• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on inter-satellite measurement technique in high dynamic environment

    2015-04-22 06:17:32WANGYongqing王永慶SUNLida孫立達(dá)YANGLiyun楊麗云JIANGHongwei姜洪偉WUSiliang吳嗣亮
    關(guān)鍵詞:王永慶

    WANG Yong-qing(王永慶), SUN Li-da(孫立達(dá)), YANG Li-yun(楊麗云),JIANG Hong-wei(姜洪偉), WU Si-liang(吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Research on inter-satellite measurement technique in high dynamic environment

    WANG Yong-qing(王永慶), SUN Li-da(孫立達(dá)), YANG Li-yun(楊麗云),JIANG Hong-wei(姜洪偉), WU Si-liang(吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    An improved measurement algorithm, based upon the theory of two-way time transfer (TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.

    two-way time transfer; ranging; time synchronization; measurement accuracy

    Satellite networking is motivated by the demand for autonomous navigation with space technique growing, whose purpose is to guarantee the network work stably and elevate the network. To accomplish autonomous navigation task, the inter-satellite ranging and time difference measurement must be high-precise[1]. The commonly used ranging algorithms include the pseudo-code method and carrier method, and the time difference algorithms include the clear method and GPS common-view method. The method of two-way time transfer (TWTT)[2-4]is widely applied in inter-satellite ranging and time synchronization. This method can not only measure distance and time difference, but also eliminate channel common error in bidirectional measurement process[5-6]. The traditional time synchronization is among one satellite responder and some ground stations[7]. In Ref. [8], TWTT algorithm was applied in distance and time difference measurement in a static model with no relative motion between the two satellites. In Refs.[9-10], the realization scheme of the algorithm which considered the relative motion between the satellites was brought up, but the measurement error brought by the satellite motion during the transmitting and receiving delay were ignored.

    According to current opened references, there are few measurement algorithms taking the effect of equipment delay on the measurement algorithm into account. In Ref.[9], the algorithm just considered the equipment delay as a fixed delay of satellite’s interval from transmitting moment to receiving moment, and asserted that satellites keep relatively static when signals spread through the equipment transmitting channel and receiving channel. And the assertion confused the signals produce moment with transmitting moment and ignored satellites position changes during the equipment delay. The measurement accuracy may be affected by the error caused by satellites motion during the equipment delay, especially when satellites move at high-speed. The measurement result in Ref. [9] ignored a dynamic-changing error term which depends on the transmitting delay and the relative velocity between satellites. The relative velocity is especially larger when satellites move in different orbits, so the algorithm of ranging and time difference measurement must consider the equipment delay in high dynamic environment.

    To solve the problem described above, an improved algorithm of inter-satellite ranging and time difference measurement is put forward in this paper. The algorithm takes the equipment transmitting and receiving delay into account based upon the TWTT theorem, and eliminates the measurement error caused by the satellites motion.

    1 Two-way time transfer algorithm

    1.1 Principle

    The basic principle of the TWTT method which can be used for ranging and time difference measurement between two relative stillness satellites is given in Fig.1.

    Fig.1 Principle of two-way time transfer method in inter-satellite

    As shown in Fig.1, suppose that satellite A and B transmit the ranging signals without range ambiguity at their local starting second. For the sake of time differenceΔt,thetwosatellitesactuallytransmitthesignalsatthetimet1andt2separately.SatelliteA’sintervalfromtransmittingmomenttoreceivingmoment(shortfort-rinterval),whichiscalledTA,canbeobtainedbyacquiringthesignalstransmittedbysatelliteB. TAdependsonthesignalstransmissionintervalτBAfromsatelliteBtoA,satelliteB’stransmittingdelayτBt,satelliteA’sreceivingdelayτAr,andthetimedifferenceΔtbetweenthesatellites.So:

    TA=Δt+τBt+τBA(t2)+τAr

    (1)

    Similarly,TBis satellite B’s t-r interval, which depends on the signals transmission intervalτABfrom satellite A to satellite B, satellite A’s transmitting delayτAt, satellite B’s receiving delayτBr, and the time differenceΔtbetweenthetwosatellites.Therelationisexpressedas

    TB=-Δt+τAt+τAB(t1)+τBr

    (2)

    There isτBA=τABwhen satellite A and B transmit their ranging signals with a nearly frequency on the same transmission path at the same time. According to Eqs.(1)(2), the signals transmission interval and the distance can be expressed as

    (3)

    Thetimedifferencecanalsobeobtainedas

    (4)

    Consequently, based on TWTT, the distance and time difference between two satellites are successfully obtained at the same time.

    1.2 General measurement algorithm

    The condition ofτBA=τABis assumed in section 1.1, butτBAis actually not equivalent to τABwhenthetwosatelliteshaverelativemotions.Therefore,Eqs.(1)(2)shouldbereestablishedinvolvingtherelativemotions.ThenewequationsbroughtupbyRef.[9]canbeexpressedas

    (5)

    (6)

    The general measurement algorithm applied to dynamic environment considered the relative motion and equipment delay, but just regarded the equipment delay as a fixed delay of satellite’s t-r interval. This algorithm ignored satellites motion during the equipment delay and confused the signal produce moment with transmitting moment, which would introduce error terms positively associated with the relative velocity and transmitting delay. The satellite motion is relative to real-time velocity, so the error terms must be corrected in real time.

    The relative velocity between satellites in different orbits is large, so inter-satellite ranging and time synchronization algorithm must consider the satellite motion during the equipment delay, and how to eliminate the influence of transmitting and receiving delay is the key point to evaluate an algorithm designed for high dynamic environment.

    2 High dynamic inter-satellite ranging and time synchronization algorithm

    2.1 Improved measurement algorithm

    The improved algorithm can eliminate measurement error caused by the transmitting and receiving delay of inter-satellite measurement equipment in high dynamic environment, which is compared with traditional algorithms demonstrated in Ref. [9]. The relative satellite velocity varies slowly in measuring process, so it can be considered that two satellites move with the constant satellite velocityvA,vBseparately. The relative motion model of two satellites in communication process is given in Fig.2, wherecis the propagation speed of radio wave in a vacuum.

    Fig.2 Relative motion model of two satellites

    The distance between satellite A and B at a moment when A transmits ranging signal can be expressed as

    r(t1+τAt)=τAB(t1+τAt)(c+vB)

    (7)

    Suppose that ranging signal is transmitted att1+τAt, thent1~(t1+τAt) is the transmitting delay. Similarly, the distance between the two satellites at a moment when satellite B transmits ranging signal can be expressed as

    r(t2+τBt)=τBA(t2+τBt)(c+vA)

    (8)

    The relative motion relation of the two satellites is

    r(t1+τAt)-r(t2+τBt)=(t2-t1+τBt-τAt)(vA+vB)=

    (Δt+τBt-τAt)(vA+vB)

    (9)

    According to Eqs.(7)-(9), we can obtain

    τAB(t1+τAt)(c+vB)-τBA(t2+τBt)(c+vA)=

    (Δt+τBt-τAt)(vA+vB)

    (10)

    Satellite velocity can be accurately calculated by the Doppler frequency shift or by the ephemeris.

    τBA(t2+τBt)≠τBA(t2),τAB(t1+τAt)≠τAB(t1),soEqs.(1)(2)cometobe

    TA=Δt+τBt+τBA(t2+τBt)+τAr

    (11)

    TB=-Δt+τAt+τAB(t1+τAt)+τBr

    (12)

    Synthesizing Eqs.(10)-(12), the final result can be expressed as

    (13)

    So,thedistanceandtimedifferencebetweenthetwosatellitesatthemomentwhenrangingsignalstransmittedbysatelliteAcan be calculated as

    r(t1)=r(t1+τAt)+(vA+vB)τAt=

    (14)

    (15)

    2.2 Analysis of accuracy

    (16)

    whereRis the radius of the earth, andhis the orbit altitude. The orbit altitude of LEO satellite ranges from 400 km to 2 000 km. According to Eq. (16), we can obtainv=6.9 km/s-7.7 km/s. In conclusion, the maximum linear velocity of satellite in orbit is 7.7 km/s. So the last two items of the distance error term can be written as

    (τBt-τAt)+15.4×103×τAt=

    7.7×103×(τBt+τAt)+0.197×(τBt-τAt)

    (17)

    2.57×10-5(τBt-τAt)

    (18)

    In conclusion, if satellite transmitting delay is in an order of microsecond, which makes (τBt+τAt) larger than 1.3 μs, the last two distance error terms cannot be ignored in Eq.(14) in order to obtain the ranging accuracy of an order of centimeter. Meanwhile, if (τBt-τAt) is larger than 3.89 μs, the time difference error term in Eq.(15) cannot be ignored either in order to attain the precision of an order of 0.1 ns.

    3 Simulation and performance analysis

    The improved algorithm introduced in this paper is compared with the conventional algorithm demonstrated in Ref. [9]. The improved algorithm considered high-speed motion of satellite during the equipment delay in high dynamic environment. The orbit of Shenzhou-8 is nearly a circular orbit, its perigee height is 334 km, apogee height is 348 km, cycle is about 91 min and velocity is about 7.8 km/s. Simulation parameters are set as such Leo satellites. The simulation results of ranging and time synchronization, utilizing the two algorithms respectively, are shown in Fig.3 to Fig.8. In this paper, three different conditions are considered.

    Fig.3 Results of ranging compared the two algorithms under different relative velocity conditions

    Fig.4 Results of time difference compared the two algorithms under different relative velocity conditions

    Fig.5 Results of ranging compared the two algorithms under different transmitting delay conditions

    Fig.6 Results of time difference compared the two algorithms under different transmitting delay conditions

    Fig.7 Results of ranging compared the two algorithms under different distance conditions

    Fig.8 Results of time difference compared the two algorithms under different distance conditions

    ① Different relative velocities

    Simulation parameters are set as follows: satellite A’s t-r intervalTAis 1.1×10-5s; satellite B’s t-r intervalTBis 1.4×10-5s; satellite A’s transmitting delayτAtis 5×10-6s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s receiving delayτAris 5×10-7s; satellite B’s receiving delayτBris 5×10-7s; and relative velocity range between the two satellites is [8 300, 15 400] m/s.

    The simulation results show that the error terms in the two algorithms are much larger when the relative velocity between two satellites becomes larger. Compared with conventional algorithm, the new algorithm can correct distance error of 5 cm and time difference error of 0.1 ns at most in dynamic environment. Therefore, the accuracy of inter-satellite ranging and time synchronization is improved in the improved algorithm, which will be more obvious when the relative velocity is larger.

    ②Different transmitting delays

    Simulation parameters are set as follows: satelliteA’s transmitting delayτAtis (5×10-7-7×10-6) s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s t-r intervalTAis (τBt+1.1×10-5) s; satellite B’s t-r intervalTBis (τAt+1×10-5) s; satellite A’s receiving delayτAris 5×10-7s; satellite B’s receiving delayτBris 5×10-7s; satellite A’s velocityvAis 7 700 m/s; and satellite B’s velocityvBis 7 700 m/s.

    The simulation results show that the error terms in the two algorithms are much larger when the transmitting delay becomes larger. Compared with conventional algorithm, this algorithm can correct distance error of 6 cm and time difference error of 0.16 ns at most in dynamic environment. Therefore, the accuracy of inter-satellite ranging and time synchronization can be improved using the improved algorithm, which is more effective when the transmitting delay is larger.

    ③ Different distances

    Simulation parameters are set as follows: satellite A’s t-r intervalTAis (1.1×10-5-1.100 1×10-5) s; satelliteB’s t-r intervalTBis (TA-3×10-6) s; satellite A’s velocityvAis 7 700 m/s; satellite B’s velocityvBis 7 700 m/s; satellite A’s transmitting delayτAtis 5×10-6s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s receiving delayτAris 5×10-7s; and satellite B’s receiving delayτBris 5×10-7s.

    The simulation results show that the error term between the improved algorithm and the conventional algorithm is a constant in dynamic environment as the distance of two satellites increases, which means that the error term has nothing to do with the distance factors.

    The conclusion is that the new algorithm has obvious advantages compared with the conventional one in high dynamic environment, especially when ranging accuracy of centimeter order and time synchronization accuracy of 0.1 ns are required. The error terms of the two algorithms are mainly affected by relative velocity and satellite transmitting delay, which are much larger when the relative velocity and the transmitting delay becomes larger.

    4 Conclusion

    In order to eliminate measurement errors caused by high-speed motion of satellite during the transmitting and the receiving delay which are not considered in conventional algorithm, an improved algorithm of inter-satellite ranging and time synchronization, based upon the TWTT theory, is proposed in this paper. The algorithm is deduced on the motion model of two satellites in high dynamic environment and analyzed theoretically. Theoretical analysis demonstrates that the algorithm can effectively enhance the inter-satellite measurement accuracy for ranging systems with centimeter level and time synchronization systems with 0.1 ns level. Finally, simulation results approve the validity of the proposed algorithm by comparing with the conventional algorithm under different conditions. The proposed algorithm is verified to be more effective in high dynamic environment when the satellite transmitting delay and relative velocity become larger.

    [1] Chen Zhonggui, Shuai Ping, Qu Guangji. Current satellite navigation system techniques and the development trend analysis [J].Science in China, 2009, 39(4):686-695. (in Chinese)

    [2] Lin Huangtien, Liao Chiashu, Chu Fangdar, et al. Full utilization of TWSTT network data for the short-term stability and uncertainty improvement [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(7):2564-2569.

    [3] Hanson D W. Fundamentals of two-way time transfer by satellite [C]∥43rdAnnual Symposium on Frequency Control, Denver, Colorado, USA, May31-June 3, 1989.

    [4] Merck P, Achkar J. Design of a Ku band delay difference calibration device for TWSTFT station [J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2):814-818.

    [5] Xu Yong, Chang Qing, Yu Zhijian. On new measurement and communication techniques of GNSS inter-satellite link [J]. Science in China, 2012, 42(2):230-240. (in Chinese)

    [6] Koppang P, Wheeler P. Working application of TWSTT for high precision remote synchronization [C]∥The Annual IEEE International Frequency Control Symposium, CA, USA, May 27-29, 1998

    [7] Li Zhigang, Qiao Rongchuan, Feng Chugang.Two way satellite time transfer(TWSTT) and satellite ranging [J]. Journal of Spacecraft TT&C Technology, 2006, 25(3):1-6. (in Chinese)

    [8] Zhong Xingwang, Chen Hao. The system and its calibration method on inter-satellite dual one-way ranging and timing [J]. Journal of Electronic Measurement and Instrument, 2009, 23(4):13-17. (in Chinese)

    [9] Huang Bo, Hu Xiulin. Inter-satellite ranging and time synchronization technique for BD2 [J]. Journal of Astronautics, 2011, 32(6):1271-1275. (in Chinese)

    [10] Zhong Xingwang, Chen Hao. Analysis and correction techniques of movement influence on inter-satellite two-way time transfer [J]. Chinese Space Science and Technology, 2007(6):54-58. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0215

    TN 927.3; V448.2 Document code: A Article ID: 1004- 0579(2015)02- 0233- 07

    Received 2013- 12- 07

    Supported by the National High Technology Research and Development Program of China (2012AA1406)

    E-mail: wangyongqing@bit.edu.cn

    猜你喜歡
    王永慶
    凌晨三點(diǎn)的面試
    凌晨三點(diǎn)的面試
    凌晨三點(diǎn)的面試
    雜文選刊(2019年1期)2019-01-14 02:23:58
    不計(jì)較的人才最好用
    首富從一粒米開始
    幸?!傋x(2018年1期)2018-01-17 21:44:38
    首富從一粒米開始
    雜文選刊(2017年11期)2017-11-08 20:48:06
    成功只靠一粒米
    誰(shuí)能一直跑下去
    成功,從一粒米開始
    成才之路(2014年15期)2014-06-10 12:32:37
    王永慶的“賣米經(jīng)”
    国语对白做爰xxxⅹ性视频网站| 青春草视频在线免费观看| 国产成人精品福利久久| 天堂中文最新版在线下载| 别揉我奶头~嗯~啊~动态视频 | 久久亚洲国产成人精品v| 中文字幕人妻丝袜制服| 成人国产麻豆网| 伦理电影免费视频| 久久久久精品性色| 午夜免费男女啪啪视频观看| av网站免费在线观看视频| e午夜精品久久久久久久| 精品少妇久久久久久888优播| 丝袜脚勾引网站| av在线老鸭窝| 国产成人精品久久二区二区91 | 亚洲精品国产av蜜桃| 国产精品久久久人人做人人爽| 天堂中文最新版在线下载| e午夜精品久久久久久久| 亚洲婷婷狠狠爱综合网| 婷婷成人精品国产| 精品人妻在线不人妻| 日韩 欧美 亚洲 中文字幕| videosex国产| 99热网站在线观看| 精品久久久精品久久久| 精品亚洲成国产av| 香蕉丝袜av| 日本色播在线视频| 午夜免费鲁丝| 国产精品蜜桃在线观看| 色94色欧美一区二区| 国产精品无大码| 国产视频首页在线观看| 麻豆精品久久久久久蜜桃| 欧美97在线视频| 亚洲国产日韩一区二区| 日本wwww免费看| 男男h啪啪无遮挡| 狠狠精品人妻久久久久久综合| 亚洲精品美女久久av网站| 如日韩欧美国产精品一区二区三区| 久久热在线av| 亚洲专区中文字幕在线 | 亚洲欧美成人综合另类久久久| 我的亚洲天堂| 韩国高清视频一区二区三区| kizo精华| 婷婷色综合大香蕉| 欧美乱码精品一区二区三区| 国产又爽黄色视频| 婷婷色麻豆天堂久久| 丰满乱子伦码专区| 老汉色∧v一级毛片| 99国产精品免费福利视频| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 999久久久国产精品视频| 美女高潮到喷水免费观看| 日韩伦理黄色片| 国产1区2区3区精品| 狠狠精品人妻久久久久久综合| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| netflix在线观看网站| 日日啪夜夜爽| 亚洲精品aⅴ在线观看| 国产亚洲欧美精品永久| 亚洲精品在线美女| 90打野战视频偷拍视频| 亚洲av福利一区| 不卡av一区二区三区| 欧美97在线视频| 电影成人av| 精品一区在线观看国产| 久久久久久久国产电影| 亚洲七黄色美女视频| 久久久国产一区二区| 黄色视频在线播放观看不卡| 欧美人与善性xxx| 午夜av观看不卡| 国精品久久久久久国模美| 18禁观看日本| 最近最新中文字幕大全免费视频 | 亚洲欧美中文字幕日韩二区| 欧美黑人精品巨大| 男人操女人黄网站| 国产成人a∨麻豆精品| 亚洲少妇的诱惑av| 在线天堂中文资源库| 亚洲美女黄色视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦在线免费观看视频4| 女人爽到高潮嗷嗷叫在线视频| 一个人免费看片子| 人人妻人人澡人人爽人人夜夜| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区久久| 久久精品aⅴ一区二区三区四区| 女性生殖器流出的白浆| 亚洲精品,欧美精品| 国产精品三级大全| 婷婷色综合www| 中文字幕亚洲精品专区| av电影中文网址| 欧美av亚洲av综合av国产av | 欧美人与性动交α欧美软件| 丝瓜视频免费看黄片| 欧美日韩亚洲综合一区二区三区_| 操出白浆在线播放| 久久久久网色| av在线老鸭窝| 只有这里有精品99| 国产人伦9x9x在线观看| 亚洲精品国产av蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 超色免费av| 搡老乐熟女国产| 国产福利在线免费观看视频| 欧美精品亚洲一区二区| 男女国产视频网站| 精品卡一卡二卡四卡免费| 中文字幕高清在线视频| 久久 成人 亚洲| 人人妻人人添人人爽欧美一区卜| 一级毛片电影观看| 91精品伊人久久大香线蕉| 精品国产超薄肉色丝袜足j| 亚洲伊人色综图| 久久人人97超碰香蕉20202| 国产色婷婷99| 巨乳人妻的诱惑在线观看| 在线天堂中文资源库| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 久久精品久久精品一区二区三区| 日韩免费高清中文字幕av| 亚洲精品av麻豆狂野| 亚洲av综合色区一区| 日韩电影二区| av.在线天堂| 免费看av在线观看网站| 男女午夜视频在线观看| 亚洲精品aⅴ在线观看| 如日韩欧美国产精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 中文字幕高清在线视频| 18禁观看日本| h视频一区二区三区| videosex国产| 亚洲精品久久久久久婷婷小说| 国产精品女同一区二区软件| 国产精品.久久久| 国产精品蜜桃在线观看| 搡老乐熟女国产| h视频一区二区三区| 欧美精品人与动牲交sv欧美| 国产免费一区二区三区四区乱码| 国产一卡二卡三卡精品 | 新久久久久国产一级毛片| 色播在线永久视频| 自拍欧美九色日韩亚洲蝌蚪91| 男人操女人黄网站| 午夜日本视频在线| 午夜福利一区二区在线看| 曰老女人黄片| 日韩一区二区三区影片| 亚洲国产日韩一区二区| 亚洲国产av影院在线观看| 午夜免费鲁丝| 伊人久久国产一区二区| 天堂中文最新版在线下载| 成人国产av品久久久| 成年av动漫网址| 亚洲成av片中文字幕在线观看| 别揉我奶头~嗯~啊~动态视频 | 日韩一本色道免费dvd| 91精品伊人久久大香线蕉| 9191精品国产免费久久| 日本91视频免费播放| 国产淫语在线视频| 亚洲精品自拍成人| 在线观看国产h片| 婷婷色综合www| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美激情在线| 国产探花极品一区二区| 亚洲成人免费av在线播放| 精品久久久精品久久久| av福利片在线| 汤姆久久久久久久影院中文字幕| 久久久久人妻精品一区果冻| 久久精品久久久久久久性| 亚洲国产毛片av蜜桃av| 日韩av不卡免费在线播放| 高清av免费在线| 日韩一区二区三区影片| 亚洲第一区二区三区不卡| 国产亚洲午夜精品一区二区久久| 国产爽快片一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 永久免费av网站大全| 亚洲精品中文字幕在线视频| 丝袜人妻中文字幕| 午夜免费男女啪啪视频观看| 久久精品久久久久久久性| 夫妻午夜视频| 国产成人欧美在线观看 | 在线天堂最新版资源| 亚洲,欧美,日韩| 80岁老熟妇乱子伦牲交| 国产一区二区激情短视频 | 国产精品二区激情视频| 亚洲av中文av极速乱| 国产 一区精品| 综合色丁香网| 狠狠精品人妻久久久久久综合| 狠狠婷婷综合久久久久久88av| 一本色道久久久久久精品综合| 丝袜美足系列| 久久狼人影院| 只有这里有精品99| 国精品久久久久久国模美| 老汉色∧v一级毛片| 90打野战视频偷拍视频| 高清av免费在线| 亚洲欧美日韩另类电影网站| 色网站视频免费| 精品久久蜜臀av无| 精品一区二区三卡| 国产 一区精品| 国产成人av激情在线播放| 十八禁高潮呻吟视频| 丝袜美腿诱惑在线| 国产精品 欧美亚洲| 久久久久久久大尺度免费视频| 岛国毛片在线播放| 亚洲av成人精品一二三区| 老司机影院成人| 精品国产一区二区三区四区第35| 伊人亚洲综合成人网| 啦啦啦在线免费观看视频4| 伊人久久大香线蕉亚洲五| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲最大av| 国产乱来视频区| 伦理电影大哥的女人| 一级毛片 在线播放| 欧美 亚洲 国产 日韩一| 久久av网站| 国产激情久久老熟女| 亚洲在久久综合| 午夜影院在线不卡| 乱人伦中国视频| 99久久99久久久精品蜜桃| 两性夫妻黄色片| 一区福利在线观看| a 毛片基地| 曰老女人黄片| 无限看片的www在线观看| 女人爽到高潮嗷嗷叫在线视频| 热99国产精品久久久久久7| 亚洲一区中文字幕在线| 亚洲欧美精品综合一区二区三区| 青春草亚洲视频在线观看| 丝袜美足系列| 秋霞在线观看毛片| 日本欧美视频一区| 国产精品一国产av| 又黄又粗又硬又大视频| 午夜福利一区二区在线看| 一级毛片 在线播放| 亚洲精品成人av观看孕妇| 99国产综合亚洲精品| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 亚洲人成电影观看| av电影中文网址| 波多野结衣av一区二区av| 麻豆av在线久日| 青青草视频在线视频观看| 国产又爽黄色视频| 波多野结衣一区麻豆| 亚洲综合精品二区| www.av在线官网国产| 性少妇av在线| 精品久久久久久电影网| 日韩av不卡免费在线播放| 另类亚洲欧美激情| 十八禁高潮呻吟视频| 久久久久久人人人人人| 黑人巨大精品欧美一区二区蜜桃| 国产精品蜜桃在线观看| avwww免费| 精品酒店卫生间| 亚洲国产欧美一区二区综合| 男人操女人黄网站| 久久久久精品国产欧美久久久 | 日韩 欧美 亚洲 中文字幕| 国产伦人伦偷精品视频| 91国产中文字幕| 极品人妻少妇av视频| 国语对白做爰xxxⅹ性视频网站| 永久免费av网站大全| xxx大片免费视频| 一区二区三区激情视频| 狠狠婷婷综合久久久久久88av| 美女福利国产在线| 亚洲成人国产一区在线观看 | 国产片内射在线| 欧美亚洲日本最大视频资源| 这个男人来自地球电影免费观看 | 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 深夜精品福利| 日本wwww免费看| 一二三四在线观看免费中文在| 欧美激情高清一区二区三区 | 中文字幕制服av| 日韩大码丰满熟妇| 五月天丁香电影| av.在线天堂| 国产高清国产精品国产三级| 亚洲图色成人| 亚洲欧美成人综合另类久久久| a 毛片基地| 久久99一区二区三区| 色视频在线一区二区三区| 亚洲欧美激情在线| 男人添女人高潮全过程视频| 女人久久www免费人成看片| 激情五月婷婷亚洲| 亚洲欧洲日产国产| 丰满乱子伦码专区| 久久青草综合色| 毛片一级片免费看久久久久| 成人国语在线视频| 男女国产视频网站| 成人18禁高潮啪啪吃奶动态图| 国产乱来视频区| 熟女av电影| 香蕉国产在线看| 亚洲国产av影院在线观看| 亚洲四区av| 波多野结衣av一区二区av| 中文字幕人妻丝袜制服| 国产精品免费大片| 男男h啪啪无遮挡| 最近的中文字幕免费完整| 天天影视国产精品| 国产成人精品久久久久久| 国产欧美日韩综合在线一区二区| 欧美日韩视频高清一区二区三区二| 韩国精品一区二区三区| 母亲3免费完整高清在线观看| av国产精品久久久久影院| 欧美黑人精品巨大| 久久久精品94久久精品| 日日啪夜夜爽| 久久久久视频综合| 精品亚洲成国产av| av.在线天堂| 9191精品国产免费久久| 久久天堂一区二区三区四区| 国产有黄有色有爽视频| 欧美av亚洲av综合av国产av | 久久国产精品男人的天堂亚洲| 国产成人精品福利久久| 人人妻人人爽人人添夜夜欢视频| 观看av在线不卡| 少妇 在线观看| 国产高清不卡午夜福利| 亚洲精品乱久久久久久| 亚洲第一av免费看| 成人国产麻豆网| 精品少妇一区二区三区视频日本电影 | 777久久人妻少妇嫩草av网站| 久久精品人人爽人人爽视色| 一区二区三区乱码不卡18| 香蕉丝袜av| 不卡视频在线观看欧美| 欧美日韩亚洲高清精品| 超色免费av| 国产成人免费观看mmmm| 美女福利国产在线| 18禁观看日本| 国产在线视频一区二区| 久久99一区二区三区| 国产成人av激情在线播放| 老熟女久久久| 中文字幕另类日韩欧美亚洲嫩草| 满18在线观看网站| 国产男女内射视频| 国产爽快片一区二区三区| 99国产综合亚洲精品| 又粗又硬又长又爽又黄的视频| 国产精品久久久久成人av| 成年人免费黄色播放视频| e午夜精品久久久久久久| 婷婷色综合www| 老司机靠b影院| 国产高清不卡午夜福利| 国产一区二区 视频在线| 亚洲精品第二区| 18禁国产床啪视频网站| 免费高清在线观看视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产精品国产三级国产专区5o| 亚洲成人国产一区在线观看 | 国产麻豆69| 欧美日本中文国产一区发布| 高清av免费在线| av在线老鸭窝| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 亚洲精品久久久久久婷婷小说| 亚洲成人一二三区av| 欧美精品一区二区大全| 咕卡用的链子| 亚洲av日韩在线播放| 一级毛片我不卡| 在线天堂最新版资源| 在线观看免费高清a一片| videosex国产| av国产久精品久网站免费入址| 亚洲精品一二三| 免费观看性生交大片5| 久久av网站| 国产免费视频播放在线视频| 国产成人精品福利久久| 欧美乱码精品一区二区三区| 精品酒店卫生间| 男男h啪啪无遮挡| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性bbbbbb| 国产精品成人在线| 亚洲国产中文字幕在线视频| 久久久精品区二区三区| 看十八女毛片水多多多| 2018国产大陆天天弄谢| 国产成人系列免费观看| 国产熟女午夜一区二区三区| 成年人午夜在线观看视频| 国产伦理片在线播放av一区| 免费在线观看黄色视频的| 丁香六月欧美| 国产免费又黄又爽又色| 1024视频免费在线观看| 亚洲综合精品二区| 亚洲欧美成人精品一区二区| 男男h啪啪无遮挡| av在线app专区| 精品国产一区二区三区久久久樱花| 亚洲欧洲国产日韩| 熟女少妇亚洲综合色aaa.| 亚洲欧美一区二区三区国产| 深夜精品福利| 亚洲精品国产一区二区精华液| 亚洲国产成人一精品久久久| 国产伦人伦偷精品视频| 亚洲综合色网址| 国产欧美日韩一区二区三区在线| 国产精品一国产av| www日本在线高清视频| 久久天躁狠狠躁夜夜2o2o | 亚洲四区av| 免费观看人在逋| 欧美日韩视频高清一区二区三区二| 欧美精品高潮呻吟av久久| 久久久久精品久久久久真实原创| 天天躁日日躁夜夜躁夜夜| 亚洲av综合色区一区| 日日爽夜夜爽网站| 天天躁狠狠躁夜夜躁狠狠躁| 中文天堂在线官网| 中国国产av一级| avwww免费| 国产精品二区激情视频| 少妇的丰满在线观看| 下体分泌物呈黄色| 男女床上黄色一级片免费看| 午夜久久久在线观看| 久久久久久久国产电影| 欧美日韩综合久久久久久| 亚洲欧洲日产国产| 国产淫语在线视频| 十八禁人妻一区二区| 午夜91福利影院| 亚洲精华国产精华液的使用体验| 午夜激情久久久久久久| 国产一级毛片在线| 国产精品.久久久| 成人国语在线视频| 18禁动态无遮挡网站| 少妇人妻 视频| av线在线观看网站| 久久久国产一区二区| 在线观看免费视频网站a站| 久久99热这里只频精品6学生| 中文字幕人妻丝袜一区二区 | 亚洲精品第二区| 人成视频在线观看免费观看| 悠悠久久av| 超碰成人久久| 亚洲男人天堂网一区| 国产成人啪精品午夜网站| 久久狼人影院| 久久久久人妻精品一区果冻| 亚洲成人av在线免费| 丰满乱子伦码专区| 五月开心婷婷网| 丁香六月欧美| 久久久久久久久久久久大奶| 在线免费观看不下载黄p国产| 欧美日韩福利视频一区二区| 999久久久国产精品视频| 2018国产大陆天天弄谢| 午夜免费男女啪啪视频观看| 久久国产亚洲av麻豆专区| 午夜福利在线免费观看网站| 久久精品久久精品一区二区三区| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 久久这里只有精品19| 熟妇人妻不卡中文字幕| 熟女少妇亚洲综合色aaa.| 欧美变态另类bdsm刘玥| 久久影院123| av视频免费观看在线观看| 人人澡人人妻人| 一级毛片黄色毛片免费观看视频| a级毛片黄视频| 99热国产这里只有精品6| 嫩草影视91久久| 男女国产视频网站| 国产精品二区激情视频| 又黄又粗又硬又大视频| 亚洲欧美精品自产自拍| 老汉色∧v一级毛片| 日韩一卡2卡3卡4卡2021年| 男人舔女人的私密视频| 最近最新中文字幕免费大全7| 在线亚洲精品国产二区图片欧美| 久久久国产一区二区| 精品视频人人做人人爽| 男男h啪啪无遮挡| 午夜福利免费观看在线| 九色亚洲精品在线播放| 欧美亚洲 丝袜 人妻 在线| 男女午夜视频在线观看| 黑人猛操日本美女一级片| 天天添夜夜摸| a级毛片黄视频| 久久精品熟女亚洲av麻豆精品| www.av在线官网国产| 大片电影免费在线观看免费| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 又黄又粗又硬又大视频| 久久久国产精品麻豆| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 精品一区二区免费观看| 丝袜在线中文字幕| 亚洲av中文av极速乱| 青春草国产在线视频| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 精品免费久久久久久久清纯 | 成人黄色视频免费在线看| 亚洲av综合色区一区| 中文天堂在线官网| 国产人伦9x9x在线观看| 在线观看免费视频网站a站| 制服人妻中文乱码| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 人人澡人人妻人| 国产精品麻豆人妻色哟哟久久| 久久久精品国产亚洲av高清涩受| 三上悠亚av全集在线观看| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 麻豆精品久久久久久蜜桃| 婷婷色麻豆天堂久久| 国产精品嫩草影院av在线观看| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇内射三级| 亚洲七黄色美女视频| 少妇人妻精品综合一区二区| 免费在线观看黄色视频的| 欧美在线黄色| 青春草亚洲视频在线观看| 国产高清不卡午夜福利| 一级a爱视频在线免费观看| 亚洲熟女精品中文字幕| 国产亚洲av片在线观看秒播厂| 国产精品免费大片| 捣出白浆h1v1| 天天躁日日躁夜夜躁夜夜| 色精品久久人妻99蜜桃| 久久久久久人人人人人| 亚洲国产欧美在线一区| 欧美激情 高清一区二区三区| 中文字幕高清在线视频| 久久精品国产亚洲av高清一级| 99热全是精品| 国产女主播在线喷水免费视频网站| 97人妻天天添夜夜摸|