• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Resultant matrices and Bezoutians under the polynomial bases generated by a bilinear transformation function

      2015-05-04 07:32:08WUHuazhang
      關(guān)鍵詞:結(jié)式安徽大學(xué)合肥

      WU Hua-zhang

      (School of Mathematical Sciences, Anhui University, Hefei 230601, China)

      ?

      Resultant matrices and Bezoutians under the polynomial bases generated by a bilinear transformation function

      WU Hua-zhang

      (School of Mathematical Sciences, Anhui University, Hefei 230601, China)

      bilinear transformation function; companion matrix; resultant matrix; Bezout matrix; Barnett’s formula

      0 Introduction

      whichestablishatransformationbetweentheupperhalfandthelowerhalfcomplexplanes.Ontheotherhand,thematrixcorrespondingtothebilineartransformationfunctionaboveisaMobiustransformationmatrixwhichcanbeusedtoestablishaone-to-onecorrespondencebetweenHankelandToeplitzmatrices[5].

      Itiswellknown[6]thatthereexistcloserelationsbetweenresultantmatrixandBezoutmatrix(orsimplyBezoutian).TheBezoutianshavemanyimportantapplicationsinnumericalcomputing,controltheory,systemidentification,andnetworksandsignalprocessing.WerefertothebooksofBarnett[7],LancasterandTismenetsky[8],andBiniandPan[9].AmongthemethodsforthestudyofBezoutiansthepowerbasisisusuallygeneralizedtopolynomialcases.Ithasbeenshownin[10-11]thatmostpropertiesofclassicalBezoutian,suchastheBarnett-typeformula,theintertwiningrelationandthediagonalreduction,keepstillthesimilarformsforsomegeneralizedpolynomialBezoutians.

      1 Resultant matrices

      Thus, E-1Acanberegardedasacompanionmatrixofp(λ).Thepurposeofconstructingsuchacompanionmatrixismainlyfortheconvenienceofthecomputationoftheelements,notmerelyforitstheoreticalapplications.

      whichimplies

      (1)

      Nowweconsidertheresultantmatrixoftwopolynomials.Set

      (1) g(Cα)isaresultantmatrixoff(z)andg(z).

      (2)ThedegreeoftheGCDd(z)off(z)andg(z)isequalton-rank(g(Cα)).

      (3)Thecoefficientsofd(z)areproportionaltothelastrowofg(Cα)afterbeingreducedtorowechelonform.

      Forexample,let

      Thenthecompanionmatrixoff(x)is

      thus rank (g(Cα))=1, and the degree of the GCD off(x) andg(x) is equal to 3-1=2. According to Theorem 1(3),d(x) should be proportional to

      which is equal tog(x).

      can be determined by

      2 Bezoutians

      (2)

      For the computation of the elements of generalized Bezoutian, by [15] we have following formulas and ommit its proof. Here we still distinguish two different bases.

      Thus the cost of the algorithm iso(n2).

      Thus the cost of the algorithm iso(n2).

      Thus, by the definition (2), the last equality equals

      3 Properties and relationships of resultant matrices and Bezoutians

      3.1 Properties of resultant matrices

      respectively,alsokeepthesimilarrelationshipswiththeirtransposes.

      Theorem 6 Assume that notations are as above. Then the following relations are satisfied

      (3)

      (4)

      Proof Eqs.(3) can be checked by using a similar method as that in [15]. Here we omit the proof.

      Theorem 7 Assume that notations are as before. Then we have

      3.2 Relationships between Bezoutians and resultant matrices

      which implies

      (5)

      By those equalities we can generalize the Barnett’s formula

      to a general form. SinceB(p,1) is a special Bezout matrix withq(z)=1, then

      Thus, Eq.(5) implies

      (6)

      Theorem 8 Assume that notations are as before. Then the generalized Barnett’s formulas hold

      ThegeneralizedBarnett’sformulasaboveimplythefollowingresult.

      Corollary 3 Assume that notations are as before andJthe reverse unit matrix. Then

      Proof We only verify the first equality, the second one can be similarly proved and omitted. In view of Prop.2.11 in [5], we have

      whereCpdenotes the companion matrix ofp(z), andJis the reverse unit matrix. Multipling byBTandBfrom the left hand side and the right hand side on the last equality respectively, and using Eqs.(3) and (5), we have

      whereJα=BJBT.Theproofiscompleted.

      AnintertwiningrelationofthegeneralizedBezoutianswiththeresultantmatricesarefulfilled.

      Theorem 9 Assume that notation are as before. Then we have

      Proof We only prove the first equality. By [8], we have the following equality

      Using Eqs.(3) and (5), the remain is merely some elementary calculation.

      [1] Emiris I Z, Mourrain B. Matrices in elimination theory[J]. Symbolic Comput,1999,28(1/2):3-44.

      [2] Kajiya J T. Ray tracing parametric patches[J]. Computer Graphics, 1982,16:245-254.

      [3] Farouki R T, Goodman T N. On the optimal stability of the Bernstein basis[J]. Math Comp, 1996,65:1553-1566.

      [4] Farouki R T, Rajan V T. On the numerical condition of polynomial in Bernstein form[J]. Comp Aided Geom Design, 1988,5:1-26.

      [5] Heinig G, Rost K. Algebraic methods for Toeplitz-like matrices and operators[M].Basel:Birkhauser,1984.

      [6] Barnett S, Lancaster P. Some properties of the Bezoutian for polynomial matrices[J]. Linear and Multilinear Algebra, 1980, 9:99-110.

      [7] Barnett S. Polynomials and linear control system[M].NewYork:Marcel Dekker, 1983.

      [8] Lancaster P, Tismenetsky M. The theory of matrices[M]. 2nd ed.London:Academic Press, 1985.

      [9] Bini D A, Pan V. Numerical and algebraic computations with matrices and polynomials[M].Boston:Birkhauser,1994.

      [10] Mani J, Hartwig R E. Generalized polynomial bases and the Bezoutian[J]. Linear Algebra and Its Applications, 1997,251:293-320.

      [11] Wu H Z. More on polynomial Bezoutians with respect to a general basis[J]. Electronic Journal of Linear Algebra, 2010,21:154-171.

      [12] Winkler J R. A companion matrix resultant for Bernstein polynomials[J]. Linear Algebra and Its Applications 2003,362:153-175.

      [13] Golub G H, Van Loan C F. Matrix computations[M].Baltimore:John Hopkins University Press,1989.

      [14] Montaudouin Y D, Yiller W. The Cayley method in computer aided geometric design[J]. Comp Aided Geom Design, 1984,1:309-326.

      [15] Wu H Z, Sun J P. A generalized Bezout matrix under a special polynomial basis[J]. Journal of Hefei University:Natural Sciences, 2014,24(2):5-9.

      (責(zé)任編輯 朱夜明)

      雙線性變換函數(shù)生成基下的結(jié)式矩陣和Bezout矩陣

      吳化璋

      (安徽大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,安徽 合肥 230601)

      雙線性變換函數(shù);友矩陣;結(jié)式矩陣;Bezout矩陣;Barnett公式

      10.3969/j.issn.1000-2162.2015.06.001

      Foundation item:Supported by the Natural Science Foundation of Anhui Province (1208085MA02)

      O151 Document code:A Article ID:1000-2162(2015)06-0001-08

      Received date:2015-02-16

      Author’s brief:WU Hua-zhang (1966-), male, born in Quanjiao of Anhui Province, professor of Anhui University,tutor for postgraduate.

      猜你喜歡
      結(jié)式安徽大學(xué)合肥
      合肥的春節(jié)
      巴基斯坦留學(xué)生的漢語(yǔ)動(dòng)結(jié)式理解與輸出研究
      讀《安徽大學(xué)藏戰(zhàn)國(guó)竹簡(jiǎn)》(一)札記
      結(jié)式循環(huán)矩陣的運(yùn)算及性質(zhì)
      秦曉玥作品
      合肥:打造『中國(guó)IC之都』
      L'examen dans l'antiquitéet de nos jours
      漢語(yǔ)動(dòng)結(jié)式在維吾爾語(yǔ)中的表現(xiàn)形式
      生態(tài)合肥
      “NP V累了NP”動(dòng)結(jié)式的補(bǔ)語(yǔ)趨向解讀
      环江| 新蔡县| 班戈县| 手游| 谷城县| 南汇区| 溆浦县| 婺源县| 布尔津县| 利辛县| 金平| 舒城县| 云南省| 黄骅市| 甘洛县| 蒙山县| 泾川县| 吉水县| 柳河县| 安丘市| 渝中区| 望江县| 建昌县| 固镇县| 怀远县| 武城县| 浙江省| 灵丘县| 库车县| 宁晋县| 汤阴县| 永平县| 波密县| 丰都县| 济源市| 梅河口市| 富源县| 宣汉县| 方正县| 洪湖市| 凤翔县|