ratio in responses along the polar and equatorial directions.In addition the response in the equatorial plan has minima at 45° relative to the two arms.In initial LIGO,the laser light source operated at ~5 W; the resonant FabryPerot cavities in the arms stored the light in the arms for ~10 ms.For maximum sensitivity,the interferometer is operated at the dark fringe on the photo detector.A power recycling mirror forms a compound resonant cavity that reflects the light returning to the laser back into the interferometer,thereby increasing the effective light circulating within the interferometer to levels well above the laser power,by a factor ~50×.The initial LIGO interferometer had a limiting noise floor which at high frequencies,f100 Hz,is limited by the shot noise on the light.Below f50 Hz,the residual motion of the suspended mirrors due to unfiltered seismic motion limits sensitivity.Between these regimes Brownian motion(thermal noise)of the mirrors,their coatings,and the suspension fibers becomes the ultimate limiting factor in sensitivity.Taken together,the typical frequencydependent sensitivity curve for an interferometer is a U shaped curve.Fig.4 presents an overlay of the science requirement design with the actual sensitivities achieved during the last initial LIGO science run,S6.The data shown in the figure correspond to two interferometers,LHO,LLO,which operated together in coincidence during the S6 run.

    Fig.2Simplified schematic of a suspended mirror Michelson interferometer with FabryPerot cavities in the arms

    Fig.3A Michelson interferometer with arms aligned along the (x,y) axes has a quadrupolar antenna pattern to

    a plane gravitational wave.The two polarizations have responses as shown in the first two panels

    Fig.4The spectral density of amplitude noise for the LIGO interferometer during

    the last run,S6.Refer to text for details on shape of curves,performance,etc.

    3Results from the initial LIGO eraTo date,the LIGO Scientific Collaboration(LSC)has published more than 80 papers on the observational results with the initial LIGO interferometers.The initial LIGO era spanned the period the period 2002-2010 and consisted of six science runs,each having progressively better sensitivity that the previous one.S6 culminated in performance that exceeded the original interferometer design,as may be seen in Fig.4 for frequencies f60 Hz.

    3.1Classes of GW sourcesThe LSC organizes the observing program with LIGO data according to different classes of astrophysical sources:Coalescing compact binary systems,e.g.neutron star pairs(NS/NS),black hole pairs(BH/BH),or heterogenous systems composed of a NS+BH pair.These systems produce a characteristic“chirp”signal as they compete their last few hundred orbits with ever increasing frequency before their merger(ref.Eq.1).Depending on the bandwidth of the interferometer and the masses involved,these signals will last from seconds to minutes within the LIGO band.In addition,such events are expect to be associated with gamma ray bursts that are produced at the end of the coalescence[36].Unmodeled burst sources,such as supernova(SN)explosions[78].When a massive star exhausts its nuclear fuel,it can undergo catastrophic gravitational collapse,leading to either a neutron star or black hole.If the conditions of this collapse are such that there is an asymmetry to the collapse that leads to a dynamically varying mass quadrupole moment,a burst of gravitational waves will be emitted,lasting 1 sec.Rotating neutron stars with equatorial asymmetries.If a rapidly spinning neutron star(analog to an EM pulsar)has a “mountain” on its surface,there will be a dynamically varying quadruple which will result in the generation of gravitational waves[910].Such sources are expected to be extremely narrowband signals with an instantaneous frequency that will be modulated by a number of factors.These include deterministic effects:earth rotation(~3×10-6 effect); earth orbital motion about the sun(~2×10-4 effect).There are also unknown effects associated with the sourcespecific motion of the rotating neutron starthese are modeled as a Taylor series expansion in terms of source velocity,and higher derivatives.Stochastic gravitational sources.These include primordial waves from the Big Bang[11],as well a superposition of many unresolved foreground astrophysical sources[12].These signals are detectable by crosscorrelating the outputs of multiple interferometers,looking for common signals associated with the sky that are detectable across continental distances.

    3.2Highlights of observational results from initial LIGOSelected highlights of observational results published by the LSC together with the Virgo Collaboration include:Results from the search for binary coalescences[1314].This search utilized a network of three interferometers,the two LIGO and the Virgo instrument,operating at the best sensitivity achieved; binary neutron star mergers to a distance from earth of approximately 40 Mpc away and binary black hole mergers up to approximately 90 Mpc could have been detected.No gravitational wave signals were identified.This “null result” led to new observational new limits on the rate of compact binary mergers in the local universe.These limits are still about 100 times higher than expected rates from astronomical observations,so the fact that no gravitational waves were detected was consistent with expectations.Results from searches for gravitational waves associated with GRBs.During the initial LIGO era a number of nearby GRBs provided triggers to search the LIGO data for evidence of associated GW bursts.For a number of these GRBs,interesting upper limits were able to be set.For example,the error box for GRB070201 overlapped the nearby Andromeda galaxy(M31).LIGO data showed that the GRB did not originate from a binary coalescence in that galaxy at the 95% confidence level[15].Similarly,analysis of observations made by LIGO during an epoch of data triggered by GRB051103,was able to rule out the collision of two neutron stars or a neutron star and a black hole as being responsible for the GRB in the nearby galaxy M81[16].Results from the search for gravitational waves from known pulsars[17].This search looked for signals from a population of 195 known EM pulsars,including the Crab and Vela pulsars.For the Crab pulsar,J0534+2200,(d ~2 kpc from earth),it was determined that the upper limit to the strength of gravitational waves was h<1.6×10-25,which translates to an upper limit in the emission of gravitational waves corresponding to less than 1.2% of the total power radiated by the pulsar as evidenced by its spindown rate.Further,this result corresponds to a maximum deviation from axial symmetry of δII<8.6×10-5,where δI is the difference between the two equatorial moments of inertia and I is the principle moment of inertia of the neutron star.Results from the search for an isotropic(cosmological)stochastic gravitational wave background[1819].This search looked for a correlated signal between the two LIGO interferometers that could be attributed to gravitational waves of a cosmological origin.No signals were detected.For a frequencyindependent gravitational wave spectrum,Ω(f)~Ω0,this corresponds to an upper limit to the energy density in gravitational waves in the LIGO frequency band corresponding to Ω0<5.6×10-6.endprint

    Fig.5The Advanced LIGO multistage active

    seismic isolation system under assembly

    Fig.6The Advanced LIGO multistage fused silica

    suspension system and 40 kg mirror under assembly

    Fig.7The Advanced LIGO 200 W laser under assembly

    4Advanced LIGOIn October 2014 LIGO completed fabrication,assembly and installation of the upgrades to the initial LIGO interferometers,termed Advanced LIGO.The upgrade was funded primarily by the U.S.National Science Foundation(US$205M)and included inkind contributions by LIGO collaborators in the UK(~US$12M),Germany(~US$12M),and Australia(~US$2M).Advanced LIGO was a complete rebuild of the interferometers,introducing newer,more sensitive technologies made possible through an intense R&D program over the past decade and not available when the first instruments were built.In particular,Advanced LIGO utilizes the following improvements:Better,2stage actively controlled seismic isolation capable of reducing ground motion at much lower frequencies f ~10 Hz compared to the initial LIGO,f ~60 Hz.This will allow LIGO to detect signals at lower frequencies,thereby increasing the signal to noise ratio for sources such as coalescing binary systems.Ref.to Fig.5 More sophisticated,4stage monolithic(glass)suspensions and larger,more massive mirrors.These serve to reduce the limiting mid frequencyband noise due to Brownian motion of the optics and their suspensions.Ref.to Fig.6 Higher laser power,capable of producing 200 W of λ=1 064 nm.This will allow highfrequency operation at lower shot noise levels than possible with initial LIGO.Ref.to Fig.7 A more flexible,more sensitive optical configuration.Combining these improvements,the Advanced LIGO design has an optimal sensitivity near f ~100 Hz that is ~10×better than initial LIGO.Because interferometers respond to the amplitude of a gravitational wave,a 10× better sensitivity corresponds to a 10× greater range to which sources may be detected,and this results in a 1 000× increase in their detection rate:a single day of observation with Advanced LIGO corresponds to almost three years of observations with initial LIGO.At this early stage of commissioning,performance exceeded the best performance ever achieved during the initial LIGO era(ref.to legend in the plot).Note:to obtain strain sensitvitivity,the ordinate must be divided by 4 000(the LIGO arm length).As of this writing,commissioning is continuing on both LIGO interferometers to prepare them for the first observational run of the advanced interferometer era.

    Fig.8Displacement sensitivity for the LA 4 km

    interferometer as of 26 Sept.2014

    Fig.9The global network of kmscale

    interferometers is growing

    Since May 2014,LIGO has been commissioning the new instruments.Fig.8 shows a commissioning spectrum from the LLO instrument taken in late September 2014,showing that that the sensitivity now exceeds by almost 2× the best achieved during the initial LIGO era.5The International Network of GW InterferometersThere are currently five major kmscale interferometers at various stages of construction around the globe(ref.Fig.9).These include the two 4km U.S.LIGO interferometers,0.6 km GE0600 advanced technology interferometer in Germany[20] the 3km Virgo interferometer in Italy,and the 3km cryogenic KAGRA interferometer in Japan.The LSC(which includes U.S.LIGO and GE0600),Virgo,and KAGRA have agreements in place to jointly analyze data from the various instruments when they are operating at comparable sensitivities.The combined data will be analyzed coherently,allowing the network of interferometers to operate as a phased array,thereby allowing for aperturesynthesis gravitational wave astronomy.A global network provides multiple detections of a common(plane)gravitational wave.Using timeofarrival information across the network as well as details of the signal waveform allows one to localize the source on the sky,provide(low resolution)pointing information,permitting EM observatories to follow up gravitational wave events with observations across the electromagnetic spectrum[21].At the present time,LIGO Laboratory is planning with Indian collaborators to install an identical third Advanced LIGO interferometer at a site in that country.The proposal for India to identify a site and begin work on a facility similar to the LIGO facilities in the U.S.is under consideration for approval by the Government of India.This third LIGO site would be located closer to the equator compared to the extant facilities.The additional node to the network,plus the more southerly location of a site in India serves improve the ability of the global network to localize events on the sky for handoff to EM observatories.With the addition of LIGOIndia to the U.SEuropeanJapanese network,80% of detected sources can be localized to within 20 sq.deg,compared to 80 sq.deg.for the network without India.This factor ~4x improvement in localization will enable the global network to play a key role in initiating the era of multimessenger astronomy with gravitational waves[2223].6AcknowledgmentsThe author gratefully acknowledges the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory.The scientific program of the LSC and Virgo is made possible through funding from Science and Technology Facilities Council of the United Kingdom,the MaxPlanckSociety,and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector,and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector.The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council,the International Science Linkages program of the Commonwealth of Australia,the Council of Scientific and Industrial Research of India,the Istituto Nazionale di Fisica Nucleare of Italy,the Spanish Ministerio de Economía y Competitividad,the Conselleria dEconomia Hisenda i Innovació of the Govern de les Illes Balears,the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research,the Polish Ministry of Science and Higher Education,the FOCUS Programme of Foundation for Polish Science,the Royal Society,the Scottish Funding Council,the Scottish Universities Physics Alliance,The National Aeronautics and Space Administration,OTKA of Hungary,the Lyon Institute of Origins(LIO),the National Research Foundation of Korea,Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation,the National Science and Engineering Research Council Canada,the Carnegie Trust,the Leverhulme Trust,the David and Lucile Packard Foundation,the Research Corporation,and the Alfred P.Sloan Foundation.This article has LIGO document number LIGOP1400230.References:

    [1]ABBOTT B P,ABBOTT R,ADHIKARI R,et al.,LIGO:the laser interferometer gravitationalwave observatory[J].Reports on Progress in Physics,2009,72:12.

    [2]FOSTER J,NIGHTENGALE J D.A short conrse in general relativity[M].Berlin:SpringerVerlag,1995.

    [3]CHEN H Y,HOLTZ D E.Gammarayburst beaming and gravitationalwave observations[J].Physical Review Letters,2013,111:181101.

    [4]FONG W,BERGER E,F(xiàn)OX D B,et al.Hubble space telescope observations of short gammaray burst host galaxies:morphologies,offsets,and local environments[J].The Astrophysical Journal,2010,708(1):9.

    [5]CHURCH R P,LEVAN A J,DAVIES M B,et al.Implications for the origin of short gammaray bursts from their observed positions around their host galaxies[J].Monthly Notices of the Royal Astronomical Society,2011,413:20042014.

    [6]BERGER E.The environments of shortduration gammaray bursts and implications for their progenitors[J].New Astronomy Reviews,2011,55:122.

    [7]OTT C D.The gravitationalwave signature of corecollapse supernovae[J].Classical and Quantum Gravity,2009,26(6):06300l.

    [8]KOTAKE K.Multiple physical elements to determine the gravitationalwave signatures of corecollapse supernovae[J].Comptes Rendus Physique,2013,14(4):318351.

    [9]OWEN B J.Maximum elastic deformations of compact stars with exotic equations of state[J].Physical Review Letters,2005,95:211101.

    [10]OWEN B J.Detectability of periodic gravitational waves by initial interferometers[J].Classical and Quantum Gravity,2006,23(8):S1S7.

    [11]MAGGIORE M.Gravitational wave experiments and early universe cosmology[J].Physics Reports,2000,331(6):283367.

    [12]REGIMBAU T.The astrophysical gravitational wave stochastic background[J].Research in Astronomy and Astrophysics,2011,11(14):369390.

    [13]The LIGO Scientific Collaboration,Virgo Collaboration.Search for gravitational waves from low mass compact binary coalescence in LIGOs sixth science run and vVirgos science runs 2 and 3[J].Physical Review D.,2012,85:082002.

    [14]The LIGO Scientific Collaboration,Virgo Collaboration.Search for gravitational waves from binary black hole inspiral,mergerand,ringdown in LIGOVirgo data from 20092010[J].Physical Review D.,2013,87:022002.

    [15]HURLEY K.Implications for the origin of GRB 070201 from LIGO Observations[J].The Astrophysical Journal,2008,681(2):1419.

    [16]ABADIE J,ABBOTT B P,ABBOTT T D,et al.Implications for the orign of GRB 051103 from LIGO obeservations[J].The Astrophysical Journal,2012,755(2):18.

    [17]AASIL J,ABADIE1 J,ABBOTTL B P,et al.Gravitational waves from known pulsars:results from the initial detector era[J].The Astrophysical Journal,2014,785(2):119.

    [18]The LIGO Scientific Collaboration,Virgo Collaboration.An upper limit on the stochastic gravitationalwave background of cosmological origin[J].Nature,2009,460:990994.

    [19]The LIGO Scientific Collaboration,Virgo Collaboration.Improved upper Limits on the stochastic gravitationalwave background from 20092010 LIGO and Virgo data[J].Physical Review Letters,2014,113:231101.

    [20]AFFELDT C,DANZMANN K,DOOLEY K L,et al.Advanced techniques in GEO 600[J].Classical and Quantum Gravity,2014,31:224002.

    [21]NISSANKE S,KASLIWAL M,GEORGIEVA A.Identifying elusive electromagnetic counterparts to gravitational wave mergers:an endtoend simulation[J].The Astrophysical Journal,2013,767:124.

    [22]FAIRHURST S.Source localization with an advanced gravitational wave detector network[J].Classical and Quantum Gravity,2011,28:105021.

    [23]SATHYAPRAKASH B S,F(xiàn)AIRHURST S,SCHUTZ B F,et al.Scientific benefits of moving one of LIGO Hanford detectors to India,LIGO Document[DB/OL],2012,No.LIGOT1200219v1.

    (編輯:張磊)

    猜你喜歡
    干涉儀
    干涉儀溫度變化對(duì)解調(diào)系統(tǒng)相位噪聲的影響
    基于改進(jìn)的邁克爾遜干涉儀對(duì)熱變形特性的研究
    非線性光學(xué)干涉儀的研究現(xiàn)狀及發(fā)展趨勢(shì)
    用于原子干涉儀的光學(xué)鎖相環(huán)系統(tǒng)
    基于鏡組準(zhǔn)直的激光干涉儀快速對(duì)光方法研究
    非對(duì)稱干涉儀技術(shù)及工程實(shí)現(xiàn)
    大光程差高魯棒性擺臂角鏡干涉儀設(shè)計(jì)與實(shí)現(xiàn)
    高靈敏度的量子邁克耳孫干涉儀?
    基于最優(yōu)模糊的均勻圓陣干涉儀測(cè)向算法
    淺談雷尼紹XL-80激光干涉儀的對(duì)光
    97热精品久久久久久| 777米奇影视久久| 精品久久久久久电影网| 搡女人真爽免费视频火全软件| 国产精品偷伦视频观看了| 亚洲欧洲国产日韩| 精品国产乱码久久久久久小说| 欧美精品人与动牲交sv欧美| 欧美亚洲 丝袜 人妻 在线| 99视频精品全部免费 在线| 插逼视频在线观看| 老司机影院毛片| 午夜福利高清视频| 又大又黄又爽视频免费| 狂野欧美激情性xxxx在线观看| 国产av国产精品国产| 一区二区三区乱码不卡18| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 亚洲欧美中文字幕日韩二区| 国产成人aa在线观看| 干丝袜人妻中文字幕| 免费看日本二区| 国产精品嫩草影院av在线观看| 国产亚洲一区二区精品| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜爱| av国产精品久久久久影院| 久久久久视频综合| 天堂8中文在线网| 成人漫画全彩无遮挡| 一区二区三区乱码不卡18| 99热这里只有是精品在线观看| 国产深夜福利视频在线观看| 精品亚洲成国产av| 国产淫语在线视频| 日韩欧美一区视频在线观看 | 在现免费观看毛片| 国产人妻一区二区三区在| 国产淫片久久久久久久久| 狂野欧美白嫩少妇大欣赏| 一级片'在线观看视频| 3wmmmm亚洲av在线观看| 亚洲精品自拍成人| 街头女战士在线观看网站| 国产伦精品一区二区三区视频9| 美女国产视频在线观看| 有码 亚洲区| 大片免费播放器 马上看| 亚洲欧美中文字幕日韩二区| 韩国av在线不卡| 人妻系列 视频| 尤物成人国产欧美一区二区三区| 亚洲精品一区蜜桃| 97超碰精品成人国产| 女性生殖器流出的白浆| 寂寞人妻少妇视频99o| 肉色欧美久久久久久久蜜桃| 国产一区二区在线观看日韩| 高清av免费在线| 欧美少妇被猛烈插入视频| 在线观看美女被高潮喷水网站| 97在线视频观看| 视频中文字幕在线观看| 国产精品久久久久久精品电影小说 | 国产精品嫩草影院av在线观看| 日韩成人av中文字幕在线观看| 六月丁香七月| 麻豆精品久久久久久蜜桃| 人妻系列 视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩无卡精品| av又黄又爽大尺度在线免费看| 大片电影免费在线观看免费| 亚洲精品久久午夜乱码| 亚洲国产色片| videos熟女内射| 日韩国内少妇激情av| 免费av不卡在线播放| av国产免费在线观看| 国产国拍精品亚洲av在线观看| 黄色怎么调成土黄色| 精品一区二区三区视频在线| 欧美精品亚洲一区二区| 狠狠精品人妻久久久久久综合| 纯流量卡能插随身wifi吗| 一级毛片aaaaaa免费看小| 人人妻人人澡人人爽人人夜夜| 22中文网久久字幕| 成人黄色视频免费在线看| 国产成人91sexporn| 黄片无遮挡物在线观看| 又大又黄又爽视频免费| 成人国产麻豆网| www.色视频.com| 伦理电影免费视频| 亚洲精品国产av成人精品| 干丝袜人妻中文字幕| 久久久a久久爽久久v久久| 一级毛片aaaaaa免费看小| av天堂中文字幕网| 国产极品天堂在线| 美女主播在线视频| 午夜福利影视在线免费观看| 男人狂女人下面高潮的视频| 精品一区二区三卡| 美女脱内裤让男人舔精品视频| 国产免费一级a男人的天堂| 国产精品福利在线免费观看| 国产真实伦视频高清在线观看| 日本午夜av视频| 又粗又硬又长又爽又黄的视频| 偷拍熟女少妇极品色| 亚洲av电影在线观看一区二区三区| 久久午夜福利片| 欧美丝袜亚洲另类| 中文字幕人妻熟人妻熟丝袜美| 色5月婷婷丁香| 久久久久久久久久久免费av| 男女免费视频国产| 观看av在线不卡| 色哟哟·www| 国产黄色视频一区二区在线观看| 老熟女久久久| 人妻制服诱惑在线中文字幕| 国产 一区精品| 大码成人一级视频| 校园人妻丝袜中文字幕| 久久久色成人| 97在线人人人人妻| 五月开心婷婷网| av在线蜜桃| 国产亚洲欧美精品永久| 18禁裸乳无遮挡免费网站照片| 嘟嘟电影网在线观看| 尾随美女入室| 日本与韩国留学比较| 一边亲一边摸免费视频| 高清不卡的av网站| 欧美极品一区二区三区四区| 色5月婷婷丁香| 午夜福利在线观看免费完整高清在| 久久99精品国语久久久| 最近最新中文字幕免费大全7| 久久青草综合色| 韩国av在线不卡| 成人综合一区亚洲| 久久久久久久久久久免费av| 国产高潮美女av| 亚洲精品色激情综合| 成人18禁高潮啪啪吃奶动态图 | 久久精品国产亚洲网站| 国产一区有黄有色的免费视频| 午夜福利在线观看免费完整高清在| 看非洲黑人一级黄片| 色吧在线观看| 超碰av人人做人人爽久久| 国产精品女同一区二区软件| 伦理电影大哥的女人| 精品国产露脸久久av麻豆| 精品人妻视频免费看| 七月丁香在线播放| 最后的刺客免费高清国语| 九九爱精品视频在线观看| 一级毛片aaaaaa免费看小| 欧美三级亚洲精品| 亚洲av成人精品一二三区| 亚洲成人手机| 欧美高清性xxxxhd video| 精品一品国产午夜福利视频| 人体艺术视频欧美日本| 亚洲怡红院男人天堂| 91久久精品国产一区二区三区| av国产久精品久网站免费入址| 日韩一区二区三区影片| 直男gayav资源| 三级经典国产精品| 亚洲熟女精品中文字幕| 一边亲一边摸免费视频| 精品人妻熟女av久视频| 少妇精品久久久久久久| 亚洲色图av天堂| 国产 一区精品| 欧美另类一区| 18禁在线无遮挡免费观看视频| 国产欧美日韩一区二区三区在线 | 18禁在线播放成人免费| 18禁裸乳无遮挡免费网站照片| 午夜精品国产一区二区电影| 国产伦理片在线播放av一区| 国产黄频视频在线观看| 久久久精品94久久精品| 五月天丁香电影| 中文资源天堂在线| 少妇被粗大猛烈的视频| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 国产亚洲av片在线观看秒播厂| 免费看光身美女| 在线观看免费日韩欧美大片 | 亚洲国产精品999| 亚洲熟女精品中文字幕| 多毛熟女@视频| 国产人妻一区二区三区在| 国产成人精品一,二区| 五月开心婷婷网| 亚洲欧美精品专区久久| 啦啦啦在线观看免费高清www| 色哟哟·www| 99热这里只有是精品在线观看| 蜜桃在线观看..| 国产高潮美女av| 黑人高潮一二区| 女人十人毛片免费观看3o分钟| 久热久热在线精品观看| 18+在线观看网站| 久久人人爽人人爽人人片va| 久久影院123| 欧美xxxx性猛交bbbb| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久人人人人人人| 超碰av人人做人人爽久久| 亚洲国产毛片av蜜桃av| 在线观看一区二区三区| 亚洲人与动物交配视频| 免费观看在线日韩| 亚洲高清免费不卡视频| 亚洲性久久影院| 亚州av有码| 91精品国产九色| 成人毛片a级毛片在线播放| 欧美zozozo另类| 在线观看免费视频网站a站| 又大又黄又爽视频免费| 超碰97精品在线观看| 成年美女黄网站色视频大全免费 | 多毛熟女@视频| 99久久人妻综合| 亚洲真实伦在线观看| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 久久久亚洲精品成人影院| 毛片一级片免费看久久久久| 欧美高清成人免费视频www| 亚洲av.av天堂| 热re99久久精品国产66热6| 寂寞人妻少妇视频99o| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 精品午夜福利在线看| 久久久久久人妻| 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 欧美三级亚洲精品| 久久国产亚洲av麻豆专区| 久热这里只有精品99| 3wmmmm亚洲av在线观看| 免费观看无遮挡的男女| 爱豆传媒免费全集在线观看| 舔av片在线| 久久精品夜色国产| 在线观看免费视频网站a站| 国产精品成人在线| 最后的刺客免费高清国语| 亚洲无线观看免费| 精品久久久久久久久亚洲| 国产人妻一区二区三区在| 久久久久久久久久成人| 精品久久久久久电影网| 亚洲国产色片| 亚洲国产精品999| 亚洲精品乱久久久久久| 色视频www国产| 亚洲成人av在线免费| 久久久久久久久大av| 麻豆乱淫一区二区| 亚洲成人av在线免费| 成人18禁高潮啪啪吃奶动态图 | 久久精品人妻少妇| 国产精品久久久久久av不卡| 国产在线男女| 一区在线观看完整版| 国产在视频线精品| 91精品一卡2卡3卡4卡| 日本vs欧美在线观看视频 | 亚洲图色成人| 边亲边吃奶的免费视频| 日韩成人av中文字幕在线观看| 久久久久久久亚洲中文字幕| 国产亚洲5aaaaa淫片| 一级毛片我不卡| 欧美老熟妇乱子伦牲交| 最新中文字幕久久久久| 在线免费十八禁| 国产白丝娇喘喷水9色精品| 黑人猛操日本美女一级片| 成年av动漫网址| 肉色欧美久久久久久久蜜桃| 中国三级夫妇交换| 免费观看的影片在线观看| 精品亚洲成国产av| 国产黄色免费在线视频| 久久午夜福利片| 人人妻人人爽人人添夜夜欢视频 | 男女下面进入的视频免费午夜| 18禁在线无遮挡免费观看视频| 美女中出高潮动态图| 哪个播放器可以免费观看大片| 美女cb高潮喷水在线观看| 国产在线视频一区二区| 亚洲怡红院男人天堂| 少妇 在线观看| 性高湖久久久久久久久免费观看| 夫妻午夜视频| 在线亚洲精品国产二区图片欧美 | 久久精品久久久久久久性| 欧美区成人在线视频| 国产精品爽爽va在线观看网站| 又爽又黄a免费视频| 这个男人来自地球电影免费观看 | 亚洲成色77777| 精品一区在线观看国产| 欧美日韩亚洲高清精品| 两个人的视频大全免费| av国产精品久久久久影院| 久热这里只有精品99| 久久久久久伊人网av| 99热全是精品| 亚洲电影在线观看av| 麻豆国产97在线/欧美| 久热久热在线精品观看| 男的添女的下面高潮视频| 人人妻人人添人人爽欧美一区卜 | 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 伦精品一区二区三区| av又黄又爽大尺度在线免费看| 男人狂女人下面高潮的视频| 午夜日本视频在线| 亚洲四区av| 亚洲,欧美,日韩| 国产精品国产三级国产av玫瑰| 亚洲精品第二区| 女性生殖器流出的白浆| 精品久久久久久电影网| 午夜激情福利司机影院| 亚洲国产毛片av蜜桃av| 亚洲av国产av综合av卡| 嫩草影院入口| 99久久精品一区二区三区| 亚洲精品国产成人久久av| 2021少妇久久久久久久久久久| 99re6热这里在线精品视频| 精品午夜福利在线看| 精品99又大又爽又粗少妇毛片| 成年美女黄网站色视频大全免费 | 亚洲国产精品专区欧美| 老女人水多毛片| 国产精品一及| 国产亚洲av片在线观看秒播厂| 美女国产视频在线观看| 亚洲av成人精品一区久久| 日韩三级伦理在线观看| 一级毛片aaaaaa免费看小| 日韩av免费高清视频| 涩涩av久久男人的天堂| 777米奇影视久久| 成人综合一区亚洲| 夫妻午夜视频| 色5月婷婷丁香| 青青草视频在线视频观看| 国产av一区二区精品久久 | 观看免费一级毛片| 在线观看三级黄色| av视频免费观看在线观看| 精品一区在线观看国产| 亚洲国产精品999| 天堂8中文在线网| 国产 一区 欧美 日韩| 爱豆传媒免费全集在线观看| 精品视频人人做人人爽| 久久ye,这里只有精品| 久久久精品免费免费高清| 国产精品三级大全| 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 97超碰精品成人国产| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 啦啦啦视频在线资源免费观看| 国产精品一区二区三区四区免费观看| 成人影院久久| 一个人看视频在线观看www免费| 超碰av人人做人人爽久久| 伊人久久精品亚洲午夜| 男男h啪啪无遮挡| 观看免费一级毛片| 多毛熟女@视频| 亚洲精品一二三| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 日韩欧美精品免费久久| 亚洲精品aⅴ在线观看| 日韩 亚洲 欧美在线| 2022亚洲国产成人精品| 中文字幕亚洲精品专区| 成人国产av品久久久| 久久精品国产亚洲网站| 美女主播在线视频| 国产乱人偷精品视频| 一本—道久久a久久精品蜜桃钙片| 精品久久久噜噜| 亚洲av男天堂| 一级毛片aaaaaa免费看小| 国产视频首页在线观看| 不卡视频在线观看欧美| 好男人视频免费观看在线| 肉色欧美久久久久久久蜜桃| 国产美女午夜福利| 成人黄色视频免费在线看| 欧美高清性xxxxhd video| av免费在线看不卡| 狠狠精品人妻久久久久久综合| 欧美精品一区二区免费开放| 国产91av在线免费观看| 亚洲欧洲国产日韩| 少妇人妻一区二区三区视频| 黄片wwwwww| 国产视频首页在线观看| 国产 精品1| 免费少妇av软件| 国产欧美亚洲国产| 国产高潮美女av| 少妇人妻 视频| 久久综合国产亚洲精品| 日本欧美国产在线视频| 日韩欧美一区视频在线观看 | 黄色一级大片看看| 中国三级夫妇交换| 秋霞在线观看毛片| 黄色日韩在线| 日本猛色少妇xxxxx猛交久久| 性色av一级| 网址你懂的国产日韩在线| 免费久久久久久久精品成人欧美视频 | 国产视频首页在线观看| 超碰97精品在线观看| 人体艺术视频欧美日本| 街头女战士在线观看网站| 美女主播在线视频| 国产精品不卡视频一区二区| 自拍偷自拍亚洲精品老妇| 18禁在线无遮挡免费观看视频| 国产成人精品一,二区| 亚洲精品日韩av片在线观看| 中文字幕精品免费在线观看视频 | av线在线观看网站| 亚洲真实伦在线观看| 99久久综合免费| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区免费观看| 久久热精品热| 少妇裸体淫交视频免费看高清| 亚洲av在线观看美女高潮| 国产精品一区二区性色av| 黄色怎么调成土黄色| 97在线人人人人妻| freevideosex欧美| 国产成人91sexporn| 99九九线精品视频在线观看视频| 一级毛片aaaaaa免费看小| 国产精品国产三级国产av玫瑰| 久久精品国产a三级三级三级| 日本色播在线视频| 秋霞在线观看毛片| 午夜福利在线观看免费完整高清在| 少妇裸体淫交视频免费看高清| 免费看不卡的av| 各种免费的搞黄视频| 免费黄网站久久成人精品| 男女边摸边吃奶| 能在线免费看毛片的网站| 色5月婷婷丁香| 免费久久久久久久精品成人欧美视频 | 日韩一本色道免费dvd| 夜夜骑夜夜射夜夜干| 色综合色国产| 午夜免费观看性视频| 国产伦精品一区二区三区视频9| 妹子高潮喷水视频| 成人毛片a级毛片在线播放| 18禁在线无遮挡免费观看视频| 日韩国内少妇激情av| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 毛片女人毛片| 久久女婷五月综合色啪小说| 深爱激情五月婷婷| 亚洲三级黄色毛片| 日本wwww免费看| 性色av一级| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区四区激情视频| 国产成人一区二区在线| 精品久久久久久久久av| 精品亚洲成a人片在线观看 | 在现免费观看毛片| 少妇高潮的动态图| 超碰av人人做人人爽久久| 联通29元200g的流量卡| 菩萨蛮人人尽说江南好唐韦庄| 国产视频内射| 日韩欧美 国产精品| 女人十人毛片免费观看3o分钟| 日韩在线高清观看一区二区三区| 成人国产av品久久久| av又黄又爽大尺度在线免费看| 乱码一卡2卡4卡精品| www.色视频.com| 99久久人妻综合| 欧美日韩视频精品一区| 日本黄色片子视频| 男人舔奶头视频| av不卡在线播放| 亚洲欧美精品自产自拍| 91在线精品国自产拍蜜月| 中国美白少妇内射xxxbb| 成人18禁高潮啪啪吃奶动态图 | 欧美3d第一页| 日本av免费视频播放| 亚洲成人一二三区av| 黄片无遮挡物在线观看| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线| 美女cb高潮喷水在线观看| 天堂中文最新版在线下载| 男人和女人高潮做爰伦理| 欧美最新免费一区二区三区| 黄色怎么调成土黄色| 亚洲久久久国产精品| 久久 成人 亚洲| 国产成人freesex在线| 成人18禁高潮啪啪吃奶动态图 | 99精国产麻豆久久婷婷| 18禁在线无遮挡免费观看视频| 亚洲无线观看免费| 亚洲国产欧美在线一区| 欧美成人午夜免费资源| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 简卡轻食公司| 欧美日韩综合久久久久久| 18禁在线播放成人免费| 嘟嘟电影网在线观看| 欧美老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 男男h啪啪无遮挡| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| 80岁老熟妇乱子伦牲交| 亚洲内射少妇av| 新久久久久国产一级毛片| 婷婷色综合大香蕉| 天堂俺去俺来也www色官网| 亚洲精品日韩在线中文字幕| 久久久色成人| 亚洲成人av在线免费| 丰满少妇做爰视频| 国产白丝娇喘喷水9色精品| 狂野欧美激情性xxxx在线观看| 蜜臀久久99精品久久宅男| 春色校园在线视频观看| 看免费成人av毛片| 丰满乱子伦码专区| 国产精品麻豆人妻色哟哟久久| 免费播放大片免费观看视频在线观看| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 少妇猛男粗大的猛烈进出视频| 麻豆成人av视频| 国国产精品蜜臀av免费| 免费黄频网站在线观看国产| 日本wwww免费看| 色视频www国产| 在线观看av片永久免费下载| 国产在视频线精品| 国产有黄有色有爽视频| 亚洲高清免费不卡视频| 岛国毛片在线播放| 成人无遮挡网站| 国产免费福利视频在线观看| 中文乱码字字幕精品一区二区三区| 久久精品人妻少妇| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 又爽又黄a免费视频| www.色视频.com| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧洲国产日韩| 欧美高清性xxxxhd video| 搡女人真爽免费视频火全软件| 亚洲美女搞黄在线观看| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 日韩不卡一区二区三区视频在线| 特大巨黑吊av在线直播| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 少妇被粗大猛烈的视频| 国产精品蜜桃在线观看|