• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-isothermal Decomposition Kinetics,Specific Heat Capacity and Adiabatic Time-to-explosion of Cu(pn)2(FOX-7)2

    2015-05-10 05:43:16GONGXiangSUNQianXUKangzhenSONGJirongZHAOFengqi
    含能材料 2015年12期

    GONG Xiang, SUN Qian, XU Kang-zhen, SONG Ji-rong, ZHAO Feng-qi

    (1. School of Chemical Engineering, Northwest University, Xi′an 710069, China; 2. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

    1 Introduction

    1,1-Diamino-2,2-dinitroethylene (FOX-7) is a high-energy material with high thermal stability and low sensitivity to impact and friction[1-2]. Since first reported in 1998, FOX-7 has been considered as a research emphasis of energetic materials and will be used in insensitive ammunition and solid propellant. FOX-7 is a representative “push-pull” nitro-enamine, which possesses a highly polarized carbon-carbon double bond with positive and negative charges being stabilized by the amino group and nitro group respectively, and presents certain acidic properties[3-9]. Many researches have been studied on the synthesis[5-6], mechanism[4], molecule structure[2], theoretical calculation[11], thermal behavior[12], explosive performance and application[28]of FOX-7. Existing in manifold tautomers and resonances, FOX-7 can react with some nucleophiles to prepare many new energetic derivatives[11]. Some energetic salts, such as potassium salt, rubidium salt, cesium salt and guanidine salt, have been reported[11-12]. Other salts and metal complexes of FOX-7 also can be synthesized through replacement reaction, such as Cu(NH3)2(FOX-7)2, Cu(CH3NH3)2(FOX-7)2, [Cu(en)2(FOX-7)2(H2O)]·H2O, [Cu(phen)2FOX-7]Cl·3H2O, Zn(NH3)2(FOX-7)2and Zn(en)2(FOX-7)2[14-17].

    Many energetic Cu(Ⅱ) complexes were often used as detonating explosive or combustion catalyst of solid propellant[18-21], so we hope that Cu-FOX-7 complexes can also be used as energetic catalyst. Cu(pn)2(FOX-7)2is a new typical FOX-7 complex, and its synthesis and crystal structure have been reported[16]. In this paper, we studied the decomposition kinetics of Cu(pn)2(FOX-7)2, determined specific heat capacity and calculated adiabatic time-to-explosion for further estimating its thermal stability.

    2 Experimental

    2.1 Synthesis

    All chemicals used in synthesis were analytical-grade commercial products. FOX-7 came from Xi'an Modern Chemistry Research Institute (purity>99%). K(FOX-7)·H2O was prepared according to the ref.[13].

    Cu(pn)2(FOX-7)2(pn=1,3-diaminopropane) was prepared according to ref.[16] as follows: K(FOX-7)·H2O (2 mmol) and Cu(NO3)2·3H2O (1 mmol in 3 mL water) were stirred in 1,3-diaminopropane solution (78 mmol) for 30 min to give a clear solution at room temperature. Gradually purple crystals slowly appeared and were identified as Cu(pn)2(FOX-7)2. (yield 46%, 0.233 g). IR (KBr,ν/cm-1): 3408, 3294, 3226, 2931, 2359, 2025, 1659, 1500, 1344, 1281, 1132, 1029, 926, 829, 741, 681, 501. Anal. Calcd.(%) for C10H26N12O8Cu: C 23.21, H 5.32, N 33.68; found: C 23.14, H 5.57, N 33.22.

    2.2 Physical Measurements

    The DSC experiments were performed using a DSC200 F3 apparatus (NETZSCH, Germany) under a nitrogen atmosphere at a flow rate of 80 mL·min-1. The heating rates were 5.0, 7.5, 10.0 ℃·min-1and 12.5 ℃·min-1from ambient temperature to 350 ℃, respectively. The TG/DTG experiment was performed using a SDT-Q600 apparatus (TA, USA) under a nitrogen atmosphere at a flow rate of 100 mL·min-1. The heating rate was 5.0 ℃·min-1from ambient temperature to 350 ℃. The specific heat capacity was determined using a Micro-DSCⅢ apparatus (SETARAM, France). The heating rate used was 0.15 ℃·min-1from 10 ℃ to 80 ℃. The sample mass was 115.7 mg.

    The impact sensitivity was determined by using a ZBL-B impact sensitivity instrument (NACHEN,China). The mass of drop hammer is 2.5 kg. The sample mass for every test is 30 mg.

    3 Results and Discussion

    3.1 Thermal Decomposition Behavior

    DSC curves of Cu(pn)2(FOX-7)2at various heating rates are shown in Fig.1. TG-DTG curve of Cu(pn)2(FOX-7)2sample at a heating rate of 5.0 ℃·min-1is given in Fig.2.

    Fig.1 DSC curves of Cu(pn)2(FOX-7)2

    Fig.2 TG/DTG curve of Cu(pn)2(FOX-7)2at 5 ℃·min-1

    Fig.1 shows that the DSC curves of Cu(pn)2(FOX-7)2exhibit two exothermic peaks, which are in agreement with the results of TG/DTG, and the peak temperatures go up with the increase of heating rate. Fig. 2 illustrates that the thermal decomposition of Cu(pn)2(FOX-7)2can be divided into two decomposition processes. The first is an intense decomposition process, which occurs at 140-185 ℃ with a mass loss of 35.30%. The extrapolated onset temperature, peak temperature and heat of decomposition are 155.47 ℃, 156.49 ℃ and 816.5 J·g-1at the heating rate of 5.0 ℃·min-1. The second stage is a slow decomposition process at the temperature range of 185-270 ℃ with a mass loss of about 14.19%. The peak temperature is 215.8 ℃ at a heating rate of 5.0 ℃·min-1. The final residue at 350 ℃ is about 41.74%. Comparing with the thermal decomposition of Cu(NH3)2(FOX-7)2[14], they exhibits similar thermal decomposition processes, but the thermal stability of Cu(pn)2(FOX-7)2is slightly lower than that of Cu(NH3)2(FOX-7)2, which is due to the introduce of long carbon chain.

    3.2 Non-isothermal Decomposition Kinetics

    In order to obtain the kinetic parameters(the apparent activation energy (E) and pre-exponential factor (A)) of the first exothermic decomposition process, Kissinger method[21]and Ozawa method[22]were employed. The determined values of the beginning temperature (T0), extrapolated onset temperature (Te) and peak temperature (Tp) at the different heating rates are listed in Table 1. The values ofT00andTe0[22]corresponding toβ→0 obtained by Eq. (1) are also listed in Table 1.

    T0i or ei=T00 or e0+nβi+mβi,i=1-4

    (1)

    wherenandmare coefficients.

    The calculated kinetic parameters (EandA) in Table 1 show that theEobtained by Kissinger method is consistent with that by Ozawa method. The linear correlation coefficients (r) are all close to 1. So, the result is credible.

    Tversusα(the conversion degree) curves at different heating rates are shown in Fig.3. The values ofEOfor any given value ofαwere obtained and shown in Fig.4. The values ofEOsteadily distribute from 142 to 158 kJ·mol-1in theαrange of 0.175-0.875, and the average value ofEOis 151.9 kJ·mol-1, which is in approximate agreement with that obtained by Kissinger method and Ozawa method from only peak temperature values (163.5 and 162.3 kJ·mol-1, respectively). So, the values were used to check the validity ofEby other methods.

    The integral equations (The general integral equation, The universal integral equation, MacCallum-Tanner equation,atava-esták equation and Agrawal equation) were cited to obtain the values ofE,Aand the most probable kinetic model function [f(α)] from each DSC curve[24]. Forty-one types of kinetic model functions taken from Ref. [24] and experimental data form each DSC curve were put into the above five integral equations for calculating, respectively. The values were obtained and shown in Table 2. So, the most probable kinetic model function is classified asf(α)=3α2/3(No. 23 equation, Mampel power law,n=1/3), according to the unanimity rule of calculation results from each model equation[24]. The kinetic equation can be described as:

    Table 1 The values ofT0,Te,Tp,T00,Te0and kinetic parameters of the first exothermic decomposition process for Cu(pn)2(FOX-7)2determined from DSC curves at various heating rates (β)

    β/℃·min-1T0/℃Te/℃Tp/℃T00/℃Te0/℃EK/kJ·mol-1log(A/s-1)rKEO/kJ·mol-1rO5.0147.3155.5156.67.5150.4159.3160.110.0152.9161.7162.012.5155.1163.6165.2139.8145.6163.517.830.9908162.30.9915

    Note: Subscript K, data obtained by Kissinger method; subscript O, data obtained by Ozawa method.

    (2)

    Fig.3Tvsαcurves for the decomposition reaction of Cu(pn)2(FOX-7)2at different heating rates

    Fig.4EOvsαcurve for the decomposition reaction of Cu(pn)2(FOX-7)2by Ozawa method

    Table 2

    β/℃·min-1Eq.E/kJ·mol-1log/(A/s-1)r5.0thegeneralintegralequation189.921.00.9665theuniversalintegralequation187.319.40.9656MacCallum-Tannerequation189.820.90.9688?atava-?estákequation187.420.70.9688Agrawalequation189.921.00.96657.5thegeneralintegralequation180.519.80.9694theuniversalintegralequation178.018.20.9687MacCallum-Tannerequation180.419.80.9716?atava-?estákequation178.519.60.9716Agrawalequation180.519.80.969410.0thegeneralintegralequation154.716.70.9785theuniversalintegralequation152.215.10.9778MacCallum-Tannerequation154.416.60.9803?atava-?estákequation154.016.60.9803Agrawalequation154.716.60.978512.5thegeneralintegralequation133.714.10.9743theuniversalintegralequation131.312.60.9734MacCallum-Tannerequation133.314.00.9768?atava-?estákequation134.114.10.9768Agrawalequation133.714.10.9743mean163.917.5

    3.3 Self-accelerating Decomposition Temperature and Critical Explosion Temperature

    The self-accelerating decomposition temperature (TSADT) and critical temperature of thermal explosion (Tb) are two important parameters required to ensure safe storage and process operations for energetic materials and then to evaluate the thermal stability[24-25].TSADTandTbcan be obtained by Eq. (3) and Eq. (4), respectively.

    TSADT=Te0

    (3)

    (4)

    TSADTandTbfor Cu(pn)2(FOX-7)2are 145.6 ℃ and 146.7 ℃, respectively, which are similar with those of Cu(NH3)2(FOX-7)2as 145.5 ℃ and 156.2 ℃[26], but much lower than those of FOX-7 as 206.0 ℃ and 207.1 ℃[27]. Admittedly, the thermal stability of FOX-7 all declines when it becomes salts or complexes, and the decomposition process also becomes severe.

    3.4 Specific Heat Capacity

    Figure 5 shows the result of Cu(pn)2(FOX-7)2measured by a continuous specific heat capacity mode of Micro-DSCⅢ. In determined temperature range, specific heat capacity presents a good quadratic relationship with temperature. Specific heat capacity equation of Cu(pn)2(FOX-7)2is :

    cp=-2.6824+1.9441×10-2T-2.0494×10-5T2

    (285.0 K

    (5)

    wherecpis the specific heat capacity in J·g-1·K-1.

    The molar heat capacity of Cu(pn)2(FOX-7)2is 653.79 J·mol-1·K-1at 298.15 K.

    Fig.5 Determination results of the continuous specific heat capacity of Cu(pn)2(FOX-7)2

    3.5 Adiabatic Time-to-explosion

    The adiabatic time-to-explosion[24, 28]is also an important parameter for evaluating the thermal stability of energetic materials and can be calculated by Eqs. (6) and (7).

    (6)

    (7)

    whereTis the absolute temperature in K,tis the adiabatic time-to-explosion in s,Qis the exothermic values in J·mol-1,Ais the pre-exponential factor in s-1,Eis the apparent activation energy of the thermal decomposition reaction in J·mol-1,Ris the gas constant in J·mol-1·K-1,f(α) is the most probable kinetic model function andαis the conversion degree.

    The adiabatic time-to-explosion equation is:

    (8)

    where the limit of temperature integration is fromT00toTb.

    In fact, the value ofαof energetic materials from the beginning thermal decomposition to thermal explosion in the adiabatic conditions is very small, and it is very difficult to obtain the most probable kinetic model function [f(α)] at the process. So, Power-low model [Eq.(9)], Reaction-order model [Eq.(10)] and Avrami-Erofeev model [Eq.(11)] were separately used to estimate the adiabatic time-to-explosion[24, 29]. The calculation results are listed in Table 3.

    f(α)=nα(n-1)/n

    (9)

    f(α)=(1-α)n

    (10)

    f(α)=n(1-α)[-ln(1-α)](n-1)/n

    (11)

    Table 3 The calculation results of adiabatic time-to-explosion

    equationrateordermodeltime/sEq.9n=1f(α)=125.55n=2f(α)=2α1/266.86n=3f(α)=3α2/377.39n=4f(α)=4α3/476.48Eq.10n=0f(α)=125.55n=1f(α)=1-α26.51n=2f(α)=(1-α)227.52Eq.11n=1f(α)=1-α26.51n=2f(α)=2(1-α)[-ln1-α()]1/268.74n=3f(α)=3(1-α)[-ln1-α()]2/379.31n=4f(α)=4(1-α)[-ln1-α()]3/478.26

    From Table 3, we can see that the calculation results exhibit some deviation and the decomposition model has big influence on the estimating result of adiabatic time-to-explosion. Form the results, the adiabatic time-to-explosion of Cu(pn)2(FOX-7)2is calculated to about 77 s. The time can be proved credible according to the change of DSC curves in the exothermic decomposition process.

    3.6 Sensitivity

    The experimental results indicate that the characteristic drop height (H50) of Cu(pn)2(FOX-7)2is 71 cm (about >14 J). Explosion probability for friction sensitivity is 40 % (25 time experiments). So, Cu(pn)2(FOX-7)2is relatively less sensitive. Moreover, the impact sensitivity of Cu(pn)2(FOX-7)2is lower than that of RDX (>7.5 J), but higher than that of FOX-7 (>24.7 J)[30].

    4 Conclusions

    (1) The thermal decomposition of Cu(pn)2(FOX-7)2exhibits two exothermic processes. The non-isothermal decomposition kinetic equation of the first process is dα/dT=(1017.83/β)3α2/3exp(-1.635×105/RT). The self-accelerating decomposition temperature and critical temperature of thermal explosion are 145.6 and 146.7 ℃, respectively.

    (2) Specific heat capacity equation of Cu(pn)2(FOX-7)2iscp=-2.6824+1.9441×10-2T-2.0494×10-5T2(285.0 K14 J) (RDX>7.5 J).

    [1] Latypov N V, Bergman J, Langlet A, et al. Synthesis and reaction of 1,1-diamino-2,2-dinitroethylene[J].Tetrahedron, 1998, 54: 11525-11536.

    [2] Bemm U, ?stmark H.1,1-Diamino-2,2-dinitroethylene: a novel energetic material with infinite layers in two dimensions[J].ActaCrystallographicaSectionC, 1998, 54: 1997-1999.

    [3] Trzciński W A, Cudzilo S, Chylek Z, et al. Detonation properties and thermal behavior of FOX-7-based explosives[J].JournalofEnergeticMaterials, 2008, 31: 72-85.

    [4] Ek S, Ottis J, Dudek K, et al. Scalable synthesis of 1,1-diamino-2,2-dinitroethene without hazardous intermediates or by-products[J].JournalofEnergeticMaterials, 2013, 31: 87-99.

    [5] Anniyappan M, Talawar M B, Gore G M, et al. Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene(FOX-7) and its salts[J].JournalofHazardousMaterials, 2006, 137: 812-819.

    [6] Cai H Q, Shu Y J, Yu W F, et al. Research development of 1,1-diamino-2,2-dinitroethylene[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2004, 12: 124-128.

    [7] Buszewski B, Michel M, Cudzilo S, et al. High performance liquid chromatography of 1,1-diamino-2,2-dinitroethene and some intermediate products of its synthesis[J].JournalofHazardousMaterials, 2009, 164: 1051-1058.

    [8] Herve G, Guy J, Latypov N. The reactivity of 1,1-diamino-2,2-dinitroethene (FOX-7)[J].Tetrahedron, 2005, 61: 6743-6748.

    [9] Sun Q, Li Y F, Xu K Z, et al. Crystal structure and enthalpy of combustion of AEFOX-7[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(12) accept.

    [10] Xu K Z, Song J R, Yang X, et al. Molecular, crystal structure and theoretical calculation and thermal behavior of 2-(1,1-dinitromethylene)-1,3-diazepentane[J].JournalofMolecularStructure, 2008, 891: 340-345.

    [11] Xu K Z, Chang C R, Song J R, et al. Preparation, crystal structure and theoretical calculation of G(FOX-7)[J].ChineseJournalofChemistry, 2008, 26:495-499.

    [12] Luo J A, Xu K Z, Wang M, et al. Syntheses and thermal behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O [J].BulletinoftheKoreanChemistrySociety, 2010, 31(10): 2867-2872.

    [13] Xu K Z, Zuo X G, Song J R, et al. Preparation, crystal structure and thermal behavior of K(FOX-7)·H2O[J].ChemicalJournalofChineseUniversities, 2010, 31: 638-643.

    [14] Chen Y S, Xu K Z, Wang M, et al. A review on reactivity of 1,1-diamino-2,2-dinitromethene(FOX-7)[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 120: 120-125.

    [15] Garg S, Gao H X , Parrish D A, et al. FOX-7 (1,1-diamino-2,2-dinitroethene): trapped by copper and amines[J].InorganicChemistry, 2011, 50: 390-395.

    [16] Vo T T, Parrish D A, Shreeve J M. 1,1-Diamino-2,2-dintroethene (FOX-7) in copper and nickel diamine complexes and copper FOX-7[J].InorganicChemistry, 2012, 51: 1963-1968.

    [17] He F, Xu K. Z, Zhang H, et al. Two new copper-FOX-7 complexes: synthesis, crystal structure, and thermal behavior[J].JournalofCoordinationChemistry, 2013, 66(5): 845-855.

    [18] Yang Q, Chen S P, Xie G, Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2and effect on thermal decomposition of ammonium perchlorate[J].JournalofHazardousMaterials, 2011, 197: 199-203.

    [19] Stierstorfer J, Tarantik K R, Klap?tke T M, et al. New energetic materials: functionalized 1-ethyl-5-aminotetrazoles and 1-ethyl-5-nitriminotetrazoles[J].Chemistry-AEuropeanJournal, 2009, 15: 5775-5792.

    [20] Klap?tke T M, Stieratorfer J, Weber B. New energetic materials: synthesis and characterization of copper 5-nitriminotetrazolates[J].InorganicaChimicaActa, 2009, 362:2311-2320.

    [21] Gao Z, Huang J, Xu K Z, et al, Synthesis, structural characterization and thermal properties of a new energetic zinc-FOX-7 complex[J].JournalofCoordintionChemistry, 2013, 66 (20): 3572-3580.

    [22] Kissinger H E. Reaction kinetics in differential thermal analysis[J].AnalyticalChemistry, 1957, 29: 1702-1706.

    [23] Ozawa T. A method of analying thermogravimetric data[J].BulletinofChemicalSocietyJpn, 1965, 38: 1881-1886.

    [24] Hu R Z, Gao S L, Zhao F Q, et al. Thermal Analysis Kinetics (2th)[M]. Beijing: Science Press, 2008: 151-155.

    [25] Zhang T L, Hu R Z, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC[J].ThermochimicaActa,1994, 244: 171-176.

    [26] Qiu Q Q, Gao Z, Chen Y S, et al. Non-thermal decomposition kinetics of Cu(NH3)2(FOX-7)2[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2014, 22(2): 206-209.

    [27] Gao H X, Zhao F Q, Hu R Z, et al. Thermochemical properties, thermal behavior and decomposition mechanism of 1,1-diamino-2,2dinitroethylene (DADE)[J].ChineseJournalofChemistry, 2006, 24: 177-181.

    [28] Xu K Z, Song J R, Zhao F Q, et al. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7)[J].JournalofHazardousMaterials, 2008, 158: 333-339.

    [29] Vyzovkin S, Burnham A K, Criado J M, et al. ICTKA kinetics committee recommendations for performing kinetic computations on thermal analysis data[J].ThermochimicaActa, 2011, 520: 1-19.

    [30] Tian Y D, Zhao F Q, Liu J H. Handbook of Energetic Materials and the Related Compounds[M]. Beijing: National Defense Industry Press, 2011, 135.

    午夜久久久久精精品| 亚洲av不卡在线观看| 欧美bdsm另类| 久久人妻av系列| 人人妻,人人澡人人爽秒播| 国产视频一区二区在线看| 欧美黑人巨大hd| 毛片女人毛片| 一区二区三区激情视频| 国产av麻豆久久久久久久| 日韩 亚洲 欧美在线| 在线a可以看的网站| 很黄的视频免费| 我要搜黄色片| 婷婷精品国产亚洲av在线| 18禁黄网站禁片午夜丰满| 亚洲av免费在线观看| eeuss影院久久| 男女做爰动态图高潮gif福利片| 亚州av有码| 欧美性猛交黑人性爽| 国产精品女同一区二区软件 | 国产成人av教育| 国产麻豆成人av免费视频| 欧美丝袜亚洲另类 | 欧美xxxx黑人xx丫x性爽| 日本一二三区视频观看| 两人在一起打扑克的视频| 如何舔出高潮| 天堂影院成人在线观看| 日韩大尺度精品在线看网址| 老女人水多毛片| 午夜视频国产福利| 国产精品乱码一区二三区的特点| 亚洲精品一卡2卡三卡4卡5卡| 黄色日韩在线| 日韩欧美国产一区二区入口| 婷婷六月久久综合丁香| 久久久成人免费电影| 亚洲av成人av| 亚洲精华国产精华精| 国产麻豆成人av免费视频| 成年女人永久免费观看视频| 最近中文字幕高清免费大全6 | 99久久精品热视频| a级毛片a级免费在线| 免费搜索国产男女视频| 久久九九热精品免费| 精品久久久久久久末码| 亚洲人成伊人成综合网2020| 国产aⅴ精品一区二区三区波| 老女人水多毛片| 国产精品不卡视频一区二区 | 欧美性猛交╳xxx乱大交人| 女人十人毛片免费观看3o分钟| 18美女黄网站色大片免费观看| 综合色av麻豆| 禁无遮挡网站| 哪里可以看免费的av片| av国产免费在线观看| 一区福利在线观看| 久久久久久大精品| 免费人成视频x8x8入口观看| 国内精品久久久久久久电影| 国产成人a区在线观看| 日日摸夜夜添夜夜添av毛片 | 国产精品电影一区二区三区| 午夜免费成人在线视频| 午夜视频国产福利| 国产麻豆成人av免费视频| 亚洲精华国产精华精| 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 精品欧美国产一区二区三| 日韩av在线大香蕉| 欧美日韩亚洲国产一区二区在线观看| 最后的刺客免费高清国语| 亚洲国产欧洲综合997久久,| 亚洲美女黄片视频| 国内精品美女久久久久久| 成人高潮视频无遮挡免费网站| 天堂动漫精品| 亚洲成av人片在线播放无| 一级av片app| 永久网站在线| 悠悠久久av| 亚洲专区中文字幕在线| 国产极品精品免费视频能看的| 色5月婷婷丁香| 校园春色视频在线观看| 成人特级av手机在线观看| 少妇熟女aⅴ在线视频| 亚洲国产精品久久男人天堂| 日本免费a在线| 黄片小视频在线播放| 国产一区二区在线观看日韩| 搡老岳熟女国产| 91久久精品电影网| 日韩欧美在线乱码| 听说在线观看完整版免费高清| 麻豆成人av在线观看| 久久久久久久久中文| 日本撒尿小便嘘嘘汇集6| 国产精品免费一区二区三区在线| 亚洲av.av天堂| 少妇高潮的动态图| 成年女人看的毛片在线观看| 国产精品一区二区三区四区免费观看 | av在线蜜桃| 国产熟女xx| 国产成人欧美在线观看| 久久国产乱子免费精品| 又紧又爽又黄一区二区| 人妻丰满熟妇av一区二区三区| 在现免费观看毛片| 国产精品爽爽va在线观看网站| 国产高清视频在线观看网站| 日韩成人在线观看一区二区三区| 一本精品99久久精品77| www.熟女人妻精品国产| 一边摸一边抽搐一进一小说| 日日干狠狠操夜夜爽| 老司机福利观看| 99热只有精品国产| 国产精品美女特级片免费视频播放器| 激情在线观看视频在线高清| 九九热线精品视视频播放| 欧美激情久久久久久爽电影| 免费看美女性在线毛片视频| 两个人的视频大全免费| 国产成人av教育| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 神马国产精品三级电影在线观看| 亚洲成av人片在线播放无| www.www免费av| 欧美bdsm另类| 国产精品99久久久久久久久| 精品人妻一区二区三区麻豆 | 日韩精品青青久久久久久| 桃红色精品国产亚洲av| 2021天堂中文幕一二区在线观| 熟妇人妻久久中文字幕3abv| 老司机午夜十八禁免费视频| 久久久精品欧美日韩精品| 亚洲一区二区三区色噜噜| 9191精品国产免费久久| 日韩欧美在线二视频| 亚洲欧美日韩卡通动漫| 国产精品免费一区二区三区在线| 身体一侧抽搐| 18+在线观看网站| 午夜精品久久久久久毛片777| 琪琪午夜伦伦电影理论片6080| 亚洲真实伦在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区免费观看| 757午夜福利合集在线观看| 中文字幕精品亚洲无线码一区| 中国美女看黄片| 哪里可以看免费的av片| 又粗又爽又猛毛片免费看| 亚洲国产精品合色在线| 色av中文字幕| 岛国在线免费视频观看| 亚洲av成人av| 午夜福利欧美成人| 久久精品国产亚洲av涩爱 | 一区福利在线观看| .国产精品久久| 极品教师在线视频| 99国产精品一区二区蜜桃av| 日本五十路高清| 久久精品91蜜桃| 免费av观看视频| 国产精品亚洲av一区麻豆| 听说在线观看完整版免费高清| 欧美在线黄色| 成年女人看的毛片在线观看| 内射极品少妇av片p| 成人亚洲精品av一区二区| 久久性视频一级片| 丝袜美腿在线中文| 欧美性猛交╳xxx乱大交人| 我要搜黄色片| 欧美性感艳星| a级毛片a级免费在线| 久久精品夜夜夜夜夜久久蜜豆| 神马国产精品三级电影在线观看| 小说图片视频综合网站| 一本综合久久免费| av黄色大香蕉| 成年女人毛片免费观看观看9| 好男人在线观看高清免费视频| 午夜亚洲福利在线播放| 天堂动漫精品| 国产私拍福利视频在线观看| 国产av在哪里看| 成人永久免费在线观看视频| 国产在视频线在精品| 91麻豆av在线| 国产欧美日韩一区二区精品| 两个人视频免费观看高清| 国产免费av片在线观看野外av| 国产乱人视频| 免费观看精品视频网站| 日韩欧美在线二视频| 热99re8久久精品国产| 日韩av在线大香蕉| 无遮挡黄片免费观看| 在线观看66精品国产| 亚洲国产日韩欧美精品在线观看| 久久精品国产亚洲av天美| 狂野欧美白嫩少妇大欣赏| 日韩亚洲欧美综合| 国产真实乱freesex| 能在线免费观看的黄片| 亚洲成人久久爱视频| 老司机午夜十八禁免费视频| 国产69精品久久久久777片| 成人亚洲精品av一区二区| 欧美国产日韩亚洲一区| 乱码一卡2卡4卡精品| 国产大屁股一区二区在线视频| 色综合欧美亚洲国产小说| 一级作爱视频免费观看| 性色avwww在线观看| а√天堂www在线а√下载| 九九热线精品视视频播放| 久久这里只有精品中国| 人人妻人人澡欧美一区二区| 成年女人看的毛片在线观看| 欧美精品啪啪一区二区三区| 国产又黄又爽又无遮挡在线| 精品午夜福利视频在线观看一区| 麻豆成人午夜福利视频| 午夜激情欧美在线| 成人亚洲精品av一区二区| 国产色婷婷99| 18+在线观看网站| 精品久久久久久成人av| 精品午夜福利视频在线观看一区| 国产69精品久久久久777片| 成人性生交大片免费视频hd| www.www免费av| 一个人观看的视频www高清免费观看| 我要看日韩黄色一级片| 国产亚洲欧美在线一区二区| 国产主播在线观看一区二区| 亚洲精品在线观看二区| 国产乱人视频| 国产视频一区二区在线看| 国产亚洲精品av在线| 波多野结衣巨乳人妻| 天堂影院成人在线观看| 日韩欧美三级三区| 他把我摸到了高潮在线观看| 搡女人真爽免费视频火全软件 | a级一级毛片免费在线观看| 欧美丝袜亚洲另类 | 久久久久久久亚洲中文字幕 | 精品人妻一区二区三区麻豆 | 又爽又黄a免费视频| 国产亚洲精品久久久com| 超碰av人人做人人爽久久| 国产精品一及| 亚洲av美国av| 婷婷六月久久综合丁香| 亚洲成人中文字幕在线播放| 午夜福利高清视频| 精品不卡国产一区二区三区| 亚洲最大成人中文| 亚洲av成人精品一区久久| 国产v大片淫在线免费观看| 很黄的视频免费| 午夜福利免费观看在线| 亚州av有码| 动漫黄色视频在线观看| 国产精品99久久久久久久久| 午夜精品一区二区三区免费看| 岛国在线免费视频观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美在线黄色| 一级a爱片免费观看的视频| 午夜影院日韩av| 国产视频一区二区在线看| 99在线视频只有这里精品首页| 久久九九热精品免费| 最后的刺客免费高清国语| 亚洲国产精品成人综合色| 国产精品久久久久久人妻精品电影| а√天堂www在线а√下载| 中文字幕熟女人妻在线| АⅤ资源中文在线天堂| 国产精品三级大全| 神马国产精品三级电影在线观看| 好男人电影高清在线观看| 成人av一区二区三区在线看| 99久久久亚洲精品蜜臀av| 久99久视频精品免费| 一本久久中文字幕| 日韩欧美精品v在线| 少妇人妻一区二区三区视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av天美| 1024手机看黄色片| 成人鲁丝片一二三区免费| 久久精品国产99精品国产亚洲性色| 国产精品伦人一区二区| 国产色爽女视频免费观看| 精品久久久久久久久久免费视频| 一本一本综合久久| 三级毛片av免费| 男人狂女人下面高潮的视频| 欧美一级a爱片免费观看看| 日韩大尺度精品在线看网址| 赤兔流量卡办理| 小说图片视频综合网站| 国产亚洲欧美在线一区二区| 天美传媒精品一区二区| 精品熟女少妇八av免费久了| 91麻豆av在线| 国产精品一区二区免费欧美| 一本综合久久免费| 亚洲色图av天堂| 亚洲电影在线观看av| 亚洲欧美日韩无卡精品| 色噜噜av男人的天堂激情| 一级a爱片免费观看的视频| 99在线人妻在线中文字幕| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清专用| 亚洲欧美激情综合另类| 精品久久久久久成人av| 亚洲中文日韩欧美视频| 日本黄色视频三级网站网址| 国内揄拍国产精品人妻在线| 淫秽高清视频在线观看| 久久6这里有精品| 在线观看午夜福利视频| 成年免费大片在线观看| 国内精品久久久久精免费| 婷婷亚洲欧美| 我的老师免费观看完整版| 97人妻精品一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区 | 国产黄色小视频在线观看| 日韩 亚洲 欧美在线| 色综合欧美亚洲国产小说| 又黄又爽又刺激的免费视频.| 日韩国内少妇激情av| 免费av不卡在线播放| 日本黄大片高清| 搡老岳熟女国产| 国产成人福利小说| 97热精品久久久久久| 午夜老司机福利剧场| 偷拍熟女少妇极品色| 精品久久久久久久末码| 桃红色精品国产亚洲av| 日韩 亚洲 欧美在线| 免费人成在线观看视频色| 午夜视频国产福利| 人妻制服诱惑在线中文字幕| 精品人妻视频免费看| 在线免费观看的www视频| 九九热线精品视视频播放| 欧美一区二区亚洲| 美女高潮的动态| 特级一级黄色大片| 久久人人精品亚洲av| 综合色av麻豆| 日本一二三区视频观看| 99在线视频只有这里精品首页| 免费人成在线观看视频色| 一本综合久久免费| 欧美日韩综合久久久久久 | 亚洲精品日韩av片在线观看| 少妇人妻一区二区三区视频| 色哟哟·www| 在线观看美女被高潮喷水网站 | 欧美成人a在线观看| 能在线免费观看的黄片| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 99国产精品一区二区蜜桃av| 性欧美人与动物交配| 亚洲人成网站高清观看| 在线a可以看的网站| 少妇被粗大猛烈的视频| 亚洲精品久久国产高清桃花| 精品无人区乱码1区二区| 老司机福利观看| 国产乱人伦免费视频| 欧美bdsm另类| 欧美zozozo另类| 色av中文字幕| 亚洲第一区二区三区不卡| 午夜a级毛片| 亚州av有码| 国产欧美日韩一区二区精品| 国产综合懂色| 日韩免费av在线播放| 九九久久精品国产亚洲av麻豆| 亚洲aⅴ乱码一区二区在线播放| 午夜精品一区二区三区免费看| 免费看光身美女| 久久精品夜夜夜夜夜久久蜜豆| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 免费在线观看日本一区| 黄色一级大片看看| 日本与韩国留学比较| 欧美黄色片欧美黄色片| 99国产精品一区二区蜜桃av| 午夜精品久久久久久毛片777| 欧洲精品卡2卡3卡4卡5卡区| 国产av麻豆久久久久久久| 国产视频一区二区在线看| 国产高清视频在线播放一区| 中文字幕人成人乱码亚洲影| 国产亚洲欧美在线一区二区| 夜夜爽天天搞| 日韩有码中文字幕| 日本在线视频免费播放| .国产精品久久| 国产欧美日韩精品亚洲av| 女同久久另类99精品国产91| 少妇被粗大猛烈的视频| 精品久久久久久久末码| 内地一区二区视频在线| 国产极品精品免费视频能看的| 一进一出好大好爽视频| 国产亚洲av嫩草精品影院| 精品人妻一区二区三区麻豆 | 天美传媒精品一区二区| 99久久精品国产亚洲精品| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 极品教师在线视频| а√天堂www在线а√下载| 欧美日韩福利视频一区二区| 亚洲欧美日韩高清在线视频| 好男人电影高清在线观看| a级毛片a级免费在线| 欧美黄色淫秽网站| 在线播放无遮挡| 国内精品一区二区在线观看| 久久这里只有精品中国| 亚洲av第一区精品v没综合| 一本精品99久久精品77| 国产精品亚洲一级av第二区| 亚洲av免费在线观看| 日日干狠狠操夜夜爽| 国产精品久久久久久久久免 | 丰满人妻熟妇乱又伦精品不卡| 伊人久久精品亚洲午夜| 国产一级毛片七仙女欲春2| 成人特级av手机在线观看| 一级黄片播放器| 国产精品1区2区在线观看.| 久久精品国产自在天天线| a在线观看视频网站| 最近最新中文字幕大全电影3| 国产毛片a区久久久久| 久久久久亚洲av毛片大全| 亚洲最大成人av| 亚洲美女搞黄在线观看 | 级片在线观看| 婷婷精品国产亚洲av| 国产av在哪里看| 亚洲av美国av| 欧美色视频一区免费| 91麻豆av在线| 中文字幕高清在线视频| 我的老师免费观看完整版| 久久99热这里只有精品18| 岛国在线免费视频观看| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 欧美午夜高清在线| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久成人av| 欧美一区二区精品小视频在线| 亚洲国产欧美人成| 久久伊人香网站| 夜夜看夜夜爽夜夜摸| 搡老妇女老女人老熟妇| 亚洲精品456在线播放app | 国内精品久久久久久久电影| 久久久国产成人免费| 丁香六月欧美| 国产不卡一卡二| 91在线精品国自产拍蜜月| 51国产日韩欧美| 伦理电影大哥的女人| 久久亚洲精品不卡| 俄罗斯特黄特色一大片| 一级黄片播放器| 99国产精品一区二区三区| 美女黄网站色视频| 久9热在线精品视频| 欧美乱色亚洲激情| 欧美午夜高清在线| 男女之事视频高清在线观看| 午夜久久久久精精品| 91九色精品人成在线观看| av黄色大香蕉| 亚洲国产精品sss在线观看| 免费观看的影片在线观看| 99久久99久久久精品蜜桃| 国产精品免费一区二区三区在线| 欧洲精品卡2卡3卡4卡5卡区| 久久热精品热| 欧美乱妇无乱码| 老司机深夜福利视频在线观看| 色综合亚洲欧美另类图片| 俺也久久电影网| 99热6这里只有精品| 波野结衣二区三区在线| 91麻豆精品激情在线观看国产| 中文字幕精品亚洲无线码一区| 一本综合久久免费| 婷婷精品国产亚洲av在线| av视频在线观看入口| 久久国产精品人妻蜜桃| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 国产精品人妻久久久久久| 亚洲精品一区av在线观看| 乱人视频在线观看| 久久久成人免费电影| 天美传媒精品一区二区| 精品久久久久久成人av| 在线观看免费视频日本深夜| 女生性感内裤真人,穿戴方法视频| 久久久久性生活片| 欧美不卡视频在线免费观看| 宅男免费午夜| 99精品久久久久人妻精品| 国产精品乱码一区二三区的特点| 少妇丰满av| x7x7x7水蜜桃| 一个人看的www免费观看视频| 舔av片在线| 成年女人毛片免费观看观看9| 激情在线观看视频在线高清| 精品久久国产蜜桃| 精品日产1卡2卡| 日韩人妻高清精品专区| 欧美成人性av电影在线观看| 非洲黑人性xxxx精品又粗又长| 欧美日韩国产亚洲二区| 婷婷六月久久综合丁香| 国产视频内射| 看十八女毛片水多多多| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 午夜免费成人在线视频| www.www免费av| 欧美激情久久久久久爽电影| 欧美精品国产亚洲| 免费黄网站久久成人精品 | 免费av不卡在线播放| 欧美一区二区亚洲| 午夜久久久久精精品| 91av网一区二区| 亚洲最大成人手机在线| 黄色一级大片看看| 久久精品影院6| 熟女人妻精品中文字幕| 久久国产精品影院| 国产三级黄色录像| 国产 一区 欧美 日韩| 国产三级在线视频| 精品人妻熟女av久视频| 一个人看的www免费观看视频| 婷婷六月久久综合丁香| 亚洲最大成人手机在线| 中文资源天堂在线| АⅤ资源中文在线天堂| 又爽又黄无遮挡网站| 日本熟妇午夜| 亚洲av电影在线进入| 午夜久久久久精精品| 欧美bdsm另类| 亚洲成人久久爱视频| 不卡一级毛片| 精品免费久久久久久久清纯| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久精品电影| 蜜桃亚洲精品一区二区三区| 永久网站在线| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 国产不卡一卡二| 欧美丝袜亚洲另类 | 一本一本综合久久| 亚洲成人免费电影在线观看| 久久精品综合一区二区三区| 欧美成人免费av一区二区三区| av在线观看视频网站免费| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 国产一区二区三区在线臀色熟女| 天堂影院成人在线观看| 亚洲自拍偷在线| 国产欧美日韩一区二区精品|