• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    2015-04-22 06:17:32WANGNiwei王妮煒FEIZesong費(fèi)澤松XINGChengwen邢成文NIJiqing倪吉慶KUANGJingming匡鏡明
    關(guān)鍵詞:吉慶成文

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information (CSI) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    learning-base; multiple-input-multiple-output(MIMO); cognitive radio (CR) network; multiuser

    Current wireless networks are characterized by a static spectrum allocation policy, but it faces the scarcity of frequency spectrum, which limits the development of future wireless communication systems. Recently,cognitive radio (CR) has drawn intensive attentions from both academic and industrial communities[1]. In CR systems, CR users (CR-UE) and primary users (PR-UE) are allowed to share the same spectrum, which is divided into two spectrum sharing policies, i.e., overlay spectrum sharing and underlay spectrum sharing[2].

    It is obvious that frequency spectrum is used more efficiently by above technologies, but the performance for PR systems should not be ignored. In addition, the interference at PR-UEs caused by CR-UEs must be effectively reduced and limited by a predefined interference threshold. An efficient technique in CR networks is that the CR transmitters equipped with multiple antennas exploit the beamforming technique to steer the transmit energy to the intended users[3-4]. As we all known, beamforming can be interpreted as a spatial filter and its implementation is usually based on channel state information (CSI). Unfortunately, PR terminals have no responsibility to transmit pilots to CR terminals, so blind channel estimation algorithms will be preferred to gain the CSI between PR terminals and CR terminals[5].

    To make the underlay spectrum sharing most efficient, environment learning[6-8]is exploited in this paper, which blindly estimates the null spaces of the PR-UEs without implicit information exchange and additional communication overhead. In this paper, the time of each CR frame is fixed. Learning-based algorithm is adopted to estimate the CSI between PR terminals and CR terminals, and channels between CR terminals can be obtained through channel training stage. For user selection stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. With selected users, the total capacity is maximized by constrained to the interference to PR-UEs, which was solved with a closed power allocation solution. The results show that the multi-criteria user selection scheme, which can change the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    1 System model

    In our work, the PR system and the CR system share the same frequency band as shown in Fig.1. For the PR system, each PR-UE is equipped withMpantennas and communicates with the PR base-station (PR-BS) without considering the transmission of the CR system. The CR system has a CR base-station (CR-BS) withMBantennas andKCR users (CR-UEs) withMi(i=1,…,K) antennas. In order to use learning method better, we assumeMp

    Fig.1 Multiuser MIMO CR network

    2 Transmission design and problem formulation

    As shown in Fig.2, the CR transmission strategy can be divided into frames with fixed timeN=Nl+Nt+Ns+Nd, which has four stages, i.e., learning, channel training, user selection and data transmission stage. It is obvious that the last stage brings more data transmission and system throughput, while the others provide better transmission quality. Therefore, it is important to design the length of different stages and the details are described in the following subsections.

    Fig.2 CR frame structure

    2.1 Learning stage

    It is knowh that the PR system has no responsibility to report its transmission to the CR system, so the CR terminals have to listen to the PR system and find the noise space of the transmitted signals. After this period of time, CR transmitters precode the transmitted signals by multiplying the noise space to reduce interference to the PR system, while CR receivers reduce interference from the PR system by multiplying noise space after receiving their targeted signals.

    At symbol periodn, the signals sent from the PR user can be expressed as

    sp(n),n=1,2,…,N

    (1)

    wheresp(n)isanindependentidenticallydistributedrandomsignal.ThenthesignalsreceivedattheCRterminalscanbeformulatedas

    yB(n)=GBsp(n)+zB(n),for the CR-BS

    yi(n)=Gisp(n)+zi(n),for the CR-UE,

    n=1,2,…,Nl

    (2)

    The covariance matrices of received signalsyBandyicanbeexpressedas

    (3)

    Inordertogainthenoisespace,theEVDofcovariancematricesRBandRiareformulatedas

    (4)

    Ifthelearningtimeislongenough,thenoisespacewillbeabsolutelyaccurate.Therefore,theinterferencecanbetotallyeliminatedatCRterminalsasbelow

    (5)

    If the signals transmitted at CR terminals ared(n),theinterferenceatPRterminalswillalsoreducetozero

    (6)

    2.2Channeltrainingstage

    Thechanneltrainingstageisdesignedindownlinktransmissionwithtwogoals,i.e.,obtainingchannelmatricesandprovidingfeedbackofsignalnoiseratio(SNR)toCR-BS.

    WeassumeCR-BStransmitstrainingsequencest(n)toallusersatthesametime,sothesignalreceivedatithCR-UEis

    (7)

    Because the training time is finite and the channel environment is complex in real transmission, estimation error is existed in general. We use the LMMSE-based channel estimator forWianditcanbeobtainedas

    (8)

    where

    (9)

    Thus, the practical signals received at the CR-UEs can be reformulated as

    (10)

    (11)

    Inordertochooseabetteruserset,weneedtoknowtheSNRofeachuser,whichcanbeexpressedas

    (12)

    wheren=Nl+1,…,Nl+Nt. We assume that the channel is quasi static in one CR frame, so the average SNR during the channel training stage can be written as

    (13)

    wheretr(TTH)=NtPBS.

    2.3 User selection stage

    Because a CR-BS cannot serve all the CR-UEs simultaneously a user selection method is necessarily needed andKoptusers can be supported at most before data transmission. A user can be more easily selected with largerfi, which is the user selection function of theithuser.

    Firstly, three traditional user selection schemes are introduced. For the SNR scheme, the user selection function is defined as

    (14)

    Then,bydefiningtheselectedtimesoftheithuser as δi,theuserselectionfunctionofRoundRobin(RR)schemecanbeformulatedas

    fi=i+ΔiK

    (15)

    The last traditional scheme is proportional fair (PF) with user selection function described as

    (16)

    However, users usually have different requirements in real systems, so a multi-criteria user selection method is proposed. Assume that there are Γkindsofcriterionsandapriorityfunctionofithuserrelativetojthuserisdefinedas

    (17)

    (18)

    Thesameaschanneltrainingstage,CR-BStransmitstheselectedusersettoallCR-UEsthroughfeedbackchannelsfinally.Withinfinitecapacity,thereisnoadditionerror.Inaddition,duetothegreatcomputingabilityofCR-BSitisreasonabletoassumeNB=1.

    2.4 Data transmission stage

    (19)

    whereKois the number of selected users,v(n)istheeffectiveinterference-plus-noiseterm.Notethat,notonlytheinterferencefromtheCRtothePRbutalsothatfromthePRtotheCRhasbeencontrolled.

    3 Problem optimization

    Beforechanneltrainingstage,CR-BSdoesnotknowthechannelstateinformation,sothepowershouldbeallocatedequally,

    (20)

    wherePBis the transmit power of CR-BS. Thus, Eq.(11) can be reformulated as

    (21)

    Consideringtheimperfectchanneltraininganduserselectionschemes,weaimtoallocatethepowerofbeamsforeachCR-UEtomaximizethesystemcapacity.Theoptimalproblemis

    (22)

    Thecapacityinthedatatransmissionstageis

    (23)

    where the covariance matrix defined as

    (24)

    then the capacity in Eq.(23) becomes

    (25)

    where

    Λi=diag{λi,1,λi,2,…,λi,(Mi-Mp)}

    diag{xi,1,xi,2,…,xi,(Mi-Mp)}

    (26)

    In order to optimize the total capacity, two stages are proposed.

    ① For a fixedNt, we use water-filling algorithm[9]to allocate the power and the solution is that if ρei∈(qi,c-1,qi,c],then

    (27)

    where

    (28)

    ②Basedontheoptimalpower,wesearchfortherangeofNtto find the maximal capacity, which has the final optimal solution.

    4 Simulation results

    In the simulation, the CR network has one PR-UE withMp=2 antennas, one CR-BS withMB=4 antennas andK=5 CR-UEs withM1=…=MK=4 antennas. In a transmission,Ko=4 users can be transmitted simultaneously at most. When the total time of a CR frame isN=60, the learning stage can be stable withNl=10[7]. According to the standard of LTE, we setPB=1,PU=0.2. In the simulation, we assume that user 3 has bad channel state, i.e. it is far away from the CR-BS or the interference cannot be dismissed. We put all these factors as a part of noise, so the noise power vector is ={1,1,5,1,1}.

    Fig.3 shows that SNR scheme has the best performance, while RR scheme has the worst performance because of considering fairness only. PF scheme is a little better than RR scheme because it takes both fairness and system performance into consideration. However, multi-criteria scheme considers both aspects with the same weightφ1=φ2=0.5 and outperforms RR scheme. In addition, multi-criteria is more flexible and can achieve different levels of performance by changing the weights.

    As Fig.4 illustrated that user 3 is selected barely while the other users are selected frequently in SNR scheme, which causes great unfairness between users. Although some users have bad channel conditions, they may still transmit important information, i.e., emergency calls. Obviously, the other three schemes are better programed in this case except SNR scheme. In fact, the emergency incident does not occur frequently, so in most cases the system performance is more important than fairness. To sum all, multi-criteria scheme fits the practical situation and has a trade off between both sides.

    Fig.3 Total capacity for the four schemes verses Nt

    Fig.4 Selected probabilities of users for the four schemes

    5 Conclusion

    In this paper, we have proposed a multi-criteria user selection scheme which provides the best service user set for the learning-based multiuser MIMO CR networks. In addition channel training is exploited to gain the channels between CR terminals. The total capacity is maximized with the interference constraint at PR-UEs. Simulation results demonstrate that the multi-criteria user selection scheme achieves a tradeoff be-tween user fairness and system performance than SNR, RR and PF schemes. Moreover, it is more flexible by changing the weight of criteria.

    [1] Liang Yingchang, Chen Kwangcheng, Li Geoffrey Ye, et al. Cognitive radio networking and communications: an overview [J]. IEEE Transactions on Vehicular Technology , 2011, 60(7): 3386-3407.

    [2] Zhao Qing, Sadler B M. A survey of dynamic spectrum access[J]. IEEE Signal Processing Magazine, 2007, 24(3): 79-89.

    [3] Tajer A, Prasad N, Wang Xiaodong. Beamforming and rate allocation in MISO cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 362-377.

    [4] Hamdi K, Zarifi K, Ben Letaief K, et al. Beamforming in relay-assisted cognitive radio systems: a convex optimization approach [C]∥IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011.

    [5] Noam Y, Goldsmith A J. Blind null-space learning for spatial coexistence in MIMO cognitive radios[C]∥IEEE International Conference on Communications (ICC), Ottawa, Ontario, Canada, 2012.

    [6] Zhang Rui, Gao Feifei, Liang Yingchang. Cognitive beamforming made practical: effective interference channel and learning-throughput tradeoff [J]. IEEE Transactions on Communications, 2010, 58(2): 706-718.

    [7] Gao Feifei, Zhang Rui, Liang Yingchang, et al. Design of learning-based MIMO cognitive radio systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1707-1720.

    [8] Li Shuo, Fei Zesong, Xing Chengwen, et al. Joint resource allocation for learning-based cognitive radio networks with MIMO-OFDM relay-aided transmissions[C]∥IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013.

    [9] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, UK: Cambridge University Press, 2004.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0216

    TN 929.5 Document code: A Article ID: 1004- 0579(2015)02- 0240- 06

    Received 2014- 03- 18

    Supported by National S & T Major Project of China (2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    吉慶成文
    “00后”的愛情標(biāo)簽
    徐成文
    大江南北(2023年2期)2023-02-11 05:45:56
    我和老伴的快樂“毽 ”身法
    晚秋
    寶藏(2021年5期)2021-12-01 10:15:58
    富庶吉慶的鯉魚
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    剪紙欣賞
    中老年保健(2017年1期)2017-06-02 06:14:42
    成文昊設(shè)計(jì)作品
    Low-complexity transceiver design scheme based on channel null-space feedback
    一輩子的藍(lán)顏
    啦啦啦视频在线资源免费观看| 免费女性裸体啪啪无遮挡网站| 两性夫妻黄色片 | 国产精品久久久久成人av| 男人舔女人的私密视频| 国产成人精品福利久久| 观看av在线不卡| 搡老乐熟女国产| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 久久久国产精品麻豆| 欧美精品一区二区大全| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 国产精品久久久av美女十八| 在线看a的网站| 色婷婷av一区二区三区视频| 午夜老司机福利剧场| 如何舔出高潮| 免费av不卡在线播放| 亚洲熟女精品中文字幕| 国产1区2区3区精品| 美女视频免费永久观看网站| 岛国毛片在线播放| 搡女人真爽免费视频火全软件| 人人妻人人添人人爽欧美一区卜| 一级黄片播放器| 日韩欧美一区视频在线观看| 丝袜人妻中文字幕| 天堂8中文在线网| 人妻系列 视频| 成年动漫av网址| 日本黄大片高清| 成人国语在线视频| 亚洲国产色片| 97超碰精品成人国产| 精品人妻偷拍中文字幕| 成人漫画全彩无遮挡| 亚洲精品成人av观看孕妇| 午夜视频国产福利| 久久99蜜桃精品久久| 国产日韩一区二区三区精品不卡| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区 | 久久精品国产a三级三级三级| 亚洲精品美女久久久久99蜜臀 | 国产乱人偷精品视频| 国产白丝娇喘喷水9色精品| 欧美日韩精品成人综合77777| 在线观看美女被高潮喷水网站| 久久精品久久久久久久性| 免费看不卡的av| av网站免费在线观看视频| 九色成人免费人妻av| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 成年美女黄网站色视频大全免费| 777米奇影视久久| 高清欧美精品videossex| 日本91视频免费播放| 熟女电影av网| 亚洲精品色激情综合| 夜夜骑夜夜射夜夜干| 精品亚洲成国产av| 国产永久视频网站| 国产亚洲最大av| 97精品久久久久久久久久精品| 久久这里有精品视频免费| 国产成人精品无人区| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 一区二区三区精品91| 亚洲情色 制服丝袜| 久久99热6这里只有精品| a级片在线免费高清观看视频| 国产黄色免费在线视频| 亚洲,一卡二卡三卡| 女的被弄到高潮叫床怎么办| 女人久久www免费人成看片| 成人国产麻豆网| 久久午夜福利片| 高清在线视频一区二区三区| 老司机影院毛片| www.色视频.com| 亚洲国产最新在线播放| 青春草视频在线免费观看| 日韩av不卡免费在线播放| 欧美精品av麻豆av| 在线观看www视频免费| 亚洲成av片中文字幕在线观看 | 99久久中文字幕三级久久日本| 一区二区三区乱码不卡18| 国产亚洲av片在线观看秒播厂| 日本-黄色视频高清免费观看| 大码成人一级视频| 99热6这里只有精品| 深夜精品福利| 精品国产一区二区久久| 久久久久精品性色| 国产毛片在线视频| 国产一区二区在线观看av| 亚洲综合精品二区| 精品国产一区二区三区四区第35| 蜜臀久久99精品久久宅男| 青青草视频在线视频观看| 美女视频免费永久观看网站| 欧美日韩一区二区视频在线观看视频在线| av一本久久久久| 99热全是精品| 亚洲人成77777在线视频| 各种免费的搞黄视频| 精品一区二区三区视频在线| 尾随美女入室| 99热网站在线观看| 一级黄片播放器| 亚洲精品美女久久久久99蜜臀 | 在线观看免费视频网站a站| 亚洲精品乱码久久久久久按摩| 久久久久人妻精品一区果冻| 久久精品国产a三级三级三级| 肉色欧美久久久久久久蜜桃| 青春草亚洲视频在线观看| 如何舔出高潮| 99视频精品全部免费 在线| 亚洲国产欧美在线一区| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 人人妻人人爽人人添夜夜欢视频| 成人国语在线视频| 欧美丝袜亚洲另类| 欧美日韩综合久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 51国产日韩欧美| 国产成人一区二区在线| 国产麻豆69| 女性被躁到高潮视频| 亚洲欧美成人精品一区二区| 一区二区av电影网| 最近2019中文字幕mv第一页| av有码第一页| 国产精品三级大全| 高清毛片免费看| 国产一区二区在线观看日韩| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕 | 热99国产精品久久久久久7| 人妻 亚洲 视频| 黄片无遮挡物在线观看| 婷婷色综合www| 一区二区日韩欧美中文字幕 | 免费黄色在线免费观看| 老司机影院毛片| 午夜久久久在线观看| 韩国高清视频一区二区三区| 久久人妻熟女aⅴ| 国产片内射在线| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 国产成人av激情在线播放| 97在线人人人人妻| 在线看a的网站| 两个人看的免费小视频| 亚洲国产毛片av蜜桃av| 男人操女人黄网站| 国产片特级美女逼逼视频| 深夜精品福利| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 国产精品 国内视频| 亚洲精品久久午夜乱码| videos熟女内射| 国产精品 国内视频| 久久97久久精品| 国产一区有黄有色的免费视频| 亚洲av中文av极速乱| av国产精品久久久久影院| 国产亚洲av片在线观看秒播厂| 亚洲精品日韩在线中文字幕| av电影中文网址| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 天堂俺去俺来也www色官网| 性高湖久久久久久久久免费观看| 国产亚洲最大av| 九九爱精品视频在线观看| 男女免费视频国产| 国产成人av激情在线播放| 国产色爽女视频免费观看| 只有这里有精品99| av不卡在线播放| 午夜福利,免费看| 桃花免费在线播放| 丰满饥渴人妻一区二区三| 波野结衣二区三区在线| 久久ye,这里只有精品| 99久久人妻综合| 欧美精品人与动牲交sv欧美| 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 又大又黄又爽视频免费| 黄色视频在线播放观看不卡| 免费高清在线观看日韩| 日韩成人av中文字幕在线观看| 在线观看人妻少妇| 精品国产乱码久久久久久小说| 男人爽女人下面视频在线观看| 亚洲,欧美,日韩| 成人国语在线视频| 久久人人97超碰香蕉20202| 边亲边吃奶的免费视频| 午夜老司机福利剧场| 熟女av电影| 成人国语在线视频| 免费黄网站久久成人精品| 欧美精品一区二区大全| 午夜福利影视在线免费观看| 亚洲成av片中文字幕在线观看 | 人人澡人人妻人| 国产精品麻豆人妻色哟哟久久| 91国产中文字幕| 国产在视频线精品| 久久久久久久久久成人| 一边亲一边摸免费视频| 涩涩av久久男人的天堂| 成人黄色视频免费在线看| 亚洲国产色片| 成人亚洲精品一区在线观看| 夫妻午夜视频| 精品人妻一区二区三区麻豆| 一区在线观看完整版| 色婷婷久久久亚洲欧美| 九九在线视频观看精品| 看免费av毛片| kizo精华| 日韩av免费高清视频| 男人舔女人的私密视频| 国产 一区精品| a级毛片黄视频| 岛国毛片在线播放| 91久久精品国产一区二区三区| 亚洲精品一区蜜桃| 69精品国产乱码久久久| 国产乱来视频区| 在线天堂最新版资源| 人人妻人人添人人爽欧美一区卜| 97超碰精品成人国产| 免费不卡的大黄色大毛片视频在线观看| 在线观看www视频免费| 久久99一区二区三区| 亚洲色图综合在线观看| 精品一品国产午夜福利视频| 美女国产视频在线观看| 如何舔出高潮| 免费高清在线观看视频在线观看| 欧美精品亚洲一区二区| 波野结衣二区三区在线| 久久 成人 亚洲| 国产不卡av网站在线观看| 桃花免费在线播放| 99久久人妻综合| 欧美精品一区二区免费开放| 少妇人妻精品综合一区二区| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜爱| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| av在线老鸭窝| av免费在线看不卡| 女的被弄到高潮叫床怎么办| 国产精品一国产av| 建设人人有责人人尽责人人享有的| 最近最新中文字幕大全免费视频 | 伊人亚洲综合成人网| 咕卡用的链子| 久久久久国产网址| 青春草亚洲视频在线观看| 男女无遮挡免费网站观看| 日本wwww免费看| 在线观看www视频免费| 亚洲av欧美aⅴ国产| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 国产综合精华液| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码 | 2022亚洲国产成人精品| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 亚洲国产精品999| 少妇的逼好多水| 91成人精品电影| 又大又黄又爽视频免费| 国产爽快片一区二区三区| 国产黄频视频在线观看| 日韩一区二区三区影片| 国产黄色免费在线视频| 侵犯人妻中文字幕一二三四区| 亚洲av日韩在线播放| 精品卡一卡二卡四卡免费| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 国产一级毛片在线| 日产精品乱码卡一卡2卡三| 9热在线视频观看99| 国产熟女欧美一区二区| 国产成人免费无遮挡视频| 欧美激情国产日韩精品一区| 欧美少妇被猛烈插入视频| 亚洲第一av免费看| 久久久久视频综合| av在线老鸭窝| 亚洲精品色激情综合| 极品少妇高潮喷水抽搐| 我的女老师完整版在线观看| 精品人妻一区二区三区麻豆| 桃花免费在线播放| 久久久国产欧美日韩av| 日韩三级伦理在线观看| 久久国产精品男人的天堂亚洲 | 国产精品久久久av美女十八| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久亚洲中文字幕| 亚洲国产欧美在线一区| 在线观看一区二区三区激情| 欧美精品国产亚洲| 一级爰片在线观看| 大码成人一级视频| 日韩电影二区| 一边亲一边摸免费视频| 精品人妻在线不人妻| 啦啦啦在线观看免费高清www| 乱码一卡2卡4卡精品| 亚洲伊人久久精品综合| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久av美女十八| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 国产成人91sexporn| 中文字幕制服av| 哪个播放器可以免费观看大片| 另类精品久久| 免费观看a级毛片全部| 建设人人有责人人尽责人人享有的| 午夜日本视频在线| 韩国av在线不卡| 国产黄色免费在线视频| 最近的中文字幕免费完整| 午夜福利网站1000一区二区三区| a级毛片黄视频| 高清黄色对白视频在线免费看| 大香蕉97超碰在线| 欧美精品一区二区大全| 九色亚洲精品在线播放| 视频在线观看一区二区三区| 国产日韩欧美视频二区| 久久99蜜桃精品久久| 久久99热6这里只有精品| 欧美日韩成人在线一区二区| 欧美亚洲日本最大视频资源| 26uuu在线亚洲综合色| 香蕉精品网在线| 日本午夜av视频| 飞空精品影院首页| 26uuu在线亚洲综合色| 中文字幕免费在线视频6| 又大又黄又爽视频免费| av黄色大香蕉| 亚洲成国产人片在线观看| 新久久久久国产一级毛片| 七月丁香在线播放| 欧美97在线视频| 大片电影免费在线观看免费| 考比视频在线观看| 青春草亚洲视频在线观看| 国产伦理片在线播放av一区| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 国产成人a∨麻豆精品| 性高湖久久久久久久久免费观看| 日韩欧美精品免费久久| 亚洲欧美精品自产自拍| 丝袜脚勾引网站| 22中文网久久字幕| 麻豆精品久久久久久蜜桃| 一区二区三区精品91| 免费看av在线观看网站| 国产国语露脸激情在线看| av线在线观看网站| 一本色道久久久久久精品综合| 老女人水多毛片| 五月玫瑰六月丁香| 午夜福利乱码中文字幕| 成人影院久久| 人妻一区二区av| 在线观看美女被高潮喷水网站| 十八禁网站网址无遮挡| 亚洲高清免费不卡视频| 免费女性裸体啪啪无遮挡网站| 在现免费观看毛片| 视频在线观看一区二区三区| 久久99热6这里只有精品| 欧美日韩视频精品一区| 久久精品国产a三级三级三级| 女人精品久久久久毛片| 日本91视频免费播放| 中文精品一卡2卡3卡4更新| 日韩电影二区| 丰满迷人的少妇在线观看| 亚洲成av片中文字幕在线观看 | 老司机影院成人| 欧美精品一区二区大全| 久久久精品区二区三区| 国产一区二区在线观看日韩| 在线观看人妻少妇| 夫妻午夜视频| 十八禁网站网址无遮挡| 午夜91福利影院| 全区人妻精品视频| 国产精品99久久99久久久不卡 | 国产成人精品无人区| 狂野欧美激情性bbbbbb| 久久99蜜桃精品久久| 久久久久久久大尺度免费视频| 国产麻豆69| 国产一区有黄有色的免费视频| 九色成人免费人妻av| 宅男免费午夜| 亚洲精品av麻豆狂野| 人人妻人人澡人人爽人人夜夜| 午夜福利影视在线免费观看| 精品人妻偷拍中文字幕| 国产一级毛片在线| 桃花免费在线播放| 久热这里只有精品99| 欧美性感艳星| 90打野战视频偷拍视频| 99久国产av精品国产电影| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品古装| 欧美bdsm另类| 乱人伦中国视频| 777米奇影视久久| 久久久欧美国产精品| 黄色怎么调成土黄色| 久久女婷五月综合色啪小说| 男人爽女人下面视频在线观看| 2022亚洲国产成人精品| 久久人人97超碰香蕉20202| 一本色道久久久久久精品综合| h视频一区二区三区| 黄片播放在线免费| 黑丝袜美女国产一区| 美女国产高潮福利片在线看| 欧美日韩成人在线一区二区| 黑人巨大精品欧美一区二区蜜桃 | 午夜福利,免费看| 久久国产亚洲av麻豆专区| 你懂的网址亚洲精品在线观看| 青春草国产在线视频| 午夜av观看不卡| 精品99又大又爽又粗少妇毛片| 日韩大片免费观看网站| 少妇被粗大的猛进出69影院 | 国产av一区二区精品久久| 欧美性感艳星| 国产男女超爽视频在线观看| 春色校园在线视频观看| 视频在线观看一区二区三区| 精品99又大又爽又粗少妇毛片| 国产欧美另类精品又又久久亚洲欧美| 18禁国产床啪视频网站| 国产1区2区3区精品| 亚洲欧美精品自产自拍| 国产乱来视频区| 亚洲欧美成人综合另类久久久| 丝袜喷水一区| av天堂久久9| 久久久久久久久久久免费av| www日本在线高清视频| 婷婷色麻豆天堂久久| 久热久热在线精品观看| 国产精品人妻久久久影院| 少妇的逼水好多| 黄色毛片三级朝国网站| 亚洲欧美精品自产自拍| 另类精品久久| 一本—道久久a久久精品蜜桃钙片| 午夜免费观看性视频| 久久青草综合色| 精品国产露脸久久av麻豆| 国产精品99久久99久久久不卡 | 国产极品天堂在线| 亚洲美女搞黄在线观看| 国产精品免费大片| www.av在线官网国产| 中文字幕精品免费在线观看视频 | 久久人人97超碰香蕉20202| 亚洲av福利一区| 高清不卡的av网站| 永久网站在线| 欧美3d第一页| 日韩大片免费观看网站| 免费在线观看完整版高清| 中文字幕av电影在线播放| 狠狠婷婷综合久久久久久88av| 少妇人妻精品综合一区二区| 久久这里只有精品19| 成年女人在线观看亚洲视频| 日日爽夜夜爽网站| av网站免费在线观看视频| 18禁动态无遮挡网站| xxx大片免费视频| 久久av网站| 99九九在线精品视频| 母亲3免费完整高清在线观看 | 国产日韩欧美在线精品| 人人妻人人添人人爽欧美一区卜| 天堂中文最新版在线下载| 韩国高清视频一区二区三区| 色吧在线观看| a级片在线免费高清观看视频| 久久午夜福利片| 1024视频免费在线观看| 日日啪夜夜爽| 中国国产av一级| 九九在线视频观看精品| 性色av一级| 桃花免费在线播放| 亚洲性久久影院| 欧美人与性动交α欧美软件 | 午夜福利视频在线观看免费| 9色porny在线观看| 免费观看av网站的网址| 亚洲精品中文字幕在线视频| 亚洲综合色网址| 欧美日本中文国产一区发布| 亚洲国产色片| 成人国产麻豆网| 赤兔流量卡办理| 99九九在线精品视频| 日产精品乱码卡一卡2卡三| 新久久久久国产一级毛片| 亚洲av电影在线观看一区二区三区| 精品国产露脸久久av麻豆| 久久久精品区二区三区| 精品午夜福利在线看| 日韩,欧美,国产一区二区三区| 美女国产高潮福利片在线看| 久久久久精品久久久久真实原创| 考比视频在线观看| 一级毛片我不卡| 只有这里有精品99| 国产精品久久久av美女十八| 啦啦啦中文免费视频观看日本| 亚洲av日韩在线播放| 女人被躁到高潮嗷嗷叫费观| 男女边吃奶边做爰视频| 成人亚洲精品一区在线观看| 国产精品国产三级国产专区5o| 国产一区二区在线观看日韩| 国产亚洲精品第一综合不卡 | 91精品三级在线观看| 欧美人与性动交α欧美软件 | 少妇人妻精品综合一区二区| 日韩精品有码人妻一区| 午夜视频国产福利| 国语对白做爰xxxⅹ性视频网站| 国产精品无大码| 国产免费又黄又爽又色| 亚洲,一卡二卡三卡| 男女啪啪激烈高潮av片| 久久精品国产a三级三级三级| 青春草亚洲视频在线观看| 午夜福利在线观看免费完整高清在| 女的被弄到高潮叫床怎么办| 久久久精品94久久精品| 国产高清不卡午夜福利| 超碰97精品在线观看| 一边亲一边摸免费视频| 亚洲av电影在线进入| 人妻系列 视频| 精品午夜福利在线看| 性高湖久久久久久久久免费观看| 一边摸一边做爽爽视频免费| 国产精品人妻久久久影院| 五月开心婷婷网| 麻豆精品久久久久久蜜桃| 亚洲国产欧美在线一区| 久久久国产精品麻豆| 久久99热6这里只有精品| xxx大片免费视频| 久久精品人人爽人人爽视色| 秋霞在线观看毛片| 免费不卡的大黄色大毛片视频在线观看| 在线天堂中文资源库| 在线免费观看不下载黄p国产| 免费不卡的大黄色大毛片视频在线观看| 久久久久国产网址| 99热全是精品| 亚洲综合色网址| 老司机影院毛片| 久热久热在线精品观看| 激情五月婷婷亚洲| 全区人妻精品视频| 18禁观看日本| 亚洲情色 制服丝袜| av网站免费在线观看视频| 精品亚洲成国产av| 久久 成人 亚洲|