• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomization of Gelled Propellant Simulant with Carbon Particles

    2015-05-10 06:19:04QIANGHongfuLIUHuHANQilongWANGGuangHANYawei
    含能材料 2015年12期

    QIANG Hong-fu, LIU Hu, HAN Qi-long, WANG Guang, HAN Ya-wei

    (1. 601 Staffroom, Xi'an Hi-Tech Institution, Xi′an 710025, China; 2. 96263 Unit of the Second Artillery, Luoyang 471000, China)

    1 Introduction

    As a new kind of rocket propellant, gelled propellants have advantages for both liquid and solid propellants, including high density, combustion energy, security and long reservation period, etc. However, compared with the traditional liquid propellants, the non-Newtonian character makes the gelled propellants difficult to be atomized. Atomization has attracted widespread and lasting attentions since the beginning of the gel propulsion technology[1-2].

    The addition of energetic particles like carbon, aluminum or boron is essential to gelled propellants, and it may significantly increase the energy content per unit volume of the gelled propellant and improve the performance of gelled propulsion system[3-4]. As the addition of energetic particles would alter the rheological properties of gelled propellant[5], some researches have been made to investigate the atomization characteristics of gelled propellants with energetic particles. Jayaprakash et al[6]investigated the injection and atomization characteristics of gelled kerosene with 30%(mass fraction) Al particles, they found that Sauter mean diameter(SMD) of the gel spray was more sensitive to the impingement angle and was dependent on the injection pressure in a highly non-linear manner. Kampen et al[7-8]detail studied the influence of Al particles content of gelled Jet A-1 fuels on rheology, atomization and combustion. The gels prepared in their research appeared "solid" at unstressed ambient conditions and a distinct yield stress occurred. With different generalized Reynolds numbers, different atomization modes were observed. Baek et al[9]investigated the atomization behavior of C934 Carbopol gels with and without 15% SUS304 nanoparticles. They found the nanoparticles decreased the gel strength and made breakup length of gel with nanoparticles remarkably shorter than that of the pure Carbopol gel.

    Overall, the mechanics of atomization of gelled propellant with energetic particles are still far from being fully understood in these limited researches. In this work, a new simulant containing carbon particles was prepared and used in atomization experiments. The rheological properties were measured and a series of atomization experiments were made. The linear stability theory was adopted to study the breakup characteristics of the liquid sheet.

    2 Experiment

    2.1 Preparation of Gelled Propellant Simulants

    The gelled propellant simulant was prepared by dissolving 1%(mass fraction) high-molecular polymer, 5%(mass fraction) carbon particles with an average diameter of about 5 μm in de-ionized water and mixing with an electric mixer for 20 min at 2000 revolutions per minute. This carbon-loaded simulant is named as S1 in this paper. We also prepared another simulant S2 with 99%(mass fraction) de-ionized water and 1%(mass fraction) high-molecular polymer for comparison. The physical and rheological properties of simulants S1 and S2 are similar to gelled propellant: their densities (ρ) are 1010.1 kg·m-3and 1001.7 kg·m-3, and surface tension coefficients (σ) 0.067 N·m-1and 0.072 N·m-1, respectively. As the shear rate of the gelled propellant is high in atomization. The rheological properties of the simulants were measured by a rotational rheometer when shear rate and by pipe-flowing experiments whenγ≥103s-1.

    The relationship of apparent viscosity (η) and shear rate(γ) can be described by power-law equation, Herschel-Bulkley (HB) equation, Herschel-Bulkley Extended(HBE) equation, etc.[8]. The simulants prepared in this paper appear “syrupy” at unstressed ambient conditions. The experimental results show that the yield stresses (τ0) of the two simulants are very low and both below 10 Pa. Therefore, the yield stress was neglected and the most common power-law equation was adopted.

    (1)

    ηandγof simulants obtained from experiment and the fitted power-law constitutive curves are given in Fig.1, and their physical properties are listed in Table 1. From Fig.1, it can be seen that simulants S1 and S2 are pseudo plastic fluids and theirηdecrease with the increases ofγ. And compared with simulant S2 without carbon particles in Fig.1, simulant S1 shows higher apparent viscosity under the same shear rate than that of S2. The addition of carbon particles increases the consistency coefficient and decreases the flow index of the simulant, which indicates that the addition of carbon particles evidently changes the physical and rheological properties of the gel. As the de-ionized water is main component of the simulants, the densityρand surface tension coefficientσof the two simulants are similar to ones of water (ρ=1000.0 kg·m-3andσ=0.073 N·m-1), as shown in Table 1.

    Fig.1 Apparent viscosity and shear rate of gelled propellant simulants

    Table 1 Physical property of gelled propellant simulants with and without carbon particles

    simulantscarbonparticlesρ/kg·m-3σ/N·m-1power-lawconstitutiveparametersK/Pa·snnS1with1010.10.06716.590.29S2without1001.70.0727.080.37

    2.2 Experimental Apparatus

    Fig.2 is the schematic diagram of gelled propellant atomization experiment system. At the beginning of the experiment, high pressure gas would be filled into the tank to force the gelled propellant simulant to the jet injector across pipes and values. The impingement angle 2θand the jet velocityvjetwere tuned by adjusting the angle of the doublet injectors and changing the mass flow rate by the control value, respectively. The atomization processes were recorded by a Phantom V12.1 high speed camera with 784×800 image resolution and 5 μs shutter speed. The atomization images were passed to the data acquisition system for further analysis. Meanwhile, important data in the experiment, such as mass flow rate, pressure in the tank, pressure in the injectors, etc. were measured and recorded by the data acquisition system during the whole experiment.

    Fig.2 Schematic diagram of gelled propellant atomization experiment system

    2.3 Experimental Design

    In order to analyze the atomization characteristics of gelled propellant simulant with carbon particles, 10 atomization experiments were designed with different impingement angles 2θ, jet velocitiesvjet, injector orifice diametersdand injector orifice length to diameter ratioL/d0, etc., as shown in Table 2.

    The generalized Reynolds number(Regen) was used to describe the flow behavior of the power-law fluid, which is defined as ref.[10]:

    (2)

    whereρpis the density of the power-law fluid.

    Table 2 Conditions for the atomization experiment

    case2θ/(°)vjet/m·s-1d/mmL/d0Regen1601018160626015183211360221861824901018160659015183211690221861827601513.532118602213.56182960100.5813131060101.581806

    3 Results and Analysis

    3.1 Experiment Results and Analysis

    In this paper, the atomization quality is evaluated by the atomization angle (β) and atomization patterns. As we know, when two jets impinge with each other, a fan-shaped liquid sheet forms, and the angle between the left and right rims of the liquid sheet is called atomization angle (β, as shown in Fig.3). Generally, largerβmeans better atomization quality. According to former researches[8,11], with different gels, jet velocities, impingement angles, generalized Reynolds numbers, etc., there are different atomization patterns, including close-rim, open-rim, ligament and fully-developed patterns, etc.[8,11]The close-rim and open rim patterns indicate poor atomization qualities, while the other two indicate better atomization qualities.

    Fig.3 is atomization images with the impingement angle 2θ=60° and different velocities for cases 1-3. As shown in Fig.3a, with a low jet velocity (10.2 m·s-1) andRegen, a fan-shaped liquid sheet forms, and it has a distinct rim at the upstream and breakups into ligaments and large drops downstream. The atomization pattern in Fig. 3a is the so-called “open-rim pattern” with the atomization angleβof about 70°. Fig.3b also shows an open-rim pattern withβ=85° under a larger jet velocity (15.68 m·s-1) andRegen=3211. As shown in Fig.3c, withvjet=22.14 m·s-1andRegen=3211, the rim of the liquid sheet becomes indistinct, and clearer bow-shaped impact waves occurs and makes the liquid sheet more unstable and breakup into more ligaments and drops. The pattern in Fig.3c is called “l(fā)igament pattern”.βin Fig.3c is about 100°. As discussed in Ref.[8], in cases 1-3, the generalized Reynolds numberRegen, which is completely determined by jet velocity, could be adopted as the indication of the atomization quality. LargerRegen(jet velocity) means a larger kinetic energy in jet impingement and would lead to better atomization quality.

    Fig.4 shows atomization images with 2θ=90° and different velocities for cases 4-6. Compared with cases 1-3 in Fig.3, theβin Fig.4 are larger, which are about 80°, 110°, 140° in Fig.4a, Fig.4b, Fig.4c, respectively. Fig.4a shows an open-rim pattern, and Fig.4b and Fig.4c show ligament patterns. The atomization qualities at impingement angle 2θ=90° are better than ones with 2θ=60° and the similar jet velocities.

    Fig.5 shows that the atomization images with ratio of injector orifice length to diameter (L/d0=3.5)under different jet velocities for cases 7 and 8. Compared with case 2 and case 3 withL/d0=8 shown in Fig.3b and Fig.3c, there are no obvious differences in Fig.5. Atomization patterns in Fig.5a and Fig.5b are almost identical to patterns in Fig.3b and Fig.3c respectively, which indicates that there are no essential differences on the flow characteristics of the jets sprayed from injectors withL/d0=3.5 and 8. As a result, the ratio of injector orifice length to diameter has little influences on the atomization patterns.

    Fig.6 shows atomization images with impingement angle 2θ=60° and different injector orifice diameters for cases 9 and 10. As shown in Fig.3a (case 1) and Fig.6, the larger orifice diameters lead to larger mass flow rates and will produce larger liquid sheets. But there are also no essential differences on the atomization patterns of cases 1, 9 and 10, they are all open-rim patterns with almost the same atomization angle about 70°.

    In all the cases studied in this paper, the gelled propellant simulant could hardly to be atomized into fine drops, the main atomization products are ligaments and large drops. Within the investigation conditions, the atomization quality increases with the increase of jet velocity and impingement angle, while the changes of injector length to diameter ratio and the injector orifice diameters influence the atomization patterns little.

    a.vjet=10.2 m·s-1, b.vjet=15.68 m·s-1, c.vjet=22.14 m·s-1,

    β=70°β=85°β=100°

    Fig.3 Atomization images of cases 1-3

    a.vjet=9.77 m·s-1, b.vjet=15.28 m·s-1, c.vjet=21.71 m·s-1

    Fig.4 Atomization images of cases 4- 6

    a.vjet=15.35 m·s-1b.vjet=22.22 m·s-1

    Fig.5 Atomization images case 7 and case 8

    a.vjet=9.80 m·s-1b.vjet=10.49 m·s-1

    d0=0.5 mmd0=1.5 mm

    Fig.6 Atomization images of case 9 and case 10

    3.2 Linear Stability Analysis

    Linear stability theory is widely used to evaluate the instabilities of the liquid sheet[12-13]. In this theory, the liquid sheet instability is mainly due to the aerodynamics interactions between the liquid and its surrounding gas. There are two kinds of disturbances that will occur on the liquid sheet: symmetric and anti-symmetric. Squire[14]showed that the anti-symmetric disturbance played a dominant role on breaking the liquid sheet into fragments. Therefore, only the anti-symmetric disturbance is considered here. Schematic of a moving liquid sheet under anti-symmetric disturbance is shown in Fig.7, a two dimensional liquid sheet moves into a quiescent, inviscid, incompressible gas with velocityUs, the thickness of the liquid sheet is 2hs, the surface tension of liquid isσ, the densities of liquid and gas areρ1andρgrespectively, the density ratio of gas and liquid isRg1=ρg/ρ1. Generally, the wave amplitude on the liquid sheet can be expressed as:

    (3)

    Fig.7 Schematic of a moving liquid sheet under anti-symmetric disturbance

    Chojnaki[15]deduced the dispersion relation for a plan liquid sheet based on the power-law constitutive:

    (4)

    (5)

    (6)

    If the liquid sheet breakups when the wave amplitude reachesηb, the breakup timeτbcan be obtained as follows:

    τb=ln(ηb/η0)/ωi,max

    (7)

    whereωi,maxis the maximum grow rate, then the breakup length can be calculated as:

    Lb=Usln(ηb/η0)/ωi,max

    (8)

    Here ln(ηb/η0) is set to be 12 according to Ref. [13].

    In this paper, the breakup length of the liquid sheet is defined as the axial distance from the impingement point to the point where the liquid sheet along the axis begins to breakup, as shown in Fig.8. We assume the liquid sheet speedUs=0.92vjetaccording to ref. [16]. Solving equation (4) withρ1=1010.1 kg·m-3,ρg=1.225 kg·m-3,K=16.59 Pa·sn,n=0.29,σ=0.067 N·m-1and 2hs=2.0×10-4m under jet velocity of 10 m·s-1(cases 1, 4), 15 m·s-1(cases 2, 5) and 22 m·s-1(cases 3, 6), the effects of sheet velocity on the stability of the liquid sheet can be obtained, as shown in Fig.9. It can be seen that the maximum disturbance wave grow rate increases with the increase of the sheet velocity. It means that the liquid sheet will become more unstable at larger sheet velocities, which agrees well with the experiment results of cases 1-3 and cases 4-6 under the same velocities.

    With equations (4), (7) and (8), the breakup length of the liquid sheet can be predicted. Fig.10 is the comparison of breakup lengths of liquid sheets predicted by linear stability theory and measured from experiments. As shown in Fig.10, the variation trend of breakup lengths of liquid sheets calculated from linear stability theory is consistent with the ones measured from experiments. At a low Weber number, the linear stability analysis evidently overestimates the breakup length when compared with the experiment. The relative error between the predicted and measured breakup lengths is about 24% atWes=128. As the Weber number increases, the relative errors decrease to 14.9% atWes=618. The errors of the predicted values are considered as a results of neglect of instabilities caused by jet impingement in the linear stability theory.

    Fig.8 Definition of the breakup length of the liquid sheet

    Fig.9 Influence of sheet velocityUson the stability of the liquid sheet calculated by linear stability theory

    Fig.10 Comparison of breakup lengths of liquid sheets from linear stability analysis and experiments

    4 Conclusions

    (1) The carbon particles increase the consistency coefficient and decrease the flow index of the simulant S1, which makes simulant S1 show high apparent viscosity under the same shear rate.

    (2) The simulant S1 can only be atomized into ligaments and large drops. The atomization quality improves with the increases of jet velocity and impingement angles, while the changes in injector length to diameter ratio and the injector orifice diameters show little influences on the atomization patterns.

    (3) There are about 14.9%-24% relative errors between the predicted and measured breakup lengths, but the tendency of the breakup lengths predicted by the linear stability theory agrees well with the experiment ones.

    [1] Natan B, Rahimi S. The status of gel propellants in year 2000[J].InternationalJournalofEnergeticMaterialsandChemicalPropulsion, 2002,5(1-6): 172-192.

    [2] LIU Hu, QIANG Hong-fu, WANG Guang. Review on Jet Impingement Atomization on Gelled Propellant[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(7): 697-708.

    [3] Hodge K, Crofoot T, Nelson S. Gelled propellants for tactical missile applications. AIAA 99-2976[R], 1999.

    [4] Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet[J].ProgressinPropulsionPhysics, 2011,2: 499-518.

    [5] Wu Zhijian, Hu Lirong. Performance Research of Metallized Gelled Propellant[J].MissileandSpaceVehicle, 2006, 283(03): 52-55.

    [6] Jayaprakash N, Chakravarthy S R. Impingement Atomization of Gelled Fuels. AIAA 2003-316[R], 2003.

    [7] von Kampen J, Madlener K, Ciezki H K. Characteristic Flow and Spray Properties of Gelled Fuels with Regard to the Impinging Jet Injector Type. AIAA 2006-4573[R], 2006.

    [8] von Kampen J, Alberio F, Ciezki H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].AerospSciTechnol, 2007,11:77-83.

    [9] Baek G, Kim S, Han J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J].JNon-NewtonFluid, 2011,166(21): 1272-1285.

    [10] Metzner A B, Reed C J. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J].AmericanInstituteofChemicalEngineeringJournal, 1955,4(1): 189-204.

    [11] Fu Q, Yang L, Zhuang F. Effects of Orifice Geometry on Spray Characteristics of Impinging Jet Injectors for Gelled Propellants[R].AIAA 2013-3704, 2013.

    [12] Ryan H M, Anderson W E, Pal S, et al. Atomization characteristics of impinging liquid jets[J].JPropulPower, 1995,11(1): 135-145.

    [13] Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets[J].ChemEngSci, 1963,18(3): 203-214.

    [14] Squire H B. Investigation of the instability of a moving liquid film[J].BritishJournalofAppliedPhysics, 1953,4: 167-169.

    [15] Chojnacki K T. Atomization and mixing of impinging non-Newtonian jets[D]. Huntsville: University of Alabama-Huntsville, 1997.

    [16] Heislbetz B, Madlener K, Ciezki H K. Breakup Characteristics of a Newtonian Liquid Sheet formed by a Doublet Impinging Jet Injector.AIAA2007-5694[R], 2007.

    天堂中文最新版在线下载| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 九草在线视频观看| 日韩免费高清中文字幕av| 国产亚洲欧美精品永久| 22中文网久久字幕| 亚洲三级黄色毛片| 一区二区三区四区激情视频| 一区在线观看完整版| 看免费成人av毛片| 特大巨黑吊av在线直播| 久久99热这里只频精品6学生| 丰满迷人的少妇在线观看| 黄色欧美视频在线观看| 国产精品嫩草影院av在线观看| 亚洲内射少妇av| 国产精品无大码| 国产伦理片在线播放av一区| 国产色爽女视频免费观看| 最后的刺客免费高清国语| 国产欧美另类精品又又久久亚洲欧美| 欧美精品人与动牲交sv欧美| 亚洲性久久影院| 伊人久久国产一区二区| 晚上一个人看的免费电影| av卡一久久| 97在线视频观看| 校园人妻丝袜中文字幕| av国产久精品久网站免费入址| 欧美 亚洲 国产 日韩一| 国产男女内射视频| 激情五月婷婷亚洲| 亚洲精品久久午夜乱码| 精品少妇久久久久久888优播| 狂野欧美激情性xxxx在线观看| 亚洲精品乱久久久久久| 欧美精品国产亚洲| 我的老师免费观看完整版| 亚洲精品色激情综合| 亚洲欧洲精品一区二区精品久久久 | 欧美少妇被猛烈插入视频| 国产亚洲一区二区精品| 久久青草综合色| 亚洲精品自拍成人| 午夜av观看不卡| 国产有黄有色有爽视频| 国产成人精品一,二区| 久久精品国产a三级三级三级| 99热这里只有精品一区| videossex国产| 丰满乱子伦码专区| 欧美少妇被猛烈插入视频| 精品国产国语对白av| 欧美日韩av久久| 国产欧美日韩一区二区三区在线 | 日本av手机在线免费观看| 久久久久久久精品精品| 免费久久久久久久精品成人欧美视频 | 国产高清不卡午夜福利| 欧美日韩国产mv在线观看视频| 9色porny在线观看| 一级毛片久久久久久久久女| 亚洲美女黄色视频免费看| 久久99一区二区三区| 夫妻性生交免费视频一级片| 精品人妻一区二区三区麻豆| 免费黄频网站在线观看国产| 国产色婷婷99| 久久婷婷青草| .国产精品久久| 麻豆乱淫一区二区| 伊人久久国产一区二区| 在线播放无遮挡| 国产一区二区三区综合在线观看 | 久久人人爽人人爽人人片va| 自拍偷自拍亚洲精品老妇| 日韩人妻高清精品专区| 我的女老师完整版在线观看| 免费大片18禁| 一本久久精品| 国产欧美日韩一区二区三区在线 | 久久国内精品自在自线图片| 一区二区三区四区激情视频| 精品少妇久久久久久888优播| 久久青草综合色| 毛片一级片免费看久久久久| 亚洲欧美日韩另类电影网站| 狠狠精品人妻久久久久久综合| 晚上一个人看的免费电影| 亚洲精品国产av蜜桃| 狂野欧美白嫩少妇大欣赏| 简卡轻食公司| 久久精品国产亚洲网站| 亚洲国产欧美日韩在线播放 | 亚洲精品aⅴ在线观看| 交换朋友夫妻互换小说| 欧美bdsm另类| 最近最新中文字幕免费大全7| 亚洲国产精品一区三区| 国产美女午夜福利| 在线观看人妻少妇| 日韩欧美 国产精品| 久久久久视频综合| 简卡轻食公司| 亚洲无线观看免费| 精品国产乱码久久久久久小说| 免费观看无遮挡的男女| 国产乱人偷精品视频| 久久久国产精品麻豆| 亚洲欧洲国产日韩| 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 亚洲精品,欧美精品| 女人久久www免费人成看片| 日韩中字成人| 最后的刺客免费高清国语| av在线老鸭窝| 日韩欧美 国产精品| 桃花免费在线播放| 十分钟在线观看高清视频www | 精品午夜福利在线看| 黄色一级大片看看| .国产精品久久| 精品人妻熟女毛片av久久网站| 亚洲国产精品一区二区三区在线| 国产成人91sexporn| 天美传媒精品一区二区| 国产精品嫩草影院av在线观看| 美女视频免费永久观看网站| 久久人人爽人人片av| 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃| 人妻夜夜爽99麻豆av| 日产精品乱码卡一卡2卡三| 中文字幕人妻丝袜制服| 国产成人精品无人区| 深夜a级毛片| 国产伦精品一区二区三区视频9| 成人国产av品久久久| 男人添女人高潮全过程视频| 日本av免费视频播放| 男男h啪啪无遮挡| av黄色大香蕉| 亚洲欧美一区二区三区黑人 | 亚洲国产色片| 高清欧美精品videossex| 欧美精品一区二区大全| 国产高清不卡午夜福利| 我的老师免费观看完整版| 99久久精品热视频| 各种免费的搞黄视频| 亚洲欧美日韩卡通动漫| 国产视频内射| 一级av片app| 久久久a久久爽久久v久久| 99久久精品一区二区三区| 一个人看视频在线观看www免费| 大香蕉久久网| 亚洲国产日韩一区二区| 日本免费在线观看一区| 欧美精品人与动牲交sv欧美| 国产极品粉嫩免费观看在线 | 日本av手机在线免费观看| 日本爱情动作片www.在线观看| 最近2019中文字幕mv第一页| 另类精品久久| 亚洲av在线观看美女高潮| 最近最新中文字幕免费大全7| 国产一区二区三区av在线| 我的女老师完整版在线观看| 欧美少妇被猛烈插入视频| 国产 精品1| 18+在线观看网站| 日韩人妻高清精品专区| 有码 亚洲区| 久久青草综合色| 国产成人aa在线观看| 久久毛片免费看一区二区三区| av黄色大香蕉| 新久久久久国产一级毛片| 中文字幕人妻熟人妻熟丝袜美| a级一级毛片免费在线观看| 精品久久久噜噜| 波野结衣二区三区在线| a 毛片基地| 国产视频内射| 成人美女网站在线观看视频| 不卡视频在线观看欧美| 久久久久久久久久成人| freevideosex欧美| 嫩草影院入口| 九九爱精品视频在线观看| 欧美xxⅹ黑人| 一级毛片 在线播放| 精品人妻熟女av久视频| 午夜视频国产福利| www.色视频.com| 成人无遮挡网站| 精品一品国产午夜福利视频| 久久99蜜桃精品久久| 日韩免费高清中文字幕av| 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 大码成人一级视频| 女人久久www免费人成看片| 国产深夜福利视频在线观看| 一级,二级,三级黄色视频| 啦啦啦在线观看免费高清www| 久久精品夜色国产| av福利片在线观看| 国产日韩一区二区三区精品不卡 | 一本一本综合久久| 久久亚洲国产成人精品v| 人妻夜夜爽99麻豆av| 七月丁香在线播放| 少妇裸体淫交视频免费看高清| 热re99久久国产66热| 青春草亚洲视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品,欧美精品| 最近中文字幕2019免费版| 国产午夜精品久久久久久一区二区三区| 成人漫画全彩无遮挡| 中文乱码字字幕精品一区二区三区| 婷婷色av中文字幕| av视频免费观看在线观看| 青春草视频在线免费观看| 全区人妻精品视频| 欧美精品人与动牲交sv欧美| 七月丁香在线播放| 五月天丁香电影| 熟女人妻精品中文字幕| 国产片特级美女逼逼视频| 久久久久久久久久久丰满| 自线自在国产av| 夜夜爽夜夜爽视频| 久久av网站| 你懂的网址亚洲精品在线观看| 99re6热这里在线精品视频| 高清午夜精品一区二区三区| 久久久久人妻精品一区果冻| 国产91av在线免费观看| 久久热精品热| av在线播放精品| 日韩精品免费视频一区二区三区 | 亚洲精品国产av成人精品| 欧美3d第一页| 成人亚洲欧美一区二区av| 女人精品久久久久毛片| 男女国产视频网站| av卡一久久| 亚洲,欧美,日韩| 免费大片18禁| 啦啦啦视频在线资源免费观看| 高清欧美精品videossex| 我要看黄色一级片免费的| 中文字幕制服av| 免费黄网站久久成人精品| 国产在线一区二区三区精| 大香蕉久久网| 男女啪啪激烈高潮av片| 日韩伦理黄色片| 亚洲内射少妇av| 综合色丁香网| 久久精品久久久久久久性| 成年女人在线观看亚洲视频| 久久久午夜欧美精品| 在线观看美女被高潮喷水网站| 久久久久久久国产电影| 街头女战士在线观看网站| 国产av国产精品国产| 一级黄片播放器| 日日啪夜夜爽| 成人国产麻豆网| 欧美 亚洲 国产 日韩一| 日本黄色片子视频| 久久久久久久久久人人人人人人| 色吧在线观看| 欧美 亚洲 国产 日韩一| www.av在线官网国产| 少妇人妻 视频| av国产久精品久网站免费入址| 夜夜爽夜夜爽视频| 亚洲美女视频黄频| 日本欧美国产在线视频| 高清视频免费观看一区二区| 精华霜和精华液先用哪个| 人妻少妇偷人精品九色| 欧美日本中文国产一区发布| 九九久久精品国产亚洲av麻豆| 国产欧美日韩综合在线一区二区 | 最新的欧美精品一区二区| 18禁在线无遮挡免费观看视频| 赤兔流量卡办理| 久久免费观看电影| 99久久精品国产国产毛片| 成人午夜精彩视频在线观看| 国产一区二区在线观看av| 国产成人aa在线观看| 日本黄色日本黄色录像| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 欧美三级亚洲精品| 午夜免费鲁丝| 中国美白少妇内射xxxbb| 搡女人真爽免费视频火全软件| 亚洲av免费高清在线观看| 国产精品蜜桃在线观看| 亚洲电影在线观看av| 天堂8中文在线网| av黄色大香蕉| 亚洲精品视频女| 在线观看国产h片| 美女视频免费永久观看网站| 国产成人精品无人区| 最后的刺客免费高清国语| 久久久久久久亚洲中文字幕| .国产精品久久| 色婷婷av一区二区三区视频| 久久精品夜色国产| 亚洲欧美成人精品一区二区| 国产男女内射视频| 91精品国产九色| 欧美区成人在线视频| 五月玫瑰六月丁香| 国产色婷婷99| 五月伊人婷婷丁香| 亚洲四区av| 久久毛片免费看一区二区三区| 国产亚洲91精品色在线| 国产精品伦人一区二区| 国产精品久久久久久久电影| 久久综合国产亚洲精品| a 毛片基地| 97在线人人人人妻| 黄色一级大片看看| 五月伊人婷婷丁香| 久久人人爽av亚洲精品天堂| 一区二区三区乱码不卡18| 熟妇人妻不卡中文字幕| 在线观看美女被高潮喷水网站| 一边亲一边摸免费视频| 欧美日韩亚洲高清精品| 欧美亚洲 丝袜 人妻 在线| 最近手机中文字幕大全| 三级经典国产精品| 嫩草影院新地址| 免费黄频网站在线观看国产| 免费观看在线日韩| 国语对白做爰xxxⅹ性视频网站| 国产成人精品一,二区| 七月丁香在线播放| 香蕉精品网在线| 美女脱内裤让男人舔精品视频| 观看美女的网站| 欧美精品高潮呻吟av久久| 国产熟女欧美一区二区| 亚洲一级一片aⅴ在线观看| 熟女人妻精品中文字幕| 欧美变态另类bdsm刘玥| 亚洲av男天堂| 国产精品一二三区在线看| 黄色日韩在线| 成人18禁高潮啪啪吃奶动态图 | 好男人视频免费观看在线| 美女中出高潮动态图| 十分钟在线观看高清视频www | 国产探花极品一区二区| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 亚洲国产精品专区欧美| 久久精品久久久久久久性| 欧美精品一区二区免费开放| 97精品久久久久久久久久精品| 伦理电影大哥的女人| 久久久久久久精品精品| 美女中出高潮动态图| 婷婷色综合大香蕉| 亚洲欧美日韩卡通动漫| 国产成人精品福利久久| 精品久久久久久久久亚洲| 久久人人爽av亚洲精品天堂| 久久久久网色| 99热这里只有是精品50| 国产午夜精品一二区理论片| 久久韩国三级中文字幕| 永久网站在线| 一级二级三级毛片免费看| 亚洲欧美日韩另类电影网站| 国产伦精品一区二区三区四那| 夫妻性生交免费视频一级片| 中文欧美无线码| 少妇裸体淫交视频免费看高清| 精品亚洲成a人片在线观看| 熟女电影av网| 少妇人妻久久综合中文| 视频中文字幕在线观看| 热re99久久精品国产66热6| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 永久免费av网站大全| 乱人伦中国视频| 国产高清不卡午夜福利| 亚洲精品色激情综合| 亚洲自偷自拍三级| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看av| 夜夜骑夜夜射夜夜干| 青春草视频在线免费观看| 国产在线视频一区二区| 免费播放大片免费观看视频在线观看| 国产精品久久久久久av不卡| 国产一级毛片在线| 欧美激情极品国产一区二区三区 | 久久影院123| 国产在视频线精品| 99久久人妻综合| 欧美三级亚洲精品| 欧美精品国产亚洲| 99久久人妻综合| 插逼视频在线观看| 亚洲精品色激情综合| 91精品国产九色| 国产成人freesex在线| 天堂中文最新版在线下载| 22中文网久久字幕| 久久毛片免费看一区二区三区| 亚洲av国产av综合av卡| 国产亚洲欧美精品永久| 搡老乐熟女国产| 熟女人妻精品中文字幕| 亚洲久久久国产精品| 菩萨蛮人人尽说江南好唐韦庄| 久热久热在线精品观看| 高清午夜精品一区二区三区| 亚洲精品乱久久久久久| 婷婷色综合大香蕉| 日韩一本色道免费dvd| 色哟哟·www| 大香蕉97超碰在线| 在线精品无人区一区二区三| 日本与韩国留学比较| 久久国内精品自在自线图片| 岛国毛片在线播放| 少妇人妻 视频| 免费黄色在线免费观看| 大陆偷拍与自拍| 国产男人的电影天堂91| 国产 精品1| 91精品一卡2卡3卡4卡| 国产69精品久久久久777片| 国产欧美日韩一区二区三区在线 | 国产成人精品久久久久久| 爱豆传媒免费全集在线观看| 久久99热这里只频精品6学生| 在线观看国产h片| 三上悠亚av全集在线观看 | 一级爰片在线观看| 亚洲第一区二区三区不卡| 黑人猛操日本美女一级片| 欧美3d第一页| 波野结衣二区三区在线| 亚洲av福利一区| av一本久久久久| 欧美国产精品一级二级三级 | 亚洲一级一片aⅴ在线观看| 成人亚洲精品一区在线观看| 韩国高清视频一区二区三区| 赤兔流量卡办理| 日韩视频在线欧美| 亚洲精华国产精华液的使用体验| freevideosex欧美| 久久青草综合色| 午夜影院在线不卡| 国产成人精品福利久久| 国产黄片视频在线免费观看| 高清毛片免费看| 熟女电影av网| 免费人妻精品一区二区三区视频| 日本色播在线视频| 校园人妻丝袜中文字幕| 国产亚洲av片在线观看秒播厂| 亚洲第一av免费看| 免费人妻精品一区二区三区视频| 久久影院123| 涩涩av久久男人的天堂| 黄色一级大片看看| 黄色怎么调成土黄色| h视频一区二区三区| 波野结衣二区三区在线| 99热这里只有是精品在线观看| 18禁在线播放成人免费| 99久国产av精品国产电影| 91精品一卡2卡3卡4卡| av播播在线观看一区| 国产成人免费观看mmmm| 久久久久精品性色| 国产精品免费大片| 五月天丁香电影| 久久亚洲国产成人精品v| 女人久久www免费人成看片| 精品久久久久久久久亚洲| 国产 精品1| 内射极品少妇av片p| 最新中文字幕久久久久| 欧美日韩av久久| 亚洲中文av在线| 国产精品一区二区在线不卡| 免费看日本二区| 久久久久久久久久久久大奶| 亚洲欧美清纯卡通| 久久国产精品大桥未久av | 国产亚洲91精品色在线| 一级毛片aaaaaa免费看小| 亚洲国产精品一区二区三区在线| 日本午夜av视频| 亚洲国产最新在线播放| 伊人久久精品亚洲午夜| 国产视频首页在线观看| 欧美精品高潮呻吟av久久| 日韩av不卡免费在线播放| 国产亚洲最大av| 一本久久精品| 久久99蜜桃精品久久| www.色视频.com| 9色porny在线观看| 少妇 在线观看| 又爽又黄a免费视频| 制服丝袜香蕉在线| 亚洲精品色激情综合| 亚洲色图综合在线观看| 国产爽快片一区二区三区| 97超碰精品成人国产| 激情五月婷婷亚洲| 中文资源天堂在线| 成人18禁高潮啪啪吃奶动态图 | 国产精品99久久99久久久不卡 | 校园人妻丝袜中文字幕| 亚洲中文av在线| 久久韩国三级中文字幕| 亚洲欧美一区二区三区黑人 | 国产 精品1| 亚洲国产精品一区二区三区在线| 乱系列少妇在线播放| 成人免费观看视频高清| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 少妇熟女欧美另类| 亚洲av国产av综合av卡| 一本大道久久a久久精品| 日本-黄色视频高清免费观看| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人 | 男人狂女人下面高潮的视频| 国产 一区精品| 亚洲第一av免费看| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 伦精品一区二区三区| 欧美区成人在线视频| 国产精品久久久久成人av| 寂寞人妻少妇视频99o| 人妻少妇偷人精品九色| 免费人妻精品一区二区三区视频| √禁漫天堂资源中文www| 亚洲成人一二三区av| 欧美日韩综合久久久久久| 一级二级三级毛片免费看| 麻豆成人午夜福利视频| 在线播放无遮挡| 久久久午夜欧美精品| 亚洲激情五月婷婷啪啪| 丰满乱子伦码专区| 国产精品久久久久久精品古装| 不卡视频在线观看欧美| 亚洲精品乱码久久久久久按摩| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 亚洲av免费高清在线观看| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 免费久久久久久久精品成人欧美视频 | 一区二区av电影网| 一区二区三区四区激情视频| 精品99又大又爽又粗少妇毛片| 成人毛片60女人毛片免费| 中文字幕精品免费在线观看视频 | 久久这里有精品视频免费| 久久国产乱子免费精品| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 欧美三级亚洲精品| 国产亚洲最大av| 天堂俺去俺来也www色官网| 最近中文字幕2019免费版| 多毛熟女@视频| 涩涩av久久男人的天堂| 国产熟女欧美一区二区| 国产高清有码在线观看视频| 丝袜脚勾引网站| 99精国产麻豆久久婷婷| 欧美国产精品一级二级三级 | 亚洲精品国产av蜜桃| 男女边摸边吃奶| 国产 精品1| 精品酒店卫生间| 午夜福利网站1000一区二区三区| 伦理电影免费视频| 欧美97在线视频| 国产极品粉嫩免费观看在线 | 亚洲美女搞黄在线观看| 最新的欧美精品一区二区|