• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two new Energetic Ionic Salts with Environmental Protection: Preparation and Thermal Properties of IMI·TNR and 4-AT·TNR

    2015-05-10 05:43:17LIYingBIYangangZHAOWenyuanGUOWeimingZHANGTonglai
    含能材料 2015年12期

    LI Ying, BI Yan-gang, ZHAO Wen-yuan, GUO Wei-ming, ZHANG Tong-lai

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    The high energy density materials (HEDMs), especially those materials with excellent performance and environmental compatibility, have been concerned[1-8]. In which, five-azole heterocycles and their derivatives are desired due to their high nitrogen content, enthalpy of formation, density, easily achieved oxygen balance[9-16], among which salts and complexes based on IMI and 4-AT (IMI=imidazolium, 4-AT=4-amino-1,2,4-triazolium) are well researched.

    On the other hand, styphnate (2,4,6-trinitro resorcinol, TNR), is the main ingredient of a famous traditional primary explosives lead styphnate, which is utilized as primary explosive, and contribute to an environment in both military and civilian fields. Although energetic styphnate salts may exhibit comparative excellent performance in their designed complexes or salts with PA[17-21], the studies on them are rarely mentioned, and the reports are focused on energetic nitrate, perchlorate or azide salts.

    In this contribution, two energetic materials IMI·TNR and 4-AT·TNR based on styphnate (TNR=2,4,6-trinitro resorcinol) (Scheme 1) were obtained and characterized by X-ray diffraction analysis. Both materials were fully characterized by elemental analysis, FT-IR spectroscopy, and their thermal effects, sensitivities and performances were gained.

    2 Experimental

    2.1 Materials and Physical Techniques

    All the reagents and solvents were of analytical grade and used without further purification as commercially obtained.

    Elemental analyses were performed on a Flash EA 1112 full-automatic trace element analyzer. The FT-IR spectra were recorded on a Bruker Equinox 55 infrared spectrometer (KBr pellets) in the range of 4000-400 cm-1with a resolution of 4 cm-1. DSC and TG measurements were carried out by using a Pyris-1 differential scanning calorimeter and a Pyris-1 thermogravimetric analyzer (Perkin Elmer, USA) under dry nitrogen as atmosphere with flowing rate of 20 mL·min-1. The energy of combustion was measured by an oxygen bomb calorimeter (Parr 6200, USA).

    Scheme 1 Structural formulas of TNR, IMI, 4-AT

    Impact sensitivity was determinedwith a Fall Hammer Apparatus. Salt (30 mg) was placed between two steel poles and was hit by a 5.0 kg drop hammer.

    Friction sensitivity was determined on a MGY-1 pendularfriction sensitivity apparatus by a standard procedure using 20 mg of the sample. When salt was compressed between two steel poles with mirror surfaces at the pressure of 3.92 MPa, and then was hit horizontally with a 1.5 kg hammer fell from 90° angle.

    Flame sensitivity was determined by following a standard method, in which the sample was ignited by standard black powder pellet. Salt (20 mg) was compacted to a copper cap under the press of 58.8 MPa and was ignited by standard black powder pellet.

    2.2 Synthesis of the compounds

    As shown in Scheme 2, the IMI·TNR(1), 4-AT·TNR(2) were synthesized by the reactions between the appropriate free bases and styphnate acid in water with 1∶1 molar quantities.

    Scheme 2 Synthesis of the salts of IMI·TNR (1), 4-AT·TNR (2)

    IMI(0.14 g, 2 mmol) and TNR (0.49 g, 2 mmol) were dissolved in 30 mL H2O and stirred for 30 min at 70 ℃. The suspension was stirred for 1 h and filtrated immediately into a cup. The synthesis conditions of 4-AT·TNR are basically the same, but only change IMI to 4-AT in the same mole ratio, two kinds of yellow crystals would be obtained after 1d with yield of 75% and 70%, respectively. IR for IMI·TNR (KBr,ν/cm-1): 3421, 2601, 1632, 1533, 1473, 1415, 1266, 1184, 1102, 904, 840, 790, 705, 630. Anal. calcd for IMI·TNR: C 34.50, N 22.36, H 2.24; found: C 34.42, N 22.29, H 2.31. IR for 4-AT·TNR (KBr,ν/cm-1): 3363, 3139, 2684, 1633, 1574, 1529, 1455, 1380, 1340, 1288, 1187, 1086, 930, 833, 717, 617. Anal. calcd for 4-AT·TNR: C 29.18, N 29.79, H 2.13; found: C 29.11, N 29.69, H 2.19.

    2.3 X-ray Crystallography

    The crystal data of IMI·TNR(1), 4-AT·TNR(2) were collected with a Bruker Smart CCD diffractometer with graphite monochromatic Mo Kαradiation (λ=0.71073?) at 294(2) K usingφandωscan modes. Their structures were determined and refined by direct methods using SHELXS-97[22]and SHELXL-97[23]programs. All hydrogen atoms were located from difference Fourier electron-density maps and refined isotropically, while all non-hydrogen atoms were obtained from the difference Fourier map and refined anisotropically. The results concerning crystallographic data collection and structure refinements are given in Table 1.

    CCDC-951714 and CCDC-951715 contain the supplementary crystallographic data for the title compound (1) and (2), and these data can be acquired free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data- request/cif (or through the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-Mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

    3 Results and Discussion

    3.1 Molecular Structures

    Fig.1 shows themolecular structure and packing diagram of IMI·TNR and 4-AT·TNR, respectively. The selected bond lengths and angles are listed in Table 2, and the hydrogen bond lengths and bond angles of IMI·TNR and 4-AT·TNR in Tables 3 and 4, respectively.

    IMI·TNR crystallizes in a monoclinic cell,which belongs to space groupP21/cwith cell parameters ofa=6.006(1)?,b=13.170(3)? andc=14.816(4)?. For 4-AT·TNR, it is triclinic, space groupP-1 with a density of 1.772 g·cm-3and cell parameters ofa=8.157(2)?,b=8.2047(19) ? andc=10.159(3) ?.

    Table 1 Crystal data and structure refinements for IMI·TNR and 4-AT·TNR

    compoundIMI·TNR4-AT·TNRCCDCNo.951714951715formulaC9H7N5O8C8H7N7O8formulamass/g·mol-1313.20329.21crystalsystemmonoclinictriclinicspacegroupP21/cP-1crystalsize/mm0.33×0.32×0.290.53×0.53×0.19Z42a/?6.006(1)8.157(2)b/?13.170(3)8.2047(19)c/?14.816(4)10.159(3)α/(°)-78.844(9)β/(°)93.818(4)89.602(11)γ/(°)-68.005(7)volume/?31169.4(5)616.9(3)ρc/g·cm-31.7791.772μ(MoKα)/mm-10.1590.160F(000)640.0336.0θ/(°)6.32-58.265.4-58.22reflectioncollected/unique10192/30917561/3230R1,wR2[I>2σ(I)]0.0412/0.10690.0451/0.1237R1,wR2(alldata)0.0522/0.11560.0564/0.1334GOFonF21.0010.999largestdiff.peakandhole/e·?-30.32/-0.230.76/-0.27

    In IMI anions, the C—N bond lengths range from 1.321(2) ?[N(1)—C(3)] to 1.375(2)?[N(1)—C(1)] with an average value of 1.351 ?, which is longer than the normal CN bond length (1.270?) and shorter than the normal C—N bond length (1.450 ?). In 4-AT anions, the C—N bond lengths range from 1.307(2) ?[N(1)—C(1)] to 1.362(2) ?[N(3)—C(1)] with an average value of 1.328?, which is longer than the normal CN bond length (1.270 ?) and shorter than the normal C—N bond length (1.450 ?)[24]. There are two N—N bond[N(1)—N(2), 1.369(2) ? and N(3)—C(4), 1.412(2)?], longer than the normal NN bond length of 1.252 ? and shorter than the normal N—N bond length of 1.470 ?.[24]

    In IMI·TNR molecule, there is only one ionic bond between every IMI anion and TNR cation. Plane of the imidazole ring and the phenyl ring are not in one plane but parallel substantially to each other (Angle between the two planes is 1.696(59)°). Conversely, in 4-AT·TNR the benzene and triazole ring lie in different planes, which are angulated by 75.212(56)° towards each other.

    As shown in Fig.1c, each TNR anion within the crystal structure is surrounded by five TNR anions linked by hydrogen bonds to oxygen atoms on the phenolic hydroxyl and nitro and some van der Waals forces. The hydrogen bonds′ length of the crystal structure are from 2.5684 ? to 3.4641 ?, only one strong hydrogen bonds connected O4, which results in a smaller crystal density,Dc=1.779 g·cm-3. In Fig.1d, each 4-AT anion connected with three TNR cations through four hydrogen bonds[N(2)—H(2)N…O(4), N(2)—H(2)N…O(5), N(4)—H(4)B…O(3), N(4)—H(4B)…O(7)]. The hydrogen bonds′ lengths of the crystal structure are from 2.5843 ? to 3.3896 ?.

    a. molecular structure of IMI·TNR

    b. molecular structure of 4-AT·TNR

    c. packing diagram of IMI·TNR

    d. packing diagram of 4-AT·TNR′s

    Fig.1 Molecular structure and packing diagram of IMI·TNR and 4-AT·TNR

    Table 2 Selected bond lengths and bond angles

    IMI·TNRbondlength/?4-AT·TNRbondlength/?O(4)—C(6)1.332(2)O(1)—C(3)1.339(1)O(4)—H(4)O0.84(2)O(1)—H(1)O0.94(3)O(6)—N(4)1.232(1)O(2)—N(5)1.218(2)O(1)—C(4)1.248(1)O(3)—N(5)1.224(2)O(5)—N(4)1.250(1)O(4)—C(5)1.256(2)N(3)—O(3)1.229(2)O(5)—N(6)1.232(2)N(3)—O(2)1.225(2)O(6)—N(6)1.235(2)N(3)—C(5)1.463(2)O(7)—N(7)1.232(2)O(7)—N(5)1.226(1)O(8)—N(7)1.254(2)N(5)—C(9)1.452(2)N(5)—C(4)1.462(2)N(5)—O(8)1.224(2)N(6)—C(6)1.453(1)IMI·TNRbondangle/(°)4-AT·TNRbondangle/(°)C(6)—O(4)—H(4)O106(2)C(3)—O(1)—H(1)O104(2)O(3)—N(3)—O(2)123.7(1)O(2)—N(5)—O(3)123.8(1)O(3)—N(3)—C(5)117.9(1)O(2)—N(5)—C(4)118.1(1)O(2)—N(3)—C(5)118.4(1)O(3)—N(5)—C(4)118.1(1)O(7)—N(5)—C(9)118.3(1)O(5)—N(6)—O(6)123.4(1)O(7)—N(5)—O(8)122.2(1)O(5)—N(6)—C(6)118.8(1)C(9)—N(5)—O(8)119.5(1)O(6)—N(6)—C(6)117.8(1)N(5)—C(9)—C(8)116.8(1)O(7)—N(7)—O(8)121.6(1)N(5)—C(9)—C(4)120.9(1)O(7)—N(7)—C(8)120.1(1)C(8)—C(9)—C(4)122.3(1)O(8)—N(7)—C(8)118.3(1)N(3)—C(5)—C(4)115.8(1)O(1)—C(3)—C(4)118.1(1)

    Table 3 Hydrogen bond lengths and bond angles for IMI·TNR

    D—H…Ad(D—H)/?d(H…A)/?d(D…A)/?∠D—H…A/(°)N(1)—H(1)N…O(1)(a)0.91001.77002.6666169.00N(2)—H(2)N…O(6)(b)0.80002.41003.1733161.00N(2)—H(2)N…O(2)(c)0.80002.56003.0966126.00O(4)—H(4)O…O(2)(d)0.85002.43002.8766114.00O(4)—H(4)O…O(5)0.85001.83002.5684145.00O(4)—H(4)O…N(4)0.85002.43002.9069116.00C(1)—H(1)…O(8)(a)0.95002.56003.0848115.00

    Note: Symmetry operators: (a) 1-x,1/2+y,1/2-z; (b) -1+x,y,z;(c) -x,1/2+y,1/2-z; (d) 1+x,y,z.

    Table 4 Hydrogen bond lengths and bond angles for 4-AT·TNR

    D—H…Ad(D—H)/?d(H…A)/?d(D…A)/?∠D—H…A/(°)O(1)—H(1)O…O(5)(a)0.94002.39002.9419117.00O(1)—H(1)O…O(8)0.94001.75002.5843147.00O(1)—H(1)O…N(7)0.94002.39002.9307116.00N(2)—H(2)N…O(4)(a)0.90001.79002.6255153.00N(2)—H(2)N…O(5)(a)0.90002.40003.0317127.00N(4)—H(4)A…O(6)(b)0.96002.19003.1443173.00N(4)—H(4)B…O(3)0.91002.53003.0263114.00

    Note: Symmetry operators: (a) -1+x,1+y,z; (b) -1+x,1+y,-1+z.

    3.2 Thermal decomposition

    The thermal behavior, DSC and TG-DTG curves of IMI·TNR and 4-AT·TNR at a linear heating rate of 10 ℃·min-1, recorded in a nitrogen atmosphere separately, are given in Fig.2 and Fig.3.

    Fig.2b shows that there are three exothermic peaks (the first and last small exothermic peaks are overshadowed in the middle of quickly sharp exothermic peak) with the main peak temperature of 223.4 ℃ of IMI·TNR, and there is the mass loss of 62.5% corresponding to this temperature range in Fig.2a. The mass of the final residue is 6.5% at 500 ℃.

    a. TG-DTG curve

    b. DSC curve

    Fig.2 TG-DTG and DSC curves of IMI·TNR in a nitrogen atmosphere at heating rate of 10 ℃·min-1

    Moreover, Fig.3b exhibits two sharp peaks. One is endothermic melting peak, and another is rapidly decomposed peak. The first endothermic process starts from 195.2 ℃ and gained a peak temperature at 205.7 ℃. Following is an exothermic process, which indicates that the product immediately decomposes after melting. The decompose temperature ranges from 230.8 ℃ to 297.3 ℃ with the peak temperaturevat 259.8 ℃. Fig.3a shows that the compound loses mass 70%inthisprocess,andremains7.5%finally.Aftertherapiddecomposition the products of the two compounds are H2O, CO2, N2and a small amount of residue.

    a. TG-DTG curve

    b. DSC curve

    Fig.3 TG-DTG and DSC curves of 4-AT·TNR in a nitrogen atmosphere at a heating rate of 10 ℃·min-1

    3.3 Energy of combustion and enthalpy of formation

    We used Kissinger′s method[25]and Ozawa′s method[26]to study the kinetic parameters of the rapidly exothermic process of title compounds, based on the DSC curves obtained under the condition of static air at heating rates of 5, 10, 15 ℃· min-1and 20 ℃· min-1. The peak temperatures (Tp) of the exothermic process at different heating rates, the apparent activation energy(Ea), the pre-exponential factor (A) and the linear correlation coefficient of two compounds were determined and listed in Table 5 and Table.6. The calculated results with two methods, are similar and all in the normal range (40-400 kJ·mol-1)[27].

    Table 5 Peak temperatures of the first main exothermic stage at different heating rates and kinetic parameters for IMI·TNR with different method

    β/℃·min-1Tp/℃Kissinger'smethodE/kJ·mol-1ln(A/s-1)rSOzawa'smethodE/kJ·mol-1ln(A/s-1)rS5219.610223.415225.720228.7310.6575.62-0.99040.0992303.27--0.99090.0431

    Note:βis the heating rate,ris the linear correlation coefficient.

    Table 6 Peak temperatures of the first main exothermic stage at different heating rates and kinetic parameters for 4-AT·TNR with two method

    β/℃·min-1Tp/℃Kissinger'smethodE/kJ·mol-1ln(A/s-1)rSOzawa'smethodE/kJ·mol-1ln(A/s-1)rS5249.710259.815265.620273.4132.9729.41-0.99120.0912134.89--0.99230.0395

    3.4 Calculation of the Thermal Explosion Properties

    According to the formula group[28]as follow, the corresponding critical temperatures of thermal explosion (Tb), entropies of activation (ΔS≠), enthalpies of activation (ΔH≠), and free energies of activation (ΔG≠) of the decomposition reaction are obtained, and listed in Table 7.

    Tpi=Tp0+aβ+bβ2+cβ2+dβ2

    ΔH≠=E-RT

    ΔG≠=ΔH≠-TΔS≠

    Among them,a,b,canddare constant coefficients, andTpiis the peak temperature of the exothermic process at different heating rates. ThekBis the Boltzmann constant, 1.381×10-23J·K-1andhis the Planck constant, 6.626×10-34J·s,T=Tp0andA=Ak(Kissinger′s method).

    Table 7 CalculatedTb, ΔS≠, ΔH≠, and ΔG≠

    substanceTp0/KTb/KΔS≠/J·K-1·mol-1ΔH≠/kJ·mol-1ΔG≠/kJ·mol-1IMI·TNR489.1495.5-213.06302.89407.104-AT·TNR513.2530.4-221.31129.66243.24

    3.5 Physicochemical properties

    The impact and friction sensitivities as well as the flame sensitivity were determined on the basic of the China National Military Standard (CNMS)[29-31]. The impact sensitivities for title compounds, RDX, HMX and TNT are shown in Table 8. The results show that the title compounds are insensitive to friction sensitivity (misfire under the condition of pressure 3.92 MPa, hammer angle 90°) and flame sensitivity (do not fire when the distance between agents and the black powder pellet<6 cm). Meanwhile, they misfire in the impact sensitivities measurement even the drop height was above 80 cm. It reveals that the two compounds have low impact sensitivity, friction sensitivity and flame sensitivity.

    Table 8 Physicochemical properties of IMI·TNR, 4-AT·TNR, RDX, HMX and TNT

    substanceTm/℃Td/℃ρ/g·cm-3ΔUc/kJ·kg-1ΔHc/kJ·kg-1ΔHf/kJ·mol-1OB/%N/%Si/%Sf/%SF/cmIMI·TNRDec.2231.78-14329-14366.6-42.18-68.9622.36///4-AT·TNR2052601.77-11313-11356.3-409.69-55.8929.78///RDX[28]Dec.2301.91-9600//-21.637.848076±8/HMX[28]Dec.2871.82-9880//-21.637.84100100/TNT[28,32]813001.65-15220//-74.018.504-84-6/

    Note:Tmis the melting point (peak).Tdis the peak temperature.ρis the calculated density. ΔUcis the energy of combustion. ΔHcis the enthalpy of combustion of cation. ΔHfis the molar enthalpy of formation.OBis the oxygen balance (O-2C-H/2-Z) ×1600/M;O, the number of oxygen atoms;C, the number of carbon atoms;H, the number of hydrogen atoms;Z, the number of metal atoms;M, the molecular mass of the compound.Nis the nitrogen content.Sidenotes the impact sensitivity, firing rate with 10.0 kg drop hammer.Sfdenotes the friction sensitivity, firing rate at the pressure of 3.92 MPa with a 1.5 kg hammer from 90° angle.SFdenotes the flame sensitivity, the maximum height of 100% ignition.

    Compared with RDX, HMX and TNT, some physicochemical properties of the twotitle compounds are shown in Table 8. Obviously, physicochemical properties of IMI·TNR and 4-AT·TNR (Td=223, 260 ℃, ΔUc=-14329, -11313 kJ·kg-1,ρ=1.77, 1.78 g·cm-3) are both not lower than RDX (Td=230 ℃, ΔUc=-9600 kJ·kg-1) and close to HMX (Td=287 ℃, ΔUc=-9880 kJ·kg-1), whose densities are even higher than that of TNT (ρ=1.65 g·cm-3).

    3.6 Calculation of Detonation Parameters

    In accordance with the Brinkley-Wilson rule[28], the detonation reaction equations of title compounds are given in Scheme 3.

    Using method of literature[33-34], the heat of detonation (QV), detonation temperature (TB), detonation pressure (pCJ), detonation velocity (D) of two materials were calculated, and results are shown in Table 9. Compared with conventional explosives, explosion heat and detonation temperature of IMI·TNR are close to RDX (QV=1266.08 kJ·mol-1,TB=3700 K), while explosion pressure and detonation velocity of 4-AT·TNR are comparable to that of TNT (pCJ=19.1 GPa,D=6.92 km·s-1)[28].

    Scheme 3 Detonation reaction equations of the title compounds

    Table 9 Detonation parameters of the title compounds

    substanceQV/kJ·mol-1TB/KpCJ/GPaD/km·s-1IMI·TNR1327.383279.1416.335.974-AT·TNR963.352321.1020.886.76

    4 Conclusions

    Two styphnate salts, with IMI and 4-AT cations were preparedwith a ratio 1∶1 in water solution. As characterized by X-ray diffraction, IMI·TNR is monoclinic, space groupP21/cwith a density of 1.779 g·cm-3and 4-AT·TNR is triclinic, space groupP-1 with a density of 1.772 g·cm-3. IMI·TNR and 4-AT·TNR are stabilized by a variety of hydrogen bonds in their crystals. In addition, the high decompose point are 224.4 ℃ and 259.8 ℃, and their activation energies are 306.96 kJ·mol-1and 133.93 kJ·mol-1. The sensitivity measuring shows that the two compounds are insensitive energetic materials confirming with their calculated results of detonation parameters. Compared with conventional explosives, heat of detonation and detonation temperature of IMI·TNR are close to RDX (QV=1266.08 kJ·mol-1,TB=3700 K), while the detonation pressure and detonation velocity of 4-AT·TNR are comparable to that of TNT (pCJ=19.1 GPa,D=6.92 km·s-1).

    [1] Steinhauser G, Klap?tke T M.“Green” pyrotechnics: a chemists′ challenge[J].AngewChemIntEd, 2008, 47: 3330-3347.

    [2] Klap?tke T M, Sabaté C M. Bistetrazoles: Nitrogen-rich, high-performing, insensitive energetic compounds[J].ChemMater, 2008, 20: 3629-3637.

    [3] WU Bi-dong, ZHANG Tong-lai, TANG Shi-min, et al. The environmentally friendly energetic salt (ATZ)(TNPG) based on 4-Amino-1,2,4-triazole (ATZ) and trinitrophloroglucinol (TNPG)[J].ZAnorgAllgChem, 2012, 638(14): 2347-2352.

    [4] ZHANG Jian-guo, WANG Kun, LI Zhi-min, et al.Synthesis, crystal structure and thermal decomposition of a novel environmentally friendly energetic cesium compound,[Cs-2(HTNR)(OH)(H2O)](n)[J].Maingroupchemistry. 2011, 10: 205-213.

    [5] Talawar M B, Sivabalan R, Mukundan T, et al.Environmentally compatible next generation green energetic materials (GEMs)[J].JournalofHazardousMaterials, 2009, 161: 589-607.

    [6] Huynh M H, Hiskey M A, Meyer T J, et al. Green primaries: environmentally friendly energetic complexes[J].PNAS, 2006, 103: 5409-5412.

    [7] Klap?tke T M, Sabaté C M, Welch J M. Alkaline earth metal salts of 5-nitro-2H-tetrazole: prospective candidates for environmentally friendly energetic applications[J].EurJInorgChem, 2009: 769-776.

    [8] Klap?tke T M, Magdalena R, Véronique S. Preparation of energetic poly (azolyl) borates as new environmentally benign green-light-emitting species for pyrotechnics[J].ZAnorgAllgChem, 2013, 639(14): 2433-2443.

    [9] Dippold A A, Klap?tke T M, Winter N. Insensitive nitrogen-rich energetic compounds based on the 5,5′-Dinitro-3,3′-bi-1,2,4-triazol-2-ide anion[J].EurJInorgChem, 2012: 3474-3484.

    [10] FENG Jin-ling, ZHANG Jian-guo, ZHANG Tong-lai, et al. Synthesis, crystal structure, thermal behavior and sensitivity of [Mn(AZT)2(H2O)4] (HTNR)2·4H2O[J].ActaPhysChimSin, 2010: 2410-2416.

    [11] CUI Yan, ZHANG Tong-lai, ZHANG Jian-guo, et al. Synthesis, structural investigation and thermal analyses of a novel coordination compound[Cd(DAT)6](HTNR)2·3.5H2O (DAT=1,5-diaminotetrazole, H2TNR=styphnic acid)[J].JournalofMolecularStructure, 2008, 889: 177-185.

    [12] Poturovic S, Lu Dong-Mei, Heeg M J, et al. Synthesis and structural characterization of heavier group 1 methyl tetrazolate complexes: new bridging coordination modes of the tetrazolate ligand[J].Polyhedron, 2008, 27: 3280-3286.

    [13] XU Cheng, BI Fu-qiang, FAN Xue-zhong, et al. One-pot synthesis of 2-nitro-4,5-dicyano-1H-imidazole[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2011, 19(6): 743-744.

    [14] HE Yun, FAN Gui-juan, ZHANG Guang-quan, et al. Review on synthesis and reactivity of 5-amino-3-nitro-1,2,4-trizole[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(6): 715-720.

    [15] WU Jin-ting, ZHANG Jian-guo, YIN Xin, et al. Synthesis, characterization, and thermal analysis of two energetic ionic salts based on 3,4-diamino-1,2,4-triazole (DATr)[J].ZAnorgAllgChem, 2013, 639, (12-13): 2354-2358.

    [16] FENG Jin-ling, ZHANG Jian-guo, LI Zhi-min, et al. Synthesis, crystal structure and properties of a novel high-nitrogen energetic complex[Co(AZT)2(H2O)4](HTNR)2·4H2O[J].ActaChimicaSinica, 2010, 24: 2493-2499.

    [17] XIA Yun-xia, WANG Ping, SUN Jie, et al. Crystal structure of energetic compound 4-amino-1,2,4-triazolium picrate[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2010, 18(1): 4-6.

    [18] MA Gui-xia, ZHANG Tong-lai, SHAO Bing, et al. Crystal structure and thermal decomposition mechanism of[Mn(SCZ)3](PA)2H2O[J].ChineseJStructChem, 2004, 23: 445-451.

    [19] TANG Zhan, YANG Li, QIAO Xiao-jing, et al. Synthesis, crystal structure, thermal decomposition and sensitivity properties of (AIM)(HTNR) and (AIM)(PA).ChemResChineseUniversities, 2012, 28(1): 4-8.

    [20] CUI Yan, ZHANG Tong-lai, ZHANG Jian-guo, et al. Synthesis, crystal structure, thermal decomposition and sensitivity properties of [Zn(AZT)4(H2O)2](PA)2·4H2O and [Zn(AZT)2(H2O)4](HTNR)2·4H2O[J].ChineseJournalofChemistry, 2008, 26: 2021-2028.

    [21] Klap?tke T M, Sabaté C M. 1,2,4-triazolium and tetrazolium picrate salts: “On the Way” from nitroaromatic to azole-based energetic materials[J].EurJInorgChem, 2008: 5350-5366.

    [22] Sheldrick G M. SHELXS 97, program forcrystal structure solution[CP].UniversityofG?ttingen, Germany, 1997.

    [23] Sheldrick G M. SHELXL 97, program for crystal structure refinement from diffraction data[CP].UniversityofG?ttingen, Germany, 1997.

    [24] Frank H A, Kennard O, Watson D G.Tables of bond lengths determined by X-Ray and neutron diffraction. part I .bond lengths in organic compounds[J].JChemSocPerkinTransⅡ, 1987: s1-s19.

    [25] Kissinger H E. Reaction kinetics in differential thermal analysis[J].AnalChem, 1957, 29: 1702.

    [26] Ozawa T. A new method of analyzing thermogravimetric data[J].ChemSocJpn, 1965, 38: 1881-1886.

    [27] Han D G, Gao Z D, Gao P L. Physical chemistry (second edition)[M]. Beijing: Higher Education Press, 2009:355-387.

    [28] OU Yu-xiang. Explosives[M].Beijing: Beijing Institute of Technology Press, 2006: 145, 202, 218.

    [29] GJB 772A-1997. Method 601.2. Beijing: Commission of science technology and industry for national defense, 1997: 191-200.

    [30] GJB 772A-1997. Method 602.1. Beijing: Commission of science technology and industry for national defense, 1997: 207-213.

    [31] GJB 772A-1997. Method 604.1. Beijing: Commission of science technology and industry for national defense, 1997: 221.

    [32] Lui Z T, Lao Yun-liang. Initiating explosive experimental[M]. Beijing: Beijing Institute of Technology Press, 1995: 238-239.

    [33] WANG Jun, DONG Hai-shan, LI Jin-shan, et al. Empirical calculation of the explosion parameters of nitrodiazole explosives[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(5): 541-544.

    [34] WANG Jun, JING Mei, ZHANG Xiao-yu, et al. Empirical calculation of the explosion parameters of nitrodiazole explosives (Ⅱ)[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2013, 21(5): 609-611.

    妹子高潮喷水视频| 啦啦啦中文免费视频观看日本| 成年女人在线观看亚洲视频| 国产精品久久久久成人av| 亚洲欧美精品专区久久| 精品亚洲成国产av| 2021少妇久久久久久久久久久| 日本vs欧美在线观看视频 | 激情五月婷婷亚洲| 啦啦啦在线观看免费高清www| 舔av片在线| 男女国产视频网站| 大码成人一级视频| 性色av一级| 免费看光身美女| 国产精品熟女久久久久浪| 国产精品免费大片| 亚洲精品亚洲一区二区| 午夜福利在线观看免费完整高清在| 国产av一区二区精品久久 | 亚洲久久久国产精品| 国产精品蜜桃在线观看| 舔av片在线| 久久久精品94久久精品| 精品久久国产蜜桃| 99久久中文字幕三级久久日本| 各种免费的搞黄视频| 一本—道久久a久久精品蜜桃钙片| 国产伦精品一区二区三区视频9| av在线蜜桃| 插逼视频在线观看| 欧美三级亚洲精品| 国产精品国产三级国产av玫瑰| 在线观看国产h片| 成人18禁高潮啪啪吃奶动态图 | 简卡轻食公司| 国产亚洲最大av| 国产国拍精品亚洲av在线观看| 少妇人妻 视频| 亚洲怡红院男人天堂| 午夜日本视频在线| 人妻 亚洲 视频| 国产淫语在线视频| 小蜜桃在线观看免费完整版高清| 成人午夜精彩视频在线观看| 亚洲av中文字字幕乱码综合| 尤物成人国产欧美一区二区三区| 国产无遮挡羞羞视频在线观看| 中国国产av一级| 国产精品人妻久久久影院| 黑人高潮一二区| 久久久久视频综合| 中文精品一卡2卡3卡4更新| 精品午夜福利在线看| 久久久国产一区二区| 黑人猛操日本美女一级片| 精品一区在线观看国产| 嘟嘟电影网在线观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲一区二区精品| 蜜桃久久精品国产亚洲av| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 日本黄色日本黄色录像| 美女脱内裤让男人舔精品视频| 亚洲精品乱码久久久久久按摩| 国产 一区精品| 国产精品一及| 狂野欧美激情性xxxx在线观看| 日韩欧美精品免费久久| 女性被躁到高潮视频| 久久精品国产亚洲网站| 99热这里只有精品一区| 精品视频人人做人人爽| 夫妻性生交免费视频一级片| 色综合色国产| 亚洲在久久综合| a级一级毛片免费在线观看| 97在线人人人人妻| 国产精品久久久久久精品古装| 91精品伊人久久大香线蕉| 日本wwww免费看| 精品熟女少妇av免费看| 乱码一卡2卡4卡精品| 纯流量卡能插随身wifi吗| 干丝袜人妻中文字幕| 亚洲国产色片| 成人无遮挡网站| 日本爱情动作片www.在线观看| av一本久久久久| 六月丁香七月| 欧美xxxx性猛交bbbb| av在线app专区| 中国美白少妇内射xxxbb| 亚洲久久久国产精品| 国产在线免费精品| 亚洲精品日韩在线中文字幕| 美女国产视频在线观看| 激情 狠狠 欧美| 久久午夜福利片| 亚洲av综合色区一区| 国产又色又爽无遮挡免| 午夜福利网站1000一区二区三区| 日韩伦理黄色片| 色哟哟·www| tube8黄色片| 中文字幕人妻熟人妻熟丝袜美| 久久这里有精品视频免费| 亚洲成人av在线免费| 欧美亚洲 丝袜 人妻 在线| 欧美精品国产亚洲| 最后的刺客免费高清国语| 久久精品国产亚洲网站| 80岁老熟妇乱子伦牲交| 身体一侧抽搐| 久久国产乱子免费精品| 久久久国产一区二区| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久久久免| 亚洲国产精品999| 男女边摸边吃奶| 国产欧美另类精品又又久久亚洲欧美| av在线播放精品| 在线免费观看不下载黄p国产| 内地一区二区视频在线| 免费少妇av软件| 蜜桃在线观看..| 午夜福利在线观看免费完整高清在| 久久精品久久久久久噜噜老黄| 青春草亚洲视频在线观看| 国产老妇伦熟女老妇高清| 99热这里只有精品一区| 亚洲人成网站高清观看| 深爱激情五月婷婷| 秋霞在线观看毛片| 国产成人a区在线观看| 欧美激情极品国产一区二区三区 | 亚洲av国产av综合av卡| 国产精品av视频在线免费观看| 各种免费的搞黄视频| 97热精品久久久久久| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱| 日本色播在线视频| 我要看日韩黄色一级片| 中文乱码字字幕精品一区二区三区| 中文字幕制服av| 欧美97在线视频| 成人亚洲精品一区在线观看 | 校园人妻丝袜中文字幕| 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| 插逼视频在线观看| 亚洲国产精品专区欧美| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| 久久99热6这里只有精品| 97超碰精品成人国产| 91久久精品电影网| 午夜激情久久久久久久| 男人和女人高潮做爰伦理| av在线app专区| 亚洲成色77777| 男女下面进入的视频免费午夜| 精品一区在线观看国产| 99热6这里只有精品| 成人一区二区视频在线观看| 国产高潮美女av| 久久人人爽人人爽人人片va| 精品一区二区三区视频在线| 国产大屁股一区二区在线视频| 五月开心婷婷网| 交换朋友夫妻互换小说| 久久久久精品久久久久真实原创| 亚洲国产精品一区三区| 亚洲欧美一区二区三区国产| 久久婷婷青草| 日本黄大片高清| 亚洲综合色惰| 亚洲aⅴ乱码一区二区在线播放| 天堂俺去俺来也www色官网| a级一级毛片免费在线观看| 永久免费av网站大全| 日韩大片免费观看网站| av国产久精品久网站免费入址| 亚洲人成网站在线播| 亚洲国产日韩一区二区| 一区在线观看完整版| 偷拍熟女少妇极品色| 尤物成人国产欧美一区二区三区| 91aial.com中文字幕在线观看| videossex国产| 中文字幕久久专区| 美女主播在线视频| 下体分泌物呈黄色| 亚洲av二区三区四区| 国产精品免费大片| 中文字幕亚洲精品专区| 免费看光身美女| 亚洲国产日韩一区二区| 熟女人妻精品中文字幕| 久久久久网色| 亚洲精品乱码久久久v下载方式| 高清在线视频一区二区三区| 80岁老熟妇乱子伦牲交| 黄色配什么色好看| 国产乱人视频| 多毛熟女@视频| 一区二区三区免费毛片| 日韩成人av中文字幕在线观看| 亚洲精品成人av观看孕妇| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 狂野欧美激情性bbbbbb| 在线播放无遮挡| 男的添女的下面高潮视频| 欧美国产精品一级二级三级 | a 毛片基地| 国产日韩欧美亚洲二区| .国产精品久久| 亚洲国产av新网站| 国产免费一区二区三区四区乱码| 欧美高清性xxxxhd video| 国产白丝娇喘喷水9色精品| 国内揄拍国产精品人妻在线| 伦理电影免费视频| 亚洲欧美中文字幕日韩二区| 新久久久久国产一级毛片| 精品酒店卫生间| 免费高清在线观看视频在线观看| 国产亚洲91精品色在线| 午夜老司机福利剧场| 亚洲国产成人一精品久久久| 91精品一卡2卡3卡4卡| 欧美人与善性xxx| av网站免费在线观看视频| 亚洲怡红院男人天堂| 久久6这里有精品| 三级国产精品片| 99热这里只有是精品50| 波野结衣二区三区在线| 最黄视频免费看| 亚洲精品国产色婷婷电影| av女优亚洲男人天堂| 又爽又黄a免费视频| 伦理电影大哥的女人| 久久99蜜桃精品久久| 啦啦啦在线观看免费高清www| 欧美日韩国产mv在线观看视频 | 成人毛片60女人毛片免费| 草草在线视频免费看| 一二三四中文在线观看免费高清| 99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 波野结衣二区三区在线| 日韩中字成人| 视频中文字幕在线观看| 亚洲国产精品成人久久小说| 一个人免费看片子| 国产欧美亚洲国产| 91aial.com中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 女人十人毛片免费观看3o分钟| 少妇人妻精品综合一区二区| 黄色欧美视频在线观看| 内射极品少妇av片p| 欧美xxⅹ黑人| 亚洲美女视频黄频| 日韩强制内射视频| 一区二区三区乱码不卡18| 干丝袜人妻中文字幕| 国产伦精品一区二区三区四那| 国产精品一区二区性色av| 亚洲熟女精品中文字幕| 亚洲精品色激情综合| 嫩草影院入口| 国产v大片淫在线免费观看| 国产伦精品一区二区三区四那| 人妻制服诱惑在线中文字幕| 久久久亚洲精品成人影院| 国内揄拍国产精品人妻在线| 综合色丁香网| 51国产日韩欧美| 亚洲人成网站高清观看| 日本-黄色视频高清免费观看| 麻豆国产97在线/欧美| 亚洲国产最新在线播放| 纯流量卡能插随身wifi吗| av视频免费观看在线观看| 网址你懂的国产日韩在线| 亚洲真实伦在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧洲日产国产| 亚洲精品国产av成人精品| 国产欧美日韩一区二区三区在线 | a级毛片免费高清观看在线播放| 美女cb高潮喷水在线观看| 国产精品伦人一区二区| 97超碰精品成人国产| 男的添女的下面高潮视频| 日本wwww免费看| 美女xxoo啪啪120秒动态图| 美女内射精品一级片tv| 蜜桃亚洲精品一区二区三区| 18+在线观看网站| 亚洲国产高清在线一区二区三| 色婷婷av一区二区三区视频| 亚洲欧美日韩卡通动漫| 人妻系列 视频| 国产在线男女| 国产成人精品久久久久久| 97超视频在线观看视频| 久久国内精品自在自线图片| 新久久久久国产一级毛片| 国产av精品麻豆| 色婷婷av一区二区三区视频| 97热精品久久久久久| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 大片免费播放器 马上看| 超碰97精品在线观看| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看 | 久久久国产一区二区| 亚洲欧美一区二区三区国产| 欧美变态另类bdsm刘玥| 男的添女的下面高潮视频| 国产亚洲91精品色在线| 亚洲精品日本国产第一区| 国产精品久久久久久久电影| 欧美日韩精品成人综合77777| 最近中文字幕高清免费大全6| 久久久久性生活片| 国产精品不卡视频一区二区| 国内少妇人妻偷人精品xxx网站| 欧美少妇被猛烈插入视频| 亚洲欧美清纯卡通| 精品亚洲成a人片在线观看 | 美女xxoo啪啪120秒动态图| 精品人妻熟女av久视频| 久热这里只有精品99| 国产精品成人在线| 校园人妻丝袜中文字幕| 欧美3d第一页| 国产成人一区二区在线| 蜜臀久久99精品久久宅男| 国产高清国产精品国产三级 | av在线蜜桃| 一区二区三区四区激情视频| 亚洲av在线观看美女高潮| 国产精品久久久久久久电影| av又黄又爽大尺度在线免费看| 国产精品嫩草影院av在线观看| 免费人成在线观看视频色| 中文字幕av成人在线电影| 国国产精品蜜臀av免费| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看| 免费高清在线观看视频在线观看| 99九九线精品视频在线观看视频| 免费黄色在线免费观看| 欧美激情国产日韩精品一区| 免费播放大片免费观看视频在线观看| 亚洲欧美日韩卡通动漫| 久久久久久人妻| 成人亚洲欧美一区二区av| 精华霜和精华液先用哪个| 中国国产av一级| 如何舔出高潮| .国产精品久久| 精品午夜福利在线看| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 男人舔奶头视频| 色视频在线一区二区三区| 免费黄网站久久成人精品| 成人免费观看视频高清| 26uuu在线亚洲综合色| 亚洲成人手机| 国产日韩欧美亚洲二区| 最近中文字幕2019免费版| av免费在线看不卡| 一本久久精品| 国产大屁股一区二区在线视频| 亚洲欧美一区二区三区黑人 | 国产色婷婷99| 午夜福利高清视频| 亚洲av电影在线观看一区二区三区| 国产乱来视频区| 欧美激情国产日韩精品一区| 草草在线视频免费看| 中文字幕精品免费在线观看视频 | 欧美97在线视频| 1000部很黄的大片| 中国国产av一级| 久久精品久久久久久久性| 亚洲av二区三区四区| 777米奇影视久久| 韩国高清视频一区二区三区| 日韩,欧美,国产一区二区三区| 精品一区二区免费观看| 日本一二三区视频观看| 午夜视频国产福利| 亚洲欧洲国产日韩| 日本一二三区视频观看| 午夜视频国产福利| 日本色播在线视频| 99久久综合免费| 国产一区有黄有色的免费视频| 久久热精品热| 亚洲精品久久午夜乱码| 老熟女久久久| 永久免费av网站大全| 久久久久人妻精品一区果冻| 久久精品久久久久久久性| 女人久久www免费人成看片| 99热网站在线观看| 成年人午夜在线观看视频| 久久久欧美国产精品| 亚洲欧洲国产日韩| 国产精品一区www在线观看| 伦精品一区二区三区| 亚洲欧洲国产日韩| 51国产日韩欧美| 色网站视频免费| 99九九线精品视频在线观看视频| 直男gayav资源| 日本av免费视频播放| 亚洲四区av| 看免费成人av毛片| 国产男人的电影天堂91| 亚洲av综合色区一区| 精品熟女少妇av免费看| 亚洲av电影在线观看一区二区三区| videos熟女内射| 亚洲熟女精品中文字幕| 男人爽女人下面视频在线观看| 黄色一级大片看看| 七月丁香在线播放| 国产免费一区二区三区四区乱码| 精品久久久噜噜| 汤姆久久久久久久影院中文字幕| 免费观看性生交大片5| 极品教师在线视频| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久亚洲中文字幕| 国产精品福利在线免费观看| 五月天丁香电影| 欧美+日韩+精品| 国产亚洲欧美精品永久| 免费在线观看成人毛片| 国产高清不卡午夜福利| 欧美另类一区| 尤物成人国产欧美一区二区三区| 国产成人一区二区在线| 日本vs欧美在线观看视频 | 97精品久久久久久久久久精品| 十八禁网站网址无遮挡 | 亚州av有码| 久久精品久久久久久久性| 国产高清不卡午夜福利| 免费大片18禁| 一个人免费看片子| 街头女战士在线观看网站| 春色校园在线视频观看| 免费看光身美女| 国产精品爽爽va在线观看网站| 亚洲av在线观看美女高潮| 午夜福利网站1000一区二区三区| 观看美女的网站| 国产高清三级在线| 久久国产乱子免费精品| 日韩亚洲欧美综合| 国产伦在线观看视频一区| 高清av免费在线| 女的被弄到高潮叫床怎么办| 国产乱人视频| 国产免费视频播放在线视频| 赤兔流量卡办理| 国产伦精品一区二区三区视频9| 一级黄片播放器| 国国产精品蜜臀av免费| 午夜精品国产一区二区电影| 久久热精品热| 免费观看的影片在线观看| 国产成人freesex在线| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 亚洲精品自拍成人| 一本一本综合久久| 99re6热这里在线精品视频| 少妇的逼好多水| 新久久久久国产一级毛片| 日本色播在线视频| 在现免费观看毛片| 亚洲成色77777| 偷拍熟女少妇极品色| 国产精品麻豆人妻色哟哟久久| 观看av在线不卡| 在线免费十八禁| 国产精品久久久久久久电影| 久久6这里有精品| 亚洲精品一二三| 国产亚洲欧美精品永久| 久久久久久人妻| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 色网站视频免费| 国精品久久久久久国模美| 人人妻人人看人人澡| 又粗又硬又长又爽又黄的视频| 丝瓜视频免费看黄片| 2022亚洲国产成人精品| 国产老妇伦熟女老妇高清| 国产精品一区二区在线观看99| 欧美一区二区亚洲| 成年av动漫网址| 精品国产乱码久久久久久小说| 亚洲欧美日韩另类电影网站 | 亚州av有码| 中文字幕免费在线视频6| 婷婷色麻豆天堂久久| 亚洲国产精品成人久久小说| 日本免费在线观看一区| 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 成人影院久久| 观看免费一级毛片| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩卡通动漫| 狠狠精品人妻久久久久久综合| 在线精品无人区一区二区三 | 免费观看性生交大片5| 美女视频免费永久观看网站| 欧美激情国产日韩精品一区| 欧美日韩视频精品一区| 日本爱情动作片www.在线观看| 老女人水多毛片| 久久久久久伊人网av| 国产深夜福利视频在线观看| 亚洲熟女精品中文字幕| 亚洲精品成人av观看孕妇| 国产女主播在线喷水免费视频网站| 日韩欧美精品免费久久| 伦理电影大哥的女人| 久久青草综合色| 人人妻人人爽人人添夜夜欢视频 | 边亲边吃奶的免费视频| 欧美日韩国产mv在线观看视频 | 美女xxoo啪啪120秒动态图| 久热这里只有精品99| 亚洲av福利一区| 欧美成人午夜免费资源| 看非洲黑人一级黄片| 国产69精品久久久久777片| 2022亚洲国产成人精品| 一级黄片播放器| 男女啪啪激烈高潮av片| 麻豆成人午夜福利视频| 亚洲欧美一区二区三区黑人 | 你懂的网址亚洲精品在线观看| 高清不卡的av网站| 国产欧美亚洲国产| 国产av国产精品国产| 国产成人freesex在线| 超碰av人人做人人爽久久| 国产午夜精品一二区理论片| 多毛熟女@视频| 久久久精品免费免费高清| 有码 亚洲区| 国产欧美日韩精品一区二区| 2018国产大陆天天弄谢| 美女中出高潮动态图| 777米奇影视久久| 精品久久久噜噜| 精品午夜福利在线看| 国产成人a区在线观看| 爱豆传媒免费全集在线观看| 观看免费一级毛片| 18禁裸乳无遮挡动漫免费视频| 国产 一区 欧美 日韩| 一本—道久久a久久精品蜜桃钙片| 极品少妇高潮喷水抽搐| 99热网站在线观看| 又爽又黄a免费视频| 久久久久久久久大av| av在线app专区| 各种免费的搞黄视频| 国产成人精品一,二区| 亚洲国产欧美在线一区| 成人一区二区视频在线观看| 国产亚洲午夜精品一区二区久久| av视频免费观看在线观看| 久久久精品94久久精品| 久久亚洲国产成人精品v| 欧美性感艳星| 日本黄色日本黄色录像| 天天躁日日操中文字幕| 国产高清不卡午夜福利| 春色校园在线视频观看| 国产精品一区二区性色av| 国产人妻一区二区三区在| 日韩av在线免费看完整版不卡| 视频区图区小说| 99久久人妻综合| 99久久中文字幕三级久久日本| 国产一区有黄有色的免费视频| 久久人人爽人人爽人人片va| 成人午夜精彩视频在线观看| 丰满迷人的少妇在线观看| 人妻制服诱惑在线中文字幕| 六月丁香七月| 免费观看av网站的网址|