• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomization of Gelled Propellant Simulant with Carbon Particles

    2015-05-10 06:19:04QIANGHongfuLIUHuHANQilongWANGGuangHANYawei
    含能材料 2015年12期

    QIANG Hong-fu, LIU Hu, HAN Qi-long, WANG Guang, HAN Ya-wei

    (1. 601 Staffroom, Xi'an Hi-Tech Institution, Xi′an 710025, China; 2. 96263 Unit of the Second Artillery, Luoyang 471000, China)

    1 Introduction

    As a new kind of rocket propellant, gelled propellants have advantages for both liquid and solid propellants, including high density, combustion energy, security and long reservation period, etc. However, compared with the traditional liquid propellants, the non-Newtonian character makes the gelled propellants difficult to be atomized. Atomization has attracted widespread and lasting attentions since the beginning of the gel propulsion technology[1-2].

    The addition of energetic particles like carbon, aluminum or boron is essential to gelled propellants, and it may significantly increase the energy content per unit volume of the gelled propellant and improve the performance of gelled propulsion system[3-4]. As the addition of energetic particles would alter the rheological properties of gelled propellant[5], some researches have been made to investigate the atomization characteristics of gelled propellants with energetic particles. Jayaprakash et al[6]investigated the injection and atomization characteristics of gelled kerosene with 30%(mass fraction) Al particles, they found that Sauter mean diameter(SMD) of the gel spray was more sensitive to the impingement angle and was dependent on the injection pressure in a highly non-linear manner. Kampen et al[7-8]detail studied the influence of Al particles content of gelled Jet A-1 fuels on rheology, atomization and combustion. The gels prepared in their research appeared "solid" at unstressed ambient conditions and a distinct yield stress occurred. With different generalized Reynolds numbers, different atomization modes were observed. Baek et al[9]investigated the atomization behavior of C934 Carbopol gels with and without 15% SUS304 nanoparticles. They found the nanoparticles decreased the gel strength and made breakup length of gel with nanoparticles remarkably shorter than that of the pure Carbopol gel.

    Overall, the mechanics of atomization of gelled propellant with energetic particles are still far from being fully understood in these limited researches. In this work, a new simulant containing carbon particles was prepared and used in atomization experiments. The rheological properties were measured and a series of atomization experiments were made. The linear stability theory was adopted to study the breakup characteristics of the liquid sheet.

    2 Experiment

    2.1 Preparation of Gelled Propellant Simulants

    The gelled propellant simulant was prepared by dissolving 1%(mass fraction) high-molecular polymer, 5%(mass fraction) carbon particles with an average diameter of about 5 μm in de-ionized water and mixing with an electric mixer for 20 min at 2000 revolutions per minute. This carbon-loaded simulant is named as S1 in this paper. We also prepared another simulant S2 with 99%(mass fraction) de-ionized water and 1%(mass fraction) high-molecular polymer for comparison. The physical and rheological properties of simulants S1 and S2 are similar to gelled propellant: their densities (ρ) are 1010.1 kg·m-3and 1001.7 kg·m-3, and surface tension coefficients (σ) 0.067 N·m-1and 0.072 N·m-1, respectively. As the shear rate of the gelled propellant is high in atomization. The rheological properties of the simulants were measured by a rotational rheometer when shear rate and by pipe-flowing experiments whenγ≥103s-1.

    The relationship of apparent viscosity (η) and shear rate(γ) can be described by power-law equation, Herschel-Bulkley (HB) equation, Herschel-Bulkley Extended(HBE) equation, etc.[8]. The simulants prepared in this paper appear “syrupy” at unstressed ambient conditions. The experimental results show that the yield stresses (τ0) of the two simulants are very low and both below 10 Pa. Therefore, the yield stress was neglected and the most common power-law equation was adopted.

    (1)

    ηandγof simulants obtained from experiment and the fitted power-law constitutive curves are given in Fig.1, and their physical properties are listed in Table 1. From Fig.1, it can be seen that simulants S1 and S2 are pseudo plastic fluids and theirηdecrease with the increases ofγ. And compared with simulant S2 without carbon particles in Fig.1, simulant S1 shows higher apparent viscosity under the same shear rate than that of S2. The addition of carbon particles increases the consistency coefficient and decreases the flow index of the simulant, which indicates that the addition of carbon particles evidently changes the physical and rheological properties of the gel. As the de-ionized water is main component of the simulants, the densityρand surface tension coefficientσof the two simulants are similar to ones of water (ρ=1000.0 kg·m-3andσ=0.073 N·m-1), as shown in Table 1.

    Fig.1 Apparent viscosity and shear rate of gelled propellant simulants

    Table 1 Physical property of gelled propellant simulants with and without carbon particles

    simulantscarbonparticlesρ/kg·m-3σ/N·m-1power-lawconstitutiveparametersK/Pa·snnS1with1010.10.06716.590.29S2without1001.70.0727.080.37

    2.2 Experimental Apparatus

    Fig.2 is the schematic diagram of gelled propellant atomization experiment system. At the beginning of the experiment, high pressure gas would be filled into the tank to force the gelled propellant simulant to the jet injector across pipes and values. The impingement angle 2θand the jet velocityvjetwere tuned by adjusting the angle of the doublet injectors and changing the mass flow rate by the control value, respectively. The atomization processes were recorded by a Phantom V12.1 high speed camera with 784×800 image resolution and 5 μs shutter speed. The atomization images were passed to the data acquisition system for further analysis. Meanwhile, important data in the experiment, such as mass flow rate, pressure in the tank, pressure in the injectors, etc. were measured and recorded by the data acquisition system during the whole experiment.

    Fig.2 Schematic diagram of gelled propellant atomization experiment system

    2.3 Experimental Design

    In order to analyze the atomization characteristics of gelled propellant simulant with carbon particles, 10 atomization experiments were designed with different impingement angles 2θ, jet velocitiesvjet, injector orifice diametersdand injector orifice length to diameter ratioL/d0, etc., as shown in Table 2.

    The generalized Reynolds number(Regen) was used to describe the flow behavior of the power-law fluid, which is defined as ref.[10]:

    (2)

    whereρpis the density of the power-law fluid.

    Table 2 Conditions for the atomization experiment

    case2θ/(°)vjet/m·s-1d/mmL/d0Regen1601018160626015183211360221861824901018160659015183211690221861827601513.532118602213.56182960100.5813131060101.581806

    3 Results and Analysis

    3.1 Experiment Results and Analysis

    In this paper, the atomization quality is evaluated by the atomization angle (β) and atomization patterns. As we know, when two jets impinge with each other, a fan-shaped liquid sheet forms, and the angle between the left and right rims of the liquid sheet is called atomization angle (β, as shown in Fig.3). Generally, largerβmeans better atomization quality. According to former researches[8,11], with different gels, jet velocities, impingement angles, generalized Reynolds numbers, etc., there are different atomization patterns, including close-rim, open-rim, ligament and fully-developed patterns, etc.[8,11]The close-rim and open rim patterns indicate poor atomization qualities, while the other two indicate better atomization qualities.

    Fig.3 is atomization images with the impingement angle 2θ=60° and different velocities for cases 1-3. As shown in Fig.3a, with a low jet velocity (10.2 m·s-1) andRegen, a fan-shaped liquid sheet forms, and it has a distinct rim at the upstream and breakups into ligaments and large drops downstream. The atomization pattern in Fig. 3a is the so-called “open-rim pattern” with the atomization angleβof about 70°. Fig.3b also shows an open-rim pattern withβ=85° under a larger jet velocity (15.68 m·s-1) andRegen=3211. As shown in Fig.3c, withvjet=22.14 m·s-1andRegen=3211, the rim of the liquid sheet becomes indistinct, and clearer bow-shaped impact waves occurs and makes the liquid sheet more unstable and breakup into more ligaments and drops. The pattern in Fig.3c is called “l(fā)igament pattern”.βin Fig.3c is about 100°. As discussed in Ref.[8], in cases 1-3, the generalized Reynolds numberRegen, which is completely determined by jet velocity, could be adopted as the indication of the atomization quality. LargerRegen(jet velocity) means a larger kinetic energy in jet impingement and would lead to better atomization quality.

    Fig.4 shows atomization images with 2θ=90° and different velocities for cases 4-6. Compared with cases 1-3 in Fig.3, theβin Fig.4 are larger, which are about 80°, 110°, 140° in Fig.4a, Fig.4b, Fig.4c, respectively. Fig.4a shows an open-rim pattern, and Fig.4b and Fig.4c show ligament patterns. The atomization qualities at impingement angle 2θ=90° are better than ones with 2θ=60° and the similar jet velocities.

    Fig.5 shows that the atomization images with ratio of injector orifice length to diameter (L/d0=3.5)under different jet velocities for cases 7 and 8. Compared with case 2 and case 3 withL/d0=8 shown in Fig.3b and Fig.3c, there are no obvious differences in Fig.5. Atomization patterns in Fig.5a and Fig.5b are almost identical to patterns in Fig.3b and Fig.3c respectively, which indicates that there are no essential differences on the flow characteristics of the jets sprayed from injectors withL/d0=3.5 and 8. As a result, the ratio of injector orifice length to diameter has little influences on the atomization patterns.

    Fig.6 shows atomization images with impingement angle 2θ=60° and different injector orifice diameters for cases 9 and 10. As shown in Fig.3a (case 1) and Fig.6, the larger orifice diameters lead to larger mass flow rates and will produce larger liquid sheets. But there are also no essential differences on the atomization patterns of cases 1, 9 and 10, they are all open-rim patterns with almost the same atomization angle about 70°.

    In all the cases studied in this paper, the gelled propellant simulant could hardly to be atomized into fine drops, the main atomization products are ligaments and large drops. Within the investigation conditions, the atomization quality increases with the increase of jet velocity and impingement angle, while the changes of injector length to diameter ratio and the injector orifice diameters influence the atomization patterns little.

    a.vjet=10.2 m·s-1, b.vjet=15.68 m·s-1, c.vjet=22.14 m·s-1,

    β=70°β=85°β=100°

    Fig.3 Atomization images of cases 1-3

    a.vjet=9.77 m·s-1, b.vjet=15.28 m·s-1, c.vjet=21.71 m·s-1

    Fig.4 Atomization images of cases 4- 6

    a.vjet=15.35 m·s-1b.vjet=22.22 m·s-1

    Fig.5 Atomization images case 7 and case 8

    a.vjet=9.80 m·s-1b.vjet=10.49 m·s-1

    d0=0.5 mmd0=1.5 mm

    Fig.6 Atomization images of case 9 and case 10

    3.2 Linear Stability Analysis

    Linear stability theory is widely used to evaluate the instabilities of the liquid sheet[12-13]. In this theory, the liquid sheet instability is mainly due to the aerodynamics interactions between the liquid and its surrounding gas. There are two kinds of disturbances that will occur on the liquid sheet: symmetric and anti-symmetric. Squire[14]showed that the anti-symmetric disturbance played a dominant role on breaking the liquid sheet into fragments. Therefore, only the anti-symmetric disturbance is considered here. Schematic of a moving liquid sheet under anti-symmetric disturbance is shown in Fig.7, a two dimensional liquid sheet moves into a quiescent, inviscid, incompressible gas with velocityUs, the thickness of the liquid sheet is 2hs, the surface tension of liquid isσ, the densities of liquid and gas areρ1andρgrespectively, the density ratio of gas and liquid isRg1=ρg/ρ1. Generally, the wave amplitude on the liquid sheet can be expressed as:

    (3)

    Fig.7 Schematic of a moving liquid sheet under anti-symmetric disturbance

    Chojnaki[15]deduced the dispersion relation for a plan liquid sheet based on the power-law constitutive:

    (4)

    (5)

    (6)

    If the liquid sheet breakups when the wave amplitude reachesηb, the breakup timeτbcan be obtained as follows:

    τb=ln(ηb/η0)/ωi,max

    (7)

    whereωi,maxis the maximum grow rate, then the breakup length can be calculated as:

    Lb=Usln(ηb/η0)/ωi,max

    (8)

    Here ln(ηb/η0) is set to be 12 according to Ref. [13].

    In this paper, the breakup length of the liquid sheet is defined as the axial distance from the impingement point to the point where the liquid sheet along the axis begins to breakup, as shown in Fig.8. We assume the liquid sheet speedUs=0.92vjetaccording to ref. [16]. Solving equation (4) withρ1=1010.1 kg·m-3,ρg=1.225 kg·m-3,K=16.59 Pa·sn,n=0.29,σ=0.067 N·m-1and 2hs=2.0×10-4m under jet velocity of 10 m·s-1(cases 1, 4), 15 m·s-1(cases 2, 5) and 22 m·s-1(cases 3, 6), the effects of sheet velocity on the stability of the liquid sheet can be obtained, as shown in Fig.9. It can be seen that the maximum disturbance wave grow rate increases with the increase of the sheet velocity. It means that the liquid sheet will become more unstable at larger sheet velocities, which agrees well with the experiment results of cases 1-3 and cases 4-6 under the same velocities.

    With equations (4), (7) and (8), the breakup length of the liquid sheet can be predicted. Fig.10 is the comparison of breakup lengths of liquid sheets predicted by linear stability theory and measured from experiments. As shown in Fig.10, the variation trend of breakup lengths of liquid sheets calculated from linear stability theory is consistent with the ones measured from experiments. At a low Weber number, the linear stability analysis evidently overestimates the breakup length when compared with the experiment. The relative error between the predicted and measured breakup lengths is about 24% atWes=128. As the Weber number increases, the relative errors decrease to 14.9% atWes=618. The errors of the predicted values are considered as a results of neglect of instabilities caused by jet impingement in the linear stability theory.

    Fig.8 Definition of the breakup length of the liquid sheet

    Fig.9 Influence of sheet velocityUson the stability of the liquid sheet calculated by linear stability theory

    Fig.10 Comparison of breakup lengths of liquid sheets from linear stability analysis and experiments

    4 Conclusions

    (1) The carbon particles increase the consistency coefficient and decrease the flow index of the simulant S1, which makes simulant S1 show high apparent viscosity under the same shear rate.

    (2) The simulant S1 can only be atomized into ligaments and large drops. The atomization quality improves with the increases of jet velocity and impingement angles, while the changes in injector length to diameter ratio and the injector orifice diameters show little influences on the atomization patterns.

    (3) There are about 14.9%-24% relative errors between the predicted and measured breakup lengths, but the tendency of the breakup lengths predicted by the linear stability theory agrees well with the experiment ones.

    [1] Natan B, Rahimi S. The status of gel propellants in year 2000[J].InternationalJournalofEnergeticMaterialsandChemicalPropulsion, 2002,5(1-6): 172-192.

    [2] LIU Hu, QIANG Hong-fu, WANG Guang. Review on Jet Impingement Atomization on Gelled Propellant[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(7): 697-708.

    [3] Hodge K, Crofoot T, Nelson S. Gelled propellants for tactical missile applications. AIAA 99-2976[R], 1999.

    [4] Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet[J].ProgressinPropulsionPhysics, 2011,2: 499-518.

    [5] Wu Zhijian, Hu Lirong. Performance Research of Metallized Gelled Propellant[J].MissileandSpaceVehicle, 2006, 283(03): 52-55.

    [6] Jayaprakash N, Chakravarthy S R. Impingement Atomization of Gelled Fuels. AIAA 2003-316[R], 2003.

    [7] von Kampen J, Madlener K, Ciezki H K. Characteristic Flow and Spray Properties of Gelled Fuels with Regard to the Impinging Jet Injector Type. AIAA 2006-4573[R], 2006.

    [8] von Kampen J, Alberio F, Ciezki H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].AerospSciTechnol, 2007,11:77-83.

    [9] Baek G, Kim S, Han J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J].JNon-NewtonFluid, 2011,166(21): 1272-1285.

    [10] Metzner A B, Reed C J. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J].AmericanInstituteofChemicalEngineeringJournal, 1955,4(1): 189-204.

    [11] Fu Q, Yang L, Zhuang F. Effects of Orifice Geometry on Spray Characteristics of Impinging Jet Injectors for Gelled Propellants[R].AIAA 2013-3704, 2013.

    [12] Ryan H M, Anderson W E, Pal S, et al. Atomization characteristics of impinging liquid jets[J].JPropulPower, 1995,11(1): 135-145.

    [13] Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets[J].ChemEngSci, 1963,18(3): 203-214.

    [14] Squire H B. Investigation of the instability of a moving liquid film[J].BritishJournalofAppliedPhysics, 1953,4: 167-169.

    [15] Chojnacki K T. Atomization and mixing of impinging non-Newtonian jets[D]. Huntsville: University of Alabama-Huntsville, 1997.

    [16] Heislbetz B, Madlener K, Ciezki H K. Breakup Characteristics of a Newtonian Liquid Sheet formed by a Doublet Impinging Jet Injector.AIAA2007-5694[R], 2007.

    天天一区二区日本电影三级| 午夜久久久久精精品| 一个人免费在线观看电影 | 综合色av麻豆| 国产蜜桃级精品一区二区三区| 久久人人精品亚洲av| 国产一区二区三区视频了| 亚洲av成人一区二区三| 午夜成年电影在线免费观看| www.精华液| 亚洲精品乱码久久久v下载方式 | 国产又黄又爽又无遮挡在线| 亚洲av成人精品一区久久| 不卡av一区二区三区| 亚洲av成人不卡在线观看播放网| 久久久久久大精品| 97超级碰碰碰精品色视频在线观看| 免费在线观看日本一区| ponron亚洲| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜免费激情av| 青草久久国产| 一级毛片女人18水好多| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密| 国产淫片久久久久久久久 | 国产成人影院久久av| 蜜桃久久精品国产亚洲av| 不卡av一区二区三区| 精品久久久久久,| 天天添夜夜摸| 成年女人毛片免费观看观看9| 欧美日本视频| 丁香欧美五月| 啪啪无遮挡十八禁网站| 高清在线国产一区| 国产99白浆流出| 97超视频在线观看视频| 1024手机看黄色片| 国产1区2区3区精品| 黄色 视频免费看| 亚洲精品色激情综合| 嫁个100分男人电影在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av五月六月丁香网| 久久婷婷人人爽人人干人人爱| 日日摸夜夜添夜夜添小说| 国产亚洲精品久久久久久毛片| 国产一区在线观看成人免费| 国产精品久久视频播放| 久久久精品大字幕| 大型黄色视频在线免费观看| 亚洲无线在线观看| 久久精品国产99精品国产亚洲性色| 91在线观看av| 无遮挡黄片免费观看| 黄色视频,在线免费观看| 在线免费观看不下载黄p国产 | 亚洲狠狠婷婷综合久久图片| 亚洲人成伊人成综合网2020| 亚洲午夜理论影院| 精华霜和精华液先用哪个| 俄罗斯特黄特色一大片| 可以在线观看的亚洲视频| 丁香六月欧美| 2021天堂中文幕一二区在线观| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 欧美乱码精品一区二区三区| 亚洲国产精品999在线| 亚洲无线在线观看| 国产亚洲欧美98| 欧美乱码精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 一个人看视频在线观看www免费 | 啪啪无遮挡十八禁网站| 成人亚洲精品av一区二区| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 中文字幕av在线有码专区| 国产精品久久久久久亚洲av鲁大| 欧美zozozo另类| 亚洲avbb在线观看| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| 亚洲精品久久国产高清桃花| 午夜免费激情av| 在线a可以看的网站| 日韩国内少妇激情av| 全区人妻精品视频| 亚洲国产看品久久| 亚洲片人在线观看| 日韩三级视频一区二区三区| 成人午夜高清在线视频| 久久这里只有精品19| 欧美大码av| 特级一级黄色大片| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 国产成人精品无人区| 一进一出抽搐动态| 精品一区二区三区av网在线观看| 无限看片的www在线观看| 亚洲精品在线美女| 日韩欧美 国产精品| 波多野结衣高清作品| av在线天堂中文字幕| 女生性感内裤真人,穿戴方法视频| 欧美日韩乱码在线| 在线观看免费午夜福利视频| 成人性生交大片免费视频hd| 狂野欧美激情性xxxx| 蜜桃久久精品国产亚洲av| 中文字幕av在线有码专区| 变态另类成人亚洲欧美熟女| 国产三级中文精品| 美女黄网站色视频| 好男人在线观看高清免费视频| 国产激情久久老熟女| 99久久99久久久精品蜜桃| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 亚洲精品中文字幕一二三四区| 99久国产av精品| 色综合婷婷激情| 久久久久久人人人人人| 视频区欧美日本亚洲| av视频在线观看入口| 最新在线观看一区二区三区| 日本一本二区三区精品| 国产精品乱码一区二三区的特点| 久久久久久国产a免费观看| 天堂√8在线中文| av女优亚洲男人天堂 | 啦啦啦免费观看视频1| 夜夜爽天天搞| 亚洲天堂国产精品一区在线| 老司机在亚洲福利影院| 91av网一区二区| 长腿黑丝高跟| 久久中文字幕人妻熟女| 男女视频在线观看网站免费| 法律面前人人平等表现在哪些方面| 一个人看的www免费观看视频| 亚洲一区二区三区不卡视频| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧洲综合997久久,| 精品一区二区三区四区五区乱码| 搞女人的毛片| 久久香蕉精品热| 国产主播在线观看一区二区| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| 国产三级在线视频| 香蕉丝袜av| 亚洲第一欧美日韩一区二区三区| 亚洲成人免费电影在线观看| 日韩欧美免费精品| 亚洲欧洲精品一区二区精品久久久| 成年女人看的毛片在线观看| 久久久精品欧美日韩精品| 成人鲁丝片一二三区免费| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 久久午夜亚洲精品久久| xxx96com| 九色国产91popny在线| 欧美成人性av电影在线观看| 51午夜福利影视在线观看| 亚洲九九香蕉| 舔av片在线| 我要搜黄色片| 国产精品爽爽va在线观看网站| 日韩欧美三级三区| 神马国产精品三级电影在线观看| 男人舔奶头视频| 丁香欧美五月| 天堂动漫精品| 搡老妇女老女人老熟妇| 午夜精品在线福利| 欧美丝袜亚洲另类 | 97人妻精品一区二区三区麻豆| 午夜日韩欧美国产| 香蕉久久夜色| 亚洲 欧美 日韩 在线 免费| 日本免费a在线| 精品一区二区三区视频在线 | 一级a爱片免费观看的视频| 国内少妇人妻偷人精品xxx网站 | 丰满的人妻完整版| 宅男免费午夜| 母亲3免费完整高清在线观看| 国产高清三级在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 日韩欧美一区二区三区在线观看| 国产精品日韩av在线免费观看| 国产精品久久久久久精品电影| 神马国产精品三级电影在线观看| 日本黄大片高清| 成人一区二区视频在线观看| 真实男女啪啪啪动态图| 一卡2卡三卡四卡精品乱码亚洲| 欧美绝顶高潮抽搐喷水| 美女黄网站色视频| 俄罗斯特黄特色一大片| 亚洲av熟女| 男人舔女人下体高潮全视频| 波多野结衣高清无吗| 日韩欧美 国产精品| 色哟哟哟哟哟哟| 波多野结衣高清无吗| 欧美午夜高清在线| 偷拍熟女少妇极品色| 一本一本综合久久| 18禁黄网站禁片午夜丰满| 成人性生交大片免费视频hd| e午夜精品久久久久久久| svipshipincom国产片| 成人国产综合亚洲| 亚洲精品中文字幕一二三四区| a在线观看视频网站| 国产精华一区二区三区| 一本一本综合久久| 99久久综合精品五月天人人| 精品国内亚洲2022精品成人| 一区二区三区激情视频| 精品久久久久久久毛片微露脸| 精品99又大又爽又粗少妇毛片 | 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| 国产一区二区在线观看日韩 | 一个人看视频在线观看www免费 | 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看| 国产免费av片在线观看野外av| tocl精华| 国内精品久久久久精免费| x7x7x7水蜜桃| 99精品久久久久人妻精品| 久久久久国产一级毛片高清牌| 亚洲av片天天在线观看| 亚洲成人免费电影在线观看| 精品国产美女av久久久久小说| 成人午夜高清在线视频| 久久久国产成人精品二区| 超碰成人久久| 久久精品综合一区二区三区| 99热这里只有是精品50| 热99在线观看视频| 国产成人欧美在线观看| 男人舔奶头视频| 久久久久九九精品影院| 国产精品一区二区三区四区免费观看 | 国产高清三级在线| 一级黄色大片毛片| 超碰成人久久| 天堂影院成人在线观看| 熟妇人妻久久中文字幕3abv| 成人国产一区最新在线观看| 天堂√8在线中文| 亚洲无线在线观看| 两性夫妻黄色片| 真实男女啪啪啪动态图| 麻豆一二三区av精品| 国产极品精品免费视频能看的| 国产免费av片在线观看野外av| 欧美激情在线99| 啦啦啦观看免费观看视频高清| 一区福利在线观看| 成年女人毛片免费观看观看9| av天堂中文字幕网| 欧美黄色片欧美黄色片| 久久精品91无色码中文字幕| 99热6这里只有精品| 久久草成人影院| 免费观看精品视频网站| 欧美乱色亚洲激情| 动漫黄色视频在线观看| 午夜福利欧美成人| 51午夜福利影视在线观看| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 成年免费大片在线观看| 99国产极品粉嫩在线观看| 国内毛片毛片毛片毛片毛片| 日本撒尿小便嘘嘘汇集6| 国产av麻豆久久久久久久| 999精品在线视频| 麻豆国产97在线/欧美| 桃红色精品国产亚洲av| 国产精品久久电影中文字幕| 欧美日韩瑟瑟在线播放| 日韩欧美 国产精品| 久久99热这里只有精品18| 偷拍熟女少妇极品色| 狂野欧美激情性xxxx| 国产精品久久电影中文字幕| 亚洲午夜理论影院| 日韩精品青青久久久久久| 久久中文字幕人妻熟女| 99久久99久久久精品蜜桃| 哪里可以看免费的av片| 中出人妻视频一区二区| 人人妻人人看人人澡| 中出人妻视频一区二区| 亚洲无线观看免费| 在线观看一区二区三区| 在线观看午夜福利视频| 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| 丰满人妻一区二区三区视频av | 午夜福利在线观看免费完整高清在 | 欧美丝袜亚洲另类 | 在线观看免费午夜福利视频| 亚洲一区二区三区色噜噜| 中国美女看黄片| 成人高潮视频无遮挡免费网站| 中文字幕熟女人妻在线| 韩国av一区二区三区四区| 国产午夜精品久久久久久| 淫妇啪啪啪对白视频| 国产精品久久久久久精品电影| 亚洲avbb在线观看| 99re在线观看精品视频| 亚洲av电影不卡..在线观看| 国产主播在线观看一区二区| 国产精品永久免费网站| 国产高清激情床上av| 久久久久国产一级毛片高清牌| 午夜影院日韩av| 国产成人av教育| 国产精品98久久久久久宅男小说| 久久久久久国产a免费观看| 精品欧美国产一区二区三| 99精品欧美一区二区三区四区| 在线观看一区二区三区| 嫩草影院入口| 国产激情偷乱视频一区二区| 天堂√8在线中文| 天堂网av新在线| 亚洲,欧美精品.| 级片在线观看| 国产精品香港三级国产av潘金莲| 亚洲av电影不卡..在线观看| 亚洲美女视频黄频| 国产精品永久免费网站| 久久天堂一区二区三区四区| 高清在线国产一区| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 国产成人一区二区三区免费视频网站| 久久久久亚洲av毛片大全| 狂野欧美白嫩少妇大欣赏| 国产精品综合久久久久久久免费| 精品熟女少妇八av免费久了| 伊人久久大香线蕉亚洲五| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 久99久视频精品免费| 悠悠久久av| 国产真实乱freesex| 我的老师免费观看完整版| 香蕉国产在线看| 三级国产精品欧美在线观看 | 在线观看免费视频日本深夜| 十八禁人妻一区二区| 99视频精品全部免费 在线 | 午夜福利在线在线| 国产视频内射| av国产免费在线观看| 99久国产av精品| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 精品国产三级普通话版| 国产综合懂色| www.999成人在线观看| 国产成人av激情在线播放| 亚洲精品色激情综合| 精品一区二区三区av网在线观看| 久久久水蜜桃国产精品网| 免费观看精品视频网站| 久久久久久大精品| 成人永久免费在线观看视频| 91久久精品国产一区二区成人 | 久久久久久九九精品二区国产| 国产淫片久久久久久久久 | 在线国产一区二区在线| 欧美性猛交╳xxx乱大交人| 亚洲国产日韩欧美精品在线观看 | 久久草成人影院| 日韩 欧美 亚洲 中文字幕| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 国产在线精品亚洲第一网站| 国产精品九九99| 中文字幕av在线有码专区| 淫秽高清视频在线观看| 日韩国内少妇激情av| 欧美zozozo另类| 一个人看的www免费观看视频| 又大又爽又粗| 成人av一区二区三区在线看| 免费在线观看亚洲国产| 欧美在线黄色| 国产高清videossex| 丰满人妻一区二区三区视频av | 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 久久久久九九精品影院| 日本免费一区二区三区高清不卡| 成年免费大片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一电影网av| 中文字幕人妻丝袜一区二区| 日韩欧美在线乱码| 成人午夜高清在线视频| 夜夜看夜夜爽夜夜摸| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 99在线视频只有这里精品首页| 国产69精品久久久久777片 | 看片在线看免费视频| 国产又色又爽无遮挡免费看| 国产成人aa在线观看| 日韩中文字幕欧美一区二区| 99久久无色码亚洲精品果冻| 国产亚洲精品一区二区www| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 黄色 视频免费看| 青草久久国产| 在线a可以看的网站| 欧美激情在线99| 国产亚洲精品av在线| 19禁男女啪啪无遮挡网站| 国产高清三级在线| 亚洲国产看品久久| 国内精品久久久久久久电影| 国产午夜福利久久久久久| 一个人观看的视频www高清免费观看 | 中文字幕最新亚洲高清| 国内揄拍国产精品人妻在线| 少妇的丰满在线观看| 嫩草影视91久久| 亚洲黑人精品在线| 青草久久国产| 国产亚洲欧美98| 亚洲真实伦在线观看| 麻豆国产av国片精品| 精品国产亚洲在线| 18禁裸乳无遮挡免费网站照片| 国语自产精品视频在线第100页| 欧美激情在线99| 国产精品国产高清国产av| 一个人免费在线观看电影 | 人妻夜夜爽99麻豆av| 性色av乱码一区二区三区2| 国产精品99久久久久久久久| 亚洲精品中文字幕一二三四区| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩卡通动漫| 手机成人av网站| 精品免费久久久久久久清纯| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 黑人操中国人逼视频| 90打野战视频偷拍视频| 午夜日韩欧美国产| 久久久久久大精品| 丁香六月欧美| 天堂√8在线中文| 欧美一级a爱片免费观看看| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕精品亚洲无线码一区| 国产一区二区三区视频了| 午夜福利在线观看吧| 一级黄色大片毛片| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 美女被艹到高潮喷水动态| 国产精品九九99| 一区二区三区国产精品乱码| 黄片小视频在线播放| 男女那种视频在线观看| 久久中文看片网| 在线播放国产精品三级| 精品国产美女av久久久久小说| 精品久久久久久成人av| 日本五十路高清| 99久久国产精品久久久| 最好的美女福利视频网| 在线看三级毛片| 亚洲自拍偷在线| 激情在线观看视频在线高清| 听说在线观看完整版免费高清| 国产精品电影一区二区三区| 亚洲av免费在线观看| 怎么达到女性高潮| 老汉色av国产亚洲站长工具| 成年女人永久免费观看视频| 久久伊人香网站| 美女免费视频网站| 亚洲一区高清亚洲精品| 久久久久久九九精品二区国产| 这个男人来自地球电影免费观看| 亚洲色图av天堂| 搡老妇女老女人老熟妇| 99久久成人亚洲精品观看| 白带黄色成豆腐渣| a级毛片在线看网站| 亚洲精品在线美女| 国产麻豆成人av免费视频| av天堂在线播放| 老司机午夜福利在线观看视频| 最新中文字幕久久久久 | 欧美日韩国产亚洲二区| 国内毛片毛片毛片毛片毛片| 日本熟妇午夜| 欧美黑人巨大hd| 国产伦一二天堂av在线观看| 偷拍熟女少妇极品色| 久久精品国产综合久久久| 精品久久久久久久毛片微露脸| 在线国产一区二区在线| 欧美性猛交╳xxx乱大交人| 免费看光身美女| 麻豆av在线久日| 国产午夜福利久久久久久| tocl精华| 免费在线观看影片大全网站| 欧美日韩一级在线毛片| 午夜福利在线在线| 国产淫片久久久久久久久 | 首页视频小说图片口味搜索| 少妇丰满av| 伦理电影免费视频| 天堂动漫精品| 99久久99久久久精品蜜桃| 性色av乱码一区二区三区2| 国产精品98久久久久久宅男小说| 香蕉国产在线看| 国产精品影院久久| 人妻久久中文字幕网| 国产蜜桃级精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 欧美另类亚洲清纯唯美| 一进一出好大好爽视频| 亚洲在线观看片| 美女高潮喷水抽搐中文字幕| 亚洲av成人精品一区久久| 色吧在线观看| 欧美最黄视频在线播放免费| 俄罗斯特黄特色一大片| 国内精品一区二区在线观看| 嫩草影院入口| 成人av一区二区三区在线看| 日本黄色片子视频| 丁香欧美五月| 久久人妻av系列| 19禁男女啪啪无遮挡网站| 国产精品99久久久久久久久| а√天堂www在线а√下载| 麻豆成人av在线观看| 可以在线观看的亚洲视频| 亚洲自拍偷在线| 亚洲第一电影网av| 亚洲激情在线av| 国产1区2区3区精品| 一夜夜www| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一及| 小蜜桃在线观看免费完整版高清| 国产高清有码在线观看视频| 在线观看免费视频日本深夜| 日韩有码中文字幕| 亚洲成人精品中文字幕电影| 欧美中文综合在线视频| 亚洲18禁久久av| 国产亚洲精品一区二区www| 亚洲五月天丁香| 18禁观看日本| 欧美日韩亚洲国产一区二区在线观看| 免费电影在线观看免费观看| 看片在线看免费视频| 欧美日韩乱码在线| 亚洲熟女毛片儿| 午夜激情福利司机影院| 亚洲国产看品久久| 久久国产精品人妻蜜桃| a级毛片a级免费在线| 免费无遮挡裸体视频| 最近在线观看免费完整版| 18禁观看日本| 亚洲国产中文字幕在线视频| 波多野结衣高清作品| 亚洲自偷自拍图片 自拍| 在线观看午夜福利视频| 此物有八面人人有两片|