• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    2015-04-22 06:17:32WANGNiwei王妮煒FEIZesong費(fèi)澤松XINGChengwen邢成文NIJiqing倪吉慶KUANGJingming匡鏡明
    關(guān)鍵詞:吉慶成文

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information (CSI) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    learning-base; multiple-input-multiple-output(MIMO); cognitive radio (CR) network; multiuser

    Current wireless networks are characterized by a static spectrum allocation policy, but it faces the scarcity of frequency spectrum, which limits the development of future wireless communication systems. Recently,cognitive radio (CR) has drawn intensive attentions from both academic and industrial communities[1]. In CR systems, CR users (CR-UE) and primary users (PR-UE) are allowed to share the same spectrum, which is divided into two spectrum sharing policies, i.e., overlay spectrum sharing and underlay spectrum sharing[2].

    It is obvious that frequency spectrum is used more efficiently by above technologies, but the performance for PR systems should not be ignored. In addition, the interference at PR-UEs caused by CR-UEs must be effectively reduced and limited by a predefined interference threshold. An efficient technique in CR networks is that the CR transmitters equipped with multiple antennas exploit the beamforming technique to steer the transmit energy to the intended users[3-4]. As we all known, beamforming can be interpreted as a spatial filter and its implementation is usually based on channel state information (CSI). Unfortunately, PR terminals have no responsibility to transmit pilots to CR terminals, so blind channel estimation algorithms will be preferred to gain the CSI between PR terminals and CR terminals[5].

    To make the underlay spectrum sharing most efficient, environment learning[6-8]is exploited in this paper, which blindly estimates the null spaces of the PR-UEs without implicit information exchange and additional communication overhead. In this paper, the time of each CR frame is fixed. Learning-based algorithm is adopted to estimate the CSI between PR terminals and CR terminals, and channels between CR terminals can be obtained through channel training stage. For user selection stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. With selected users, the total capacity is maximized by constrained to the interference to PR-UEs, which was solved with a closed power allocation solution. The results show that the multi-criteria user selection scheme, which can change the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    1 System model

    In our work, the PR system and the CR system share the same frequency band as shown in Fig.1. For the PR system, each PR-UE is equipped withMpantennas and communicates with the PR base-station (PR-BS) without considering the transmission of the CR system. The CR system has a CR base-station (CR-BS) withMBantennas andKCR users (CR-UEs) withMi(i=1,…,K) antennas. In order to use learning method better, we assumeMp

    Fig.1 Multiuser MIMO CR network

    2 Transmission design and problem formulation

    As shown in Fig.2, the CR transmission strategy can be divided into frames with fixed timeN=Nl+Nt+Ns+Nd, which has four stages, i.e., learning, channel training, user selection and data transmission stage. It is obvious that the last stage brings more data transmission and system throughput, while the others provide better transmission quality. Therefore, it is important to design the length of different stages and the details are described in the following subsections.

    Fig.2 CR frame structure

    2.1 Learning stage

    It is knowh that the PR system has no responsibility to report its transmission to the CR system, so the CR terminals have to listen to the PR system and find the noise space of the transmitted signals. After this period of time, CR transmitters precode the transmitted signals by multiplying the noise space to reduce interference to the PR system, while CR receivers reduce interference from the PR system by multiplying noise space after receiving their targeted signals.

    At symbol periodn, the signals sent from the PR user can be expressed as

    sp(n),n=1,2,…,N

    (1)

    wheresp(n)isanindependentidenticallydistributedrandomsignal.ThenthesignalsreceivedattheCRterminalscanbeformulatedas

    yB(n)=GBsp(n)+zB(n),for the CR-BS

    yi(n)=Gisp(n)+zi(n),for the CR-UE,

    n=1,2,…,Nl

    (2)

    The covariance matrices of received signalsyBandyicanbeexpressedas

    (3)

    Inordertogainthenoisespace,theEVDofcovariancematricesRBandRiareformulatedas

    (4)

    Ifthelearningtimeislongenough,thenoisespacewillbeabsolutelyaccurate.Therefore,theinterferencecanbetotallyeliminatedatCRterminalsasbelow

    (5)

    If the signals transmitted at CR terminals ared(n),theinterferenceatPRterminalswillalsoreducetozero

    (6)

    2.2Channeltrainingstage

    Thechanneltrainingstageisdesignedindownlinktransmissionwithtwogoals,i.e.,obtainingchannelmatricesandprovidingfeedbackofsignalnoiseratio(SNR)toCR-BS.

    WeassumeCR-BStransmitstrainingsequencest(n)toallusersatthesametime,sothesignalreceivedatithCR-UEis

    (7)

    Because the training time is finite and the channel environment is complex in real transmission, estimation error is existed in general. We use the LMMSE-based channel estimator forWianditcanbeobtainedas

    (8)

    where

    (9)

    Thus, the practical signals received at the CR-UEs can be reformulated as

    (10)

    (11)

    Inordertochooseabetteruserset,weneedtoknowtheSNRofeachuser,whichcanbeexpressedas

    (12)

    wheren=Nl+1,…,Nl+Nt. We assume that the channel is quasi static in one CR frame, so the average SNR during the channel training stage can be written as

    (13)

    wheretr(TTH)=NtPBS.

    2.3 User selection stage

    Because a CR-BS cannot serve all the CR-UEs simultaneously a user selection method is necessarily needed andKoptusers can be supported at most before data transmission. A user can be more easily selected with largerfi, which is the user selection function of theithuser.

    Firstly, three traditional user selection schemes are introduced. For the SNR scheme, the user selection function is defined as

    (14)

    Then,bydefiningtheselectedtimesoftheithuser as δi,theuserselectionfunctionofRoundRobin(RR)schemecanbeformulatedas

    fi=i+ΔiK

    (15)

    The last traditional scheme is proportional fair (PF) with user selection function described as

    (16)

    However, users usually have different requirements in real systems, so a multi-criteria user selection method is proposed. Assume that there are Γkindsofcriterionsandapriorityfunctionofithuserrelativetojthuserisdefinedas

    (17)

    (18)

    Thesameaschanneltrainingstage,CR-BStransmitstheselectedusersettoallCR-UEsthroughfeedbackchannelsfinally.Withinfinitecapacity,thereisnoadditionerror.Inaddition,duetothegreatcomputingabilityofCR-BSitisreasonabletoassumeNB=1.

    2.4 Data transmission stage

    (19)

    whereKois the number of selected users,v(n)istheeffectiveinterference-plus-noiseterm.Notethat,notonlytheinterferencefromtheCRtothePRbutalsothatfromthePRtotheCRhasbeencontrolled.

    3 Problem optimization

    Beforechanneltrainingstage,CR-BSdoesnotknowthechannelstateinformation,sothepowershouldbeallocatedequally,

    (20)

    wherePBis the transmit power of CR-BS. Thus, Eq.(11) can be reformulated as

    (21)

    Consideringtheimperfectchanneltraininganduserselectionschemes,weaimtoallocatethepowerofbeamsforeachCR-UEtomaximizethesystemcapacity.Theoptimalproblemis

    (22)

    Thecapacityinthedatatransmissionstageis

    (23)

    where the covariance matrix defined as

    (24)

    then the capacity in Eq.(23) becomes

    (25)

    where

    Λi=diag{λi,1,λi,2,…,λi,(Mi-Mp)}

    diag{xi,1,xi,2,…,xi,(Mi-Mp)}

    (26)

    In order to optimize the total capacity, two stages are proposed.

    ① For a fixedNt, we use water-filling algorithm[9]to allocate the power and the solution is that if ρei∈(qi,c-1,qi,c],then

    (27)

    where

    (28)

    ②Basedontheoptimalpower,wesearchfortherangeofNtto find the maximal capacity, which has the final optimal solution.

    4 Simulation results

    In the simulation, the CR network has one PR-UE withMp=2 antennas, one CR-BS withMB=4 antennas andK=5 CR-UEs withM1=…=MK=4 antennas. In a transmission,Ko=4 users can be transmitted simultaneously at most. When the total time of a CR frame isN=60, the learning stage can be stable withNl=10[7]. According to the standard of LTE, we setPB=1,PU=0.2. In the simulation, we assume that user 3 has bad channel state, i.e. it is far away from the CR-BS or the interference cannot be dismissed. We put all these factors as a part of noise, so the noise power vector is ={1,1,5,1,1}.

    Fig.3 shows that SNR scheme has the best performance, while RR scheme has the worst performance because of considering fairness only. PF scheme is a little better than RR scheme because it takes both fairness and system performance into consideration. However, multi-criteria scheme considers both aspects with the same weightφ1=φ2=0.5 and outperforms RR scheme. In addition, multi-criteria is more flexible and can achieve different levels of performance by changing the weights.

    As Fig.4 illustrated that user 3 is selected barely while the other users are selected frequently in SNR scheme, which causes great unfairness between users. Although some users have bad channel conditions, they may still transmit important information, i.e., emergency calls. Obviously, the other three schemes are better programed in this case except SNR scheme. In fact, the emergency incident does not occur frequently, so in most cases the system performance is more important than fairness. To sum all, multi-criteria scheme fits the practical situation and has a trade off between both sides.

    Fig.3 Total capacity for the four schemes verses Nt

    Fig.4 Selected probabilities of users for the four schemes

    5 Conclusion

    In this paper, we have proposed a multi-criteria user selection scheme which provides the best service user set for the learning-based multiuser MIMO CR networks. In addition channel training is exploited to gain the channels between CR terminals. The total capacity is maximized with the interference constraint at PR-UEs. Simulation results demonstrate that the multi-criteria user selection scheme achieves a tradeoff be-tween user fairness and system performance than SNR, RR and PF schemes. Moreover, it is more flexible by changing the weight of criteria.

    [1] Liang Yingchang, Chen Kwangcheng, Li Geoffrey Ye, et al. Cognitive radio networking and communications: an overview [J]. IEEE Transactions on Vehicular Technology , 2011, 60(7): 3386-3407.

    [2] Zhao Qing, Sadler B M. A survey of dynamic spectrum access[J]. IEEE Signal Processing Magazine, 2007, 24(3): 79-89.

    [3] Tajer A, Prasad N, Wang Xiaodong. Beamforming and rate allocation in MISO cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 362-377.

    [4] Hamdi K, Zarifi K, Ben Letaief K, et al. Beamforming in relay-assisted cognitive radio systems: a convex optimization approach [C]∥IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011.

    [5] Noam Y, Goldsmith A J. Blind null-space learning for spatial coexistence in MIMO cognitive radios[C]∥IEEE International Conference on Communications (ICC), Ottawa, Ontario, Canada, 2012.

    [6] Zhang Rui, Gao Feifei, Liang Yingchang. Cognitive beamforming made practical: effective interference channel and learning-throughput tradeoff [J]. IEEE Transactions on Communications, 2010, 58(2): 706-718.

    [7] Gao Feifei, Zhang Rui, Liang Yingchang, et al. Design of learning-based MIMO cognitive radio systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1707-1720.

    [8] Li Shuo, Fei Zesong, Xing Chengwen, et al. Joint resource allocation for learning-based cognitive radio networks with MIMO-OFDM relay-aided transmissions[C]∥IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013.

    [9] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, UK: Cambridge University Press, 2004.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0216

    TN 929.5 Document code: A Article ID: 1004- 0579(2015)02- 0240- 06

    Received 2014- 03- 18

    Supported by National S & T Major Project of China (2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    吉慶成文
    “00后”的愛情標(biāo)簽
    徐成文
    大江南北(2023年2期)2023-02-11 05:45:56
    我和老伴的快樂“毽 ”身法
    晚秋
    寶藏(2021年5期)2021-12-01 10:15:58
    富庶吉慶的鯉魚
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    剪紙欣賞
    中老年保健(2017年1期)2017-06-02 06:14:42
    成文昊設(shè)計(jì)作品
    Low-complexity transceiver design scheme based on channel null-space feedback
    一輩子的藍(lán)顏
    精品一区二区三卡| 美女国产高潮福利片在线看| 一个人免费看片子| 国产精品久久久久久久电影| 亚洲av男天堂| 久久精品久久精品一区二区三区| 国产一级毛片在线| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 99久久中文字幕三级久久日本| av卡一久久| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 美女主播在线视频| 免费观看性生交大片5| 在线观看www视频免费| 国产精品人妻久久久久久| 母亲3免费完整高清在线观看 | 各种免费的搞黄视频| 精品国产国语对白av| 久久久久久久国产电影| 90打野战视频偷拍视频| 亚洲综合色惰| 春色校园在线视频观看| 免费少妇av软件| 免费观看av网站的网址| 一级片'在线观看视频| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 久久女婷五月综合色啪小说| 日本wwww免费看| 午夜福利视频精品| av在线app专区| 国产精品一区二区在线观看99| 久久精品久久久久久噜噜老黄| 人人妻人人添人人爽欧美一区卜| 18禁动态无遮挡网站| 久久久久精品人妻al黑| 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 韩国精品一区二区三区 | 热99国产精品久久久久久7| 免费黄频网站在线观看国产| 成人亚洲精品一区在线观看| 女人久久www免费人成看片| 日韩 亚洲 欧美在线| 亚洲欧美日韩另类电影网站| 最近2019中文字幕mv第一页| 免费看av在线观看网站| 又黄又爽又刺激的免费视频.| 日韩成人伦理影院| 人人妻人人爽人人添夜夜欢视频| 亚洲经典国产精华液单| 亚洲第一区二区三区不卡| 中文天堂在线官网| 91国产中文字幕| 国产一区二区三区av在线| 日韩不卡一区二区三区视频在线| 成人国产av品久久久| 视频在线观看一区二区三区| 男女啪啪激烈高潮av片| 日韩伦理黄色片| 一级毛片 在线播放| 国产男人的电影天堂91| 91久久精品国产一区二区三区| 国精品久久久久久国模美| 亚洲精品av麻豆狂野| 18禁在线无遮挡免费观看视频| 最近2019中文字幕mv第一页| 老女人水多毛片| 在线精品无人区一区二区三| 美女脱内裤让男人舔精品视频| 国产黄色免费在线视频| 免费播放大片免费观看视频在线观看| 各种免费的搞黄视频| av一本久久久久| 天堂8中文在线网| av卡一久久| 日韩一区二区三区影片| 老女人水多毛片| 精品人妻熟女毛片av久久网站| 免费女性裸体啪啪无遮挡网站| 国产 一区精品| 精品午夜福利在线看| 免费观看无遮挡的男女| 亚洲欧美日韩另类电影网站| 十八禁高潮呻吟视频| 久久久久久久久久成人| 成人毛片a级毛片在线播放| 日韩不卡一区二区三区视频在线| 久久热在线av| 国产精品一区www在线观看| 精品一品国产午夜福利视频| 亚洲精品,欧美精品| 观看美女的网站| 18禁动态无遮挡网站| 1024视频免费在线观看| 精品少妇久久久久久888优播| 三上悠亚av全集在线观看| av有码第一页| 777米奇影视久久| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 香蕉国产在线看| 91在线精品国自产拍蜜月| 三上悠亚av全集在线观看| 亚洲成色77777| 色吧在线观看| 一级黄片播放器| 精品人妻熟女毛片av久久网站| 国产国语露脸激情在线看| 日韩欧美精品免费久久| 人妻 亚洲 视频| av播播在线观看一区| 高清不卡的av网站| 国产色爽女视频免费观看| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 纯流量卡能插随身wifi吗| 大陆偷拍与自拍| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品成人久久小说| 捣出白浆h1v1| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 国产欧美亚洲国产| 欧美精品国产亚洲| 999精品在线视频| 久久女婷五月综合色啪小说| 午夜久久久在线观看| 天堂俺去俺来也www色官网| www.av在线官网国产| av片东京热男人的天堂| 国产精品99久久99久久久不卡 | 成年av动漫网址| 你懂的网址亚洲精品在线观看| 亚洲内射少妇av| 99热这里只有是精品在线观看| 国产成人精品福利久久| 日韩av免费高清视频| 丰满饥渴人妻一区二区三| 女人久久www免费人成看片| 各种免费的搞黄视频| 亚洲人与动物交配视频| 看十八女毛片水多多多| 久久人人爽人人爽人人片va| 如何舔出高潮| 人成视频在线观看免费观看| 亚洲精品久久午夜乱码| 国产又爽黄色视频| 国产精品无大码| 精品国产国语对白av| h视频一区二区三区| 国产一区二区三区av在线| 美女内射精品一级片tv| 亚洲精华国产精华液的使用体验| 国产黄频视频在线观看| 一级毛片我不卡| 久热这里只有精品99| 在线观看免费日韩欧美大片| 春色校园在线视频观看| 99re6热这里在线精品视频| 精品一区二区三区四区五区乱码 | 99视频精品全部免费 在线| 精品久久国产蜜桃| 精品99又大又爽又粗少妇毛片| 精品熟女少妇av免费看| 看免费av毛片| 国产一区有黄有色的免费视频| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 久久这里有精品视频免费| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩av久久| 在线精品无人区一区二区三| 大片电影免费在线观看免费| 中文字幕免费在线视频6| 满18在线观看网站| 免费观看无遮挡的男女| 国产午夜精品一二区理论片| 我的女老师完整版在线观看| a级毛色黄片| 久久久久久久久久人人人人人人| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| 1024视频免费在线观看| 18禁在线无遮挡免费观看视频| 在线观看免费视频网站a站| 免费观看a级毛片全部| 欧美人与性动交α欧美软件 | 18禁在线无遮挡免费观看视频| 日韩精品免费视频一区二区三区 | 99热全是精品| 美女脱内裤让男人舔精品视频| 国产亚洲最大av| 免费黄网站久久成人精品| 中文天堂在线官网| 咕卡用的链子| 免费看光身美女| xxx大片免费视频| 蜜桃国产av成人99| 欧美xxⅹ黑人| 亚洲欧美日韩卡通动漫| 国产又色又爽无遮挡免| www.色视频.com| 麻豆乱淫一区二区| 99视频精品全部免费 在线| 久久午夜综合久久蜜桃| 天天影视国产精品| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人久久小说| 99国产综合亚洲精品| 久久久久人妻精品一区果冻| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 午夜激情av网站| 色94色欧美一区二区| 精品一区在线观看国产| 巨乳人妻的诱惑在线观看| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 欧美日韩综合久久久久久| www.熟女人妻精品国产 | 九色成人免费人妻av| 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 嫩草影院入口| 久久久久精品人妻al黑| 狂野欧美激情性xxxx在线观看| av黄色大香蕉| 久久精品久久久久久噜噜老黄| 曰老女人黄片| 免费观看av网站的网址| 91在线精品国自产拍蜜月| 成年动漫av网址| 久久这里只有精品19| 久久久久国产精品人妻一区二区| 99视频精品全部免费 在线| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| 精品国产一区二区久久| 韩国高清视频一区二区三区| 国产精品 国内视频| videossex国产| 国产毛片在线视频| av一本久久久久| 国产亚洲av片在线观看秒播厂| 亚洲色图 男人天堂 中文字幕 | 亚洲人成77777在线视频| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 色婷婷av一区二区三区视频| 成年av动漫网址| 免费高清在线观看视频在线观看| 日韩 亚洲 欧美在线| 人体艺术视频欧美日本| 美女内射精品一级片tv| 亚洲在久久综合| 国国产精品蜜臀av免费| 天天影视国产精品| 99久久中文字幕三级久久日本| 黄色 视频免费看| 午夜福利网站1000一区二区三区| 制服人妻中文乱码| 国内精品宾馆在线| 黑人欧美特级aaaaaa片| a级毛片黄视频| av视频免费观看在线观看| 国产福利在线免费观看视频| 久久久久视频综合| 王馨瑶露胸无遮挡在线观看| 在线观看人妻少妇| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品日本国产第一区| 日韩一区二区视频免费看| 在线观看免费日韩欧美大片| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 国产成人精品无人区| 国产视频首页在线观看| 国产精品蜜桃在线观看| 亚洲av欧美aⅴ国产| 性色avwww在线观看| 亚洲在久久综合| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| 亚洲伊人久久精品综合| 久久精品国产亚洲av天美| 午夜av观看不卡| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 大香蕉97超碰在线| 久久人妻熟女aⅴ| 亚洲婷婷狠狠爱综合网| 久久女婷五月综合色啪小说| av卡一久久| 久久久久精品人妻al黑| xxxhd国产人妻xxx| 亚洲,欧美,日韩| 国产片内射在线| 成年女人在线观看亚洲视频| 国产国拍精品亚洲av在线观看| 精品亚洲成a人片在线观看| 日韩伦理黄色片| 国产精品久久久久久精品古装| 婷婷色麻豆天堂久久| 中文乱码字字幕精品一区二区三区| 插逼视频在线观看| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 美女内射精品一级片tv| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| av有码第一页| av卡一久久| 精品酒店卫生间| 视频中文字幕在线观看| 午夜福利,免费看| 国产视频首页在线观看| 日韩在线高清观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产av一区二区精品久久| 2018国产大陆天天弄谢| 秋霞伦理黄片| www.熟女人妻精品国产 | 看免费av毛片| 免费大片黄手机在线观看| 日韩成人av中文字幕在线观看| 国产精品不卡视频一区二区| 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| 丝袜美足系列| 美女脱内裤让男人舔精品视频| 精品卡一卡二卡四卡免费| 日韩熟女老妇一区二区性免费视频| 久久97久久精品| 日韩,欧美,国产一区二区三区| 观看美女的网站| 伦精品一区二区三区| 中国国产av一级| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 国产精品免费大片| 国产精品国产av在线观看| 男女高潮啪啪啪动态图| 久久av网站| 亚洲情色 制服丝袜| 97超碰精品成人国产| 国产高清国产精品国产三级| 高清视频免费观看一区二区| av在线播放精品| 日韩成人伦理影院| 大码成人一级视频| 97在线人人人人妻| 精品久久蜜臀av无| 亚洲精品一区蜜桃| 男人操女人黄网站| 欧美3d第一页| 久久久久精品久久久久真实原创| 97在线人人人人妻| 国产男人的电影天堂91| 日韩一区二区视频免费看| 多毛熟女@视频| 久热这里只有精品99| 男女边吃奶边做爰视频| 欧美激情 高清一区二区三区| 丰满迷人的少妇在线观看| 免费在线观看完整版高清| 国产精品女同一区二区软件| 十八禁网站网址无遮挡| 毛片一级片免费看久久久久| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 欧美精品一区二区大全| 国产乱来视频区| 两性夫妻黄色片 | 午夜日本视频在线| 久久99热6这里只有精品| 国产精品无大码| 欧美成人精品欧美一级黄| 久久精品国产自在天天线| 自线自在国产av| 99热网站在线观看| 国产色婷婷99| 中文字幕最新亚洲高清| 免费看光身美女| 国产成人免费无遮挡视频| 色94色欧美一区二区| videossex国产| 香蕉丝袜av| 五月天丁香电影| 天天躁夜夜躁狠狠久久av| 少妇熟女欧美另类| 99香蕉大伊视频| 韩国精品一区二区三区 | 国产又色又爽无遮挡免| 黄色怎么调成土黄色| 精品酒店卫生间| 欧美日韩国产mv在线观看视频| 肉色欧美久久久久久久蜜桃| 国产 精品1| 汤姆久久久久久久影院中文字幕| 成人二区视频| 国产一区二区在线观看av| 久久久a久久爽久久v久久| 高清av免费在线| 国产又色又爽无遮挡免| 亚洲,一卡二卡三卡| 夫妻性生交免费视频一级片| 在线 av 中文字幕| 免费高清在线观看视频在线观看| 三上悠亚av全集在线观看| www.色视频.com| 免费大片黄手机在线观看| 王馨瑶露胸无遮挡在线观看| 久久99一区二区三区| 欧美xxxx性猛交bbbb| av播播在线观看一区| 午夜精品国产一区二区电影| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 久久精品久久精品一区二区三区| 人体艺术视频欧美日本| 午夜福利影视在线免费观看| 22中文网久久字幕| 国产精品久久久久久精品古装| 国产国语露脸激情在线看| 国产日韩欧美亚洲二区| 男女边吃奶边做爰视频| 亚洲精品美女久久久久99蜜臀 | 天天躁夜夜躁狠狠久久av| 建设人人有责人人尽责人人享有的| 五月伊人婷婷丁香| 国产色爽女视频免费观看| 色哟哟·www| 久久亚洲国产成人精品v| 亚洲欧美日韩卡通动漫| 久久人妻熟女aⅴ| 久久精品夜色国产| 亚洲av日韩在线播放| 男人爽女人下面视频在线观看| 这个男人来自地球电影免费观看 | 少妇人妻精品综合一区二区| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 一边亲一边摸免费视频| 99re6热这里在线精品视频| 好男人视频免费观看在线| 国产福利在线免费观看视频| 欧美丝袜亚洲另类| 亚洲av男天堂| 久久毛片免费看一区二区三区| 在线观看美女被高潮喷水网站| 国产成人精品在线电影| 男人爽女人下面视频在线观看| 亚洲精品乱码久久久久久按摩| 黄色 视频免费看| 亚洲av男天堂| 午夜免费男女啪啪视频观看| 91精品国产国语对白视频| 国产有黄有色有爽视频| 一级黄片播放器| 久久精品久久久久久噜噜老黄| 亚洲欧美色中文字幕在线| 欧美精品av麻豆av| 亚洲经典国产精华液单| 黄色视频在线播放观看不卡| 最黄视频免费看| 国产精品麻豆人妻色哟哟久久| 91久久精品国产一区二区三区| 国产成人精品福利久久| 国产老妇伦熟女老妇高清| 国产精品偷伦视频观看了| av线在线观看网站| 国产精品欧美亚洲77777| 日本黄色日本黄色录像| 99久久精品国产国产毛片| 一级片免费观看大全| 欧美 日韩 精品 国产| 免费不卡的大黄色大毛片视频在线观看| 赤兔流量卡办理| 久久 成人 亚洲| 大话2 男鬼变身卡| 亚洲av综合色区一区| 精品国产一区二区久久| 日韩欧美一区视频在线观看| 亚洲,一卡二卡三卡| 国产成人精品久久久久久| 少妇熟女欧美另类| www.色视频.com| av视频免费观看在线观看| 久久青草综合色| 亚洲欧美精品自产自拍| 久久久精品区二区三区| 极品人妻少妇av视频| 两个人免费观看高清视频| 黄色怎么调成土黄色| 免费观看av网站的网址| 建设人人有责人人尽责人人享有的| 国产一区二区在线观看av| 两个人免费观看高清视频| 一二三四中文在线观看免费高清| 人成视频在线观看免费观看| 国产欧美日韩一区二区三区在线| 大片电影免费在线观看免费| 久久久久久久久久成人| 夜夜骑夜夜射夜夜干| 日本与韩国留学比较| 国产乱人偷精品视频| 国产亚洲最大av| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区国产| 日本wwww免费看| 国产午夜精品一二区理论片| av国产久精品久网站免费入址| 亚洲av中文av极速乱| 久久精品国产鲁丝片午夜精品| 男女边吃奶边做爰视频| 91精品三级在线观看| 国内精品宾馆在线| 哪个播放器可以免费观看大片| 免费少妇av软件| av国产精品久久久久影院| 在线看a的网站| 久久久久久人人人人人| 色哟哟·www| videosex国产| 少妇熟女欧美另类| 最近最新中文字幕免费大全7| 亚洲国产精品999| 我要看黄色一级片免费的| 日本av免费视频播放| 在线观看一区二区三区激情| 91在线精品国自产拍蜜月| 纵有疾风起免费观看全集完整版| 中文字幕免费在线视频6| 国产精品欧美亚洲77777| 亚洲成色77777| 99热全是精品| 18禁裸乳无遮挡动漫免费视频| 秋霞在线观看毛片| 日韩大片免费观看网站| 亚洲精品美女久久久久99蜜臀 | 国产熟女午夜一区二区三区| 国产淫语在线视频| 91精品伊人久久大香线蕉| 亚洲av中文av极速乱| 乱码一卡2卡4卡精品| 综合色丁香网| 人成视频在线观看免费观看| 韩国精品一区二区三区 | 亚洲人成77777在线视频| 日韩一区二区三区影片| 少妇的丰满在线观看| 免费看光身美女| 国产精品一区www在线观看| 日本wwww免费看| 熟女av电影| 99久国产av精品国产电影| 国产一区二区在线观看日韩| 欧美变态另类bdsm刘玥| 亚洲综合精品二区| 日本色播在线视频| 久久久精品免费免费高清| 午夜老司机福利剧场| 欧美日韩视频精品一区| 青春草视频在线免费观看| 热re99久久国产66热| 免费人妻精品一区二区三区视频| 国产日韩欧美在线精品| 在线观看免费高清a一片| 国产精品国产三级专区第一集| 欧美精品高潮呻吟av久久| 亚洲精品av麻豆狂野| 亚洲精品视频女| 少妇精品久久久久久久| 久久青草综合色| 日韩av在线免费看完整版不卡| 91成人精品电影| 啦啦啦中文免费视频观看日本| 日韩av不卡免费在线播放| 精品亚洲成国产av| 亚洲 欧美一区二区三区| 日韩av在线免费看完整版不卡| 久久久国产欧美日韩av| 亚洲精品av麻豆狂野| 最新的欧美精品一区二区| 国产又爽黄色视频| 观看美女的网站| 大陆偷拍与自拍| 国产精品99久久99久久久不卡 | 亚洲在久久综合| 人妻少妇偷人精品九色| 七月丁香在线播放| 国产欧美亚洲国产| 日韩一区二区三区影片| 啦啦啦在线观看免费高清www| 成人亚洲精品一区在线观看| 欧美3d第一页| 黑人猛操日本美女一级片|