• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed power allocation over indoor multi-pico stations

    2015-04-22 06:17:32FEIZesong費澤松GAOQiang高強(qiáng)FUYou傅友TeroIsotaloJarnoNiemela
    關(guān)鍵詞:高強(qiáng)

    FEI Ze-song(費澤松), GAO Qiang(高強(qiáng)), FU You(傅友),Tero Isotalo , Jarno Niemela

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081,China;2.Department of Communication Engineering, Tampere University of Technology, Tampere, Finland)

    ?

    Distributed power allocation over indoor multi-pico stations

    FEI Ze-song(費澤松), GAO Qiang(高強(qiáng))1, FU You(傅友)1,Tero Isotalo2, Jarno Niemela2

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081,China;2.Department of Communication Engineering, Tampere University of Technology, Tampere, Finland)

    A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 50% energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.

    distributed power allocation; indoor communication; multi-pico stations

    The advancement in technologies and the needs for wireless communication services offered by service providers have led to an increasing level of high data transmitting in mobile applications[1]. Recent research shows that more than 50% of voice calls and more than 70% of data traffic are generated indoors[2]. However, current outdoor base stations (BSs) are not able to cope with growing demand of indoor wireless communication users, because the distance between outdoor BS and indoor user is too far and the penetration loss is huge. In order to fulfill the demand of indoor communication, telecommunication operators are paying more and more interest in indoor coverage design.

    In heterogeneous network deployment and applications, pico station, femto station and relay, which are low power nodes, can be set in the macro-only cell to shorten the distance between BSs and users, and then enhance the cell capacity. Due to the introduction of new low power nodes and dense deployment, the interference in heterogeneous network is getting more and more severe and complex than traditional macro-only network. Power allocation is a significant way to mitigate interference and to improve the spectrum efficiency. Many works have been done in this area. In Ref.[3], a distributed power allocation scheme was proposed to maximum throughput in wireless network. The author in Ref.[4] allocated transmitting power to low power nodes in Het-Net based on multi-objective nonlinear optimization to maximum utility function taken both capacity and power consumption into account. In Ref.[5], instead of throughput optimizing, the energy efficiency maximum scheme was proposed over a two-tier Het-Net. The authors in Ref.[6] presented a power and subcarrier allocation method to maximize the cell capacity in a two-tier network, but the algorithm complexity is very high.

    Most existing literatures concentrate on the maximization of cell capacity or the trade-off between transmitting power and user rate[3-6]. However, this is not fair to users having a bad channel condition, i.e. edge users. In practice, every user has a requirement of transmitting rate. Below this requirement, quality of experience (QoE) will be degraded[7]. As the required rate will be periodically varied, an efficient power allocation algorithm is needed to adaptively satisfy user’s changing requirement.

    In this paper, a low-complexity distributed power allocation algorithm is proposed based on the scenario of indoor multi-pico stations. Besides, the algorithm also can be applied in femto stations or other scenarios suffering severe interference.

    1 System model

    1.1 Indoor multi-pico stations scenario

    In this paper, we consider an indoor communication scenario in two 30 m×30 m rooms separated by a wall with multiple pico stations as shown in Fig.1. In the first scenario, there are 4 picocells with 2 pico stations in the corner of each room, and in the second scenario there are 8 picocells with 4 pico stations in the corner of each room. All the pico stations work on the same spectrum. The users in it select their service pico station based on the reference signal receiving power (RSRP).

    Fig.1 Layout for 4 and 8 Pico stations in two rooms

    1.2 Signal-to-noise-plus-interference ratio (SINR) and user rate comparison without power control

    In this subsection, the comparison of the SINR distribution and the user transmitting rate between two scenarios are given based on the simulation parameters in 3GPP TR 36.814. The transmitting power of pico stations is fixed in 30 dBm[8].

    Fig.2 shows the SINR distribution in two scenarios. Pixels that are close to pico stations have higher SINR. Additionally, the SINR of 4 picocells is higher than that of 8 picocells. This is because the interference is much stronger in the second scenario.

    Fig.2 SINR distribution in two scenarios

    Fig.3 shows the CDF curves of user transmitting rate calculated by Shannon capacity in two scenarios. Although the SINR distribution is worse in 8 picocells, the rates are higher compared with 4 picocells because of double resources. In addition, the rate improvement of the edge users is not obvious from 8 picocells to 4 picocells since these two curves are close to each other at the beginning. The obvious improvement occurs at the higher rate area and this is unfair for those users with a bad channel condition or the users far from pico stations. Moreover, when the required rate is low, there is little promotion in the number of satisfied users. The reason is that the pico stations transmit with maximum power no matter where the user is. It is not necessary to allocate too much power to the users which are close to pico stations because they have a good channel condition. The excess power will cause much interference to other users in adjacent picocells. The transmitting power of each user therefore should be limited to make more users work above their required rate.

    Fig.3 Averaged total rate under rate constrained power control case

    2 Distributed power allocation algorithm

    To tackle the problem mentioned above, a distributed power allocation algorithm is proposed to allocate proper transmitting power of each user without any exchanging information between pico stations. More users will be able to achieve their required rate and the perceived experience of edge users is promoted.

    In an OFDMA system, user’s transmitting rate is the sum of rate on each resource block (RB)[7]. For the reason that we only pay attention to power allocation algorithm, the RB are allocated to users in a random way followed Round Robin (RR) scheduling algorithm. Letri,kdenote the transmitting rate of userion thekthRB. According to the Shannon formula, the rate of useriis defined as

    (1)

    whereNiis the set of RB allocated to useri. TheSi,kis the SINR for the userion thekthRB andBdenotes the bandwidth of one RB. If we assume that the power on each of user is same and other adjacent pico stations transmit with the maximum power, the SINR on each RB of one user will be the same and Eq. (1) can be rewritten as

    |Ni|Blog2(1+Si,k)=

    Wilog2(1+Si,k)

    (2)

    whereWidenotes the bandwidth allocated to the useri. If we letRidenote the required rate of useri, the required SINR of userion thekthRB denoted byS′i,kwill be

    S′i,k=2Ri/Wi-1

    (3)

    In another way, the SINR of userion thekthRB can be denoted by

    (4)

    Aseachuserassumesotherpicostationstransmitwithmaximumpower,whichistheworstsituation,thetransmittingpowerofpicostationjonthekthRBtosatisfytherequiredrateofusericanbeobtainedfromEq. (3)andEq. (4)by

    (5)

    wherePj,k,maxorPt,k,maxdenotes the maximum transmitting power of pico station on thekthRB. For simplicity, we assume that the power constraint on each RB is the same. So,Pj,k,max=Pmax/N, whereNis the number of RB of each pico station. The second formula in Eq. (5) means the actual transmitting power cannot exceed the maximum value.

    If all users use this algorithm to decide their transmitting power, the most ofPj,kmust be lower than the maximum powerPj,k,max, which means that the practical situation must be better than the considered worst case. The actual transmitting rate should be higher than the required rate. However, with the rising of required rate, the situation will converge to the worst one, because more and more users can not satisfy their required rate and have to choose the maximum power.

    3 Simulation results and discussions

    In this section, we conduct simulations to demonstrate the performance improvement of the proposed distributed power allocation algorithm. The simulation model is illustrated in Fig.1 and the simulation parameters are listed in Tab.1.

    Tab.1 Simulation parameters

    3.1 Pico stations without periodical change in rate requirement

    The simulation is performed in two rooms with 2 or 4 pico stations in each corner. The rooms are separated by a wall with 20 dB attenuation. For comparison, we have performed four situations, which are 4 pico stations without power control, 4 pico stations with power control, 8 pico stations without power control, and 8 pico stations with power control.

    Fig.4 shows the calculative distribution function (CDF) of user transmitting rate with required rate equaling 500 kbit/s. After using proposed power allocation algorithm, the CDF curves will become sharper. That means the fairness of users has been improved. Take the 8 picocells with/without power control for example. The percentage of users whose transmitting rate is larger than 500 kbit/s varies from 83% to 99% after controlling transmitting power. Although there is some loss in high-rate users and total transmitting rate, more users will achieve their required rate and this is the real improvement of user experience.

    Fig.4 Comparison of transmitting rate with/without power control

    Comparison of the transmitting rate of 4 picocells and 8 picocells shows that the power allocation algorithm is more efficient in 8 picocells scenario. This is because the interference in 8 picocells is much stronger than 4 picocells, which makes the interference mitigation algorithm more efficient. Another reason is that the transmitting power cannot be reduced too much since it is more difficult for users in 4 picocells scenario to satisfy the required rate.

    3.2 Pico stations with periodic change in rate requirement

    Actually, the rate requirement or SINR requirement will not keep the same all the time. It varies in different spots at different time. To tackle this problem and evaluate the adaptiveness of proposed power allocation algorithm, a scenario which represents this characteristic is introduced. The scenario is similar to the previous one which has two separated 30 m by 30 m rooms with 8 pico stations each in the corner (Fig.1). The difference is that we assume the pico station 1, 4, 5 and 8 have a periodic variation in rate requirement. In the simulation this four pico stations are switching rate requirement simultaneously. The normal rate requirement is 500 kbit/s, which happens in time interval 0-T0, and low rate requirement is 200 kbps, which happens in time interval T0-T, where T0 denotes the time of pico station 1,4,5,8 working in normal rate requirement and can be changed according to different circumstances. The lengths of these two time interval are the same in our simulation. The simulation time is set to 10T and the result of users’ transmitting rate is shown in Fig.5.

    Fig.5 Comparison of transmitting rate considering periodical change

    In Fig.5, there is a reduction in transmitting rate of edge users when considering periodical variation of required rate. However, it does not mean the user experience has been degraded because of lower requirement in time interval T0-T. In fact, compared with previous scenario without periodical variation, the number of users which can achieve the required rate almost does not change, which will be shown later. On the other hand, the transmitting rate of high-rate users has a promotion comparing with previous scenario. This is because the interference to high-rate users is much lower when required rate is low in time interval T0-T.

    Fig.6 shows the sum of user transmitting rate in each picocell, which can be considered as the capacity of each pico station approximately. The capacity of pico stations without power control is higher than other two situations. However, its main contribution comes from the users have a good channel condition and it is not fair to edge users. Comparing the red bar with the green one, the capacity of pico stations numbered 1, 4, 5 and 8 will have a reduction. This is because the lower required rate in time interval T0-T when considering periodical change of users required rate. On the other hand, lower rate requirement will also mitigate the interference to the other four pico stations and result in an increment of transmitting rate of users in pico stations numbered 2, 3, 6, and 7.

    Fig.6 Transmitting rate of 8 picocells

    Finally, we take both power consumption and the outage ability into account as depicted in Fig.7. The normalized outage ability is defined as the number of users which can achieve the required rate divided by the number of users. And the normalized power consumption is defined as the sum of transmitting power divided by the transmitting power consumption without power control, i.e. the sum of maximum transmitting power. As we mentioned above, although the total transmitting rate has been degraded, the number of user achieving required rate will increase after using proposed power allocation algorithm. Moreover, from the perspective of power consumption, the proposed algorithm can save more than 50% energy without loss in outage ability. Especially, the energy saving will be further improved when considering periodical variation of required rate. That indicates the proposed algorithm efficiently promote the user experience and demonstrates the adaptiveness of algorithm. Fig.8. illustrates the energy efficiency of three situations. It is obvious that without power control system has to work in low efficiency and the improvement is observable after using proposed algorithm. The periodical adaptability of proposed power control scheme is also satisfactory according to simulation results.

    Fig.7 Comparison of normalized power consumption and outage ability

    Fig.8 Energy efficiency of three situations

    4 Conclusion

    In this paper, we propose a distributed power allocation algorithm over indoor multi-pico stations to permit pico stations to adjust the transmitting power of each user based on the rate requirement. The algorithm is low-complexity and does not need any exchanging information between pico stations. Simulation results confirm that the proposed power allocation algorithm can promote the fairness and user experience with a lot of energy being saved compared with traditional maximum transmitting power scheme.

    [1] Osman H, Zhu H L, Alade T. Deployment of distributed antenna systems in high buildings[C]∥IEEE 73rd Vehicular Technology Conference (VTC Spring), San Francisco, United State, 2011.

    [2] Chandrasekhar V, Andrews J, Gatherer A. Femtocell networks: a survey [J]. IEEE Communication Magazine, 2008, 46(9): 59-67.

    [3] Lee H W, Modiano E, Le L B. Distributed throughput maximization in wireless networks via random power allocation [J]. IEEE Transactions on mobile computing, 2012, 11(4): 577-590.

    [4] Li B. An effective inter-cell interference coordination scheme for heterogeneous network [C]∥IEEE 73rd Vehicular Technology Conference (VTC Spring), San Francisco, United State, 2011.

    [5] Quek T, Cheung W C, Kountouris M. Energy efficiency analysis of two-tier heterogeneous networks [C]∥11th European Wireless Conference, Vienna, Austria, 2011.

    [6] Gupta N K, Banerjee A. Power and subcarrier allocation for ofdma femto-cell based underlay cognitive radio in a two-tier network [C]∥IEEE 5th International Conference on Internet Multimedia Systems Architecture and Application, Karnataka, India, 2011.

    [7] Xie L L, Hu C J, Wu W J, et al. Qoe-aware power allocation algorithm in multiuser ofdm systems [C]∥7th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), Beijing, China, 2011.

    [8] 3GPP. TR 36.814, Further advancements for E-UTRA physical layer aspects[S]. v9.0.0 ed. Sophia Antipolis, France: 3GPP. 2010.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0214

    TP 391 Document code: A Article ID: 1004- 0579(2015)02- 0227- 06

    Received 2013- 12- 22

    Supported by National S & T Major Program of China(2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    高強(qiáng)
    高強(qiáng)
    文史月刊(2023年10期)2023-11-22 07:57:14
    輕質(zhì)高強(qiáng)堇青石多孔陶瓷的制備與表征
    高強(qiáng)鋼BS700MC焊接工藝性分析及驗證
    工程機(jī)械鏟斗用高強(qiáng)鋼板的研究與開發(fā)
    山東冶金(2019年5期)2019-11-16 09:09:02
    A32高強(qiáng)船板鋼生產(chǎn)工藝優(yōu)化控制
    山東冶金(2019年2期)2019-05-11 09:12:06
    看誰法力更高強(qiáng)
    童話世界(2018年8期)2018-05-19 01:59:17
    回火Q690高強(qiáng)鋼生產(chǎn)工藝研究
    新疆鋼鐵(2016年3期)2016-02-28 19:18:50
    低合金高強(qiáng)鋼板Q620E 的開發(fā)
    上海金屬(2014年5期)2014-12-20 07:58:35
    鋼纖維高強(qiáng)混凝土墻基于CONWEP的爆炸響應(yīng)
    高強(qiáng)鋼的高效焊接推動焊接材料的技術(shù)進(jìn)步
    啪啪无遮挡十八禁网站| 成人18禁高潮啪啪吃奶动态图| 91av网站免费观看| 欧美在线一区亚洲| 亚洲五月婷婷丁香| 人人妻人人澡人人看| 精品久久蜜臀av无| 久久人妻av系列| 窝窝影院91人妻| 又黄又粗又硬又大视频| 久久国产精品影院| 老司机靠b影院| 亚洲国产精品sss在线观看| 国产精品,欧美在线| 欧美日韩中文字幕国产精品一区二区三区| 91av网站免费观看| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 妹子高潮喷水视频| 女生性感内裤真人,穿戴方法视频| 久久九九热精品免费| 中文在线观看免费www的网站 | 免费看a级黄色片| 女性生殖器流出的白浆| 亚洲成a人片在线一区二区| 人人妻人人看人人澡| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| 在线av久久热| 免费在线观看视频国产中文字幕亚洲| 午夜a级毛片| 亚洲av熟女| 精品久久蜜臀av无| 午夜激情av网站| 国产成人系列免费观看| 色播亚洲综合网| 亚洲avbb在线观看| 熟女电影av网| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 国产成+人综合+亚洲专区| 国产三级在线视频| 99国产精品一区二区蜜桃av| 国产片内射在线| 国产精品亚洲一级av第二区| 免费高清视频大片| 精品一区二区三区四区五区乱码| 99国产精品99久久久久| 日韩成人在线观看一区二区三区| a级毛片在线看网站| 亚洲国产精品久久男人天堂| 中文字幕人妻丝袜一区二区| 亚洲色图 男人天堂 中文字幕| 精品第一国产精品| 在线观看www视频免费| 在线免费观看的www视频| a在线观看视频网站| 制服人妻中文乱码| 美女国产高潮福利片在线看| 人人妻,人人澡人人爽秒播| 亚洲国产欧洲综合997久久, | 婷婷亚洲欧美| 久久中文看片网| 亚洲五月婷婷丁香| 窝窝影院91人妻| 伊人久久大香线蕉亚洲五| videosex国产| 三级毛片av免费| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 亚洲欧美一区二区三区黑人| 午夜久久久久精精品| 亚洲中文字幕日韩| videosex国产| 亚洲av电影不卡..在线观看| 亚洲 欧美 日韩 在线 免费| 91成年电影在线观看| av片东京热男人的天堂| 国产乱人伦免费视频| 两个人免费观看高清视频| 免费看十八禁软件| 国产精品野战在线观看| 美女大奶头视频| 99国产精品一区二区蜜桃av| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| 美女扒开内裤让男人捅视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美不卡视频在线免费观看 | 丝袜人妻中文字幕| 黄色a级毛片大全视频| 久久久久久人人人人人| 午夜亚洲福利在线播放| 亚洲avbb在线观看| 国产成人欧美| 少妇裸体淫交视频免费看高清 | 国产成人av激情在线播放| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 1024香蕉在线观看| 99久久国产精品久久久| 手机成人av网站| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 亚洲av片天天在线观看| 日韩欧美一区视频在线观看| 制服诱惑二区| 又黄又粗又硬又大视频| 久久中文看片网| 一级作爱视频免费观看| 在线十欧美十亚洲十日本专区| 欧美黑人精品巨大| 久99久视频精品免费| 人人妻人人看人人澡| 亚洲国产毛片av蜜桃av| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 色在线成人网| 大香蕉久久成人网| 一本综合久久免费| 日韩欧美三级三区| 日本一区二区免费在线视频| 美国免费a级毛片| 亚洲欧美日韩无卡精品| 黑丝袜美女国产一区| 久久午夜亚洲精品久久| 很黄的视频免费| 熟女少妇亚洲综合色aaa.| 日日夜夜操网爽| 国产精品98久久久久久宅男小说| 午夜免费成人在线视频| АⅤ资源中文在线天堂| 丝袜人妻中文字幕| 成人亚洲精品av一区二区| 欧美乱码精品一区二区三区| 日韩欧美 国产精品| 香蕉av资源在线| 99国产精品一区二区蜜桃av| 久久久久国产一级毛片高清牌| av电影中文网址| 国产精品影院久久| 天堂√8在线中文| 国产日本99.免费观看| 女性被躁到高潮视频| 宅男免费午夜| 国产区一区二久久| 在线观看66精品国产| 国产成年人精品一区二区| 美女 人体艺术 gogo| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 国产精品爽爽va在线观看网站 | 91字幕亚洲| 免费观看人在逋| 天堂影院成人在线观看| 精品人妻1区二区| 亚洲国产精品成人综合色| 国产在线精品亚洲第一网站| av中文乱码字幕在线| 亚洲一码二码三码区别大吗| 久久 成人 亚洲| 18禁黄网站禁片免费观看直播| 99riav亚洲国产免费| 麻豆一二三区av精品| 欧美在线黄色| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 成人国产综合亚洲| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 久久久久亚洲av毛片大全| 99久久无色码亚洲精品果冻| 9191精品国产免费久久| 岛国视频午夜一区免费看| 亚洲成a人片在线一区二区| 一二三四在线观看免费中文在| 19禁男女啪啪无遮挡网站| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜| 丝袜美腿诱惑在线| 脱女人内裤的视频| 少妇被粗大的猛进出69影院| 级片在线观看| 18禁黄网站禁片免费观看直播| 久久性视频一级片| 99国产精品一区二区三区| 99热只有精品国产| 欧美另类亚洲清纯唯美| 亚洲真实伦在线观看| 在线观看午夜福利视频| 99国产精品一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美中文综合在线视频| 久久久国产欧美日韩av| 国产精品美女特级片免费视频播放器 | 成年女人毛片免费观看观看9| 午夜两性在线视频| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区高清视频在线| 欧美黑人巨大hd| 99国产精品99久久久久| 深夜精品福利| 国产单亲对白刺激| 97碰自拍视频| 亚洲成av人片免费观看| av免费在线观看网站| videosex国产| 高潮久久久久久久久久久不卡| 丁香欧美五月| 日韩一卡2卡3卡4卡2021年| 精品少妇一区二区三区视频日本电影| 精品免费久久久久久久清纯| 色播在线永久视频| 老汉色av国产亚洲站长工具| 日韩欧美国产在线观看| 无遮挡黄片免费观看| 久久午夜亚洲精品久久| 侵犯人妻中文字幕一二三四区| 亚洲人成77777在线视频| 午夜久久久久精精品| 村上凉子中文字幕在线| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| 99在线人妻在线中文字幕| 亚洲精品国产一区二区精华液| 伊人久久大香线蕉亚洲五| 久久精品91无色码中文字幕| 岛国在线观看网站| 国产精品av久久久久免费| 淫妇啪啪啪对白视频| 欧美在线黄色| 欧美丝袜亚洲另类 | 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 9191精品国产免费久久| 国产精品九九99| 国产高清videossex| 久久人人精品亚洲av| 一区二区三区精品91| 亚洲va日本ⅴa欧美va伊人久久| 在线天堂中文资源库| 日本三级黄在线观看| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 久久国产精品影院| 人成视频在线观看免费观看| 日韩国内少妇激情av| 19禁男女啪啪无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 国产又爽黄色视频| 欧美黄色淫秽网站| 午夜免费成人在线视频| 人人妻人人澡人人看| 日韩中文字幕欧美一区二区| 1024视频免费在线观看| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 国产亚洲精品一区二区www| 国产精品二区激情视频| 成人18禁高潮啪啪吃奶动态图| 国产又爽黄色视频| 亚洲成国产人片在线观看| 18禁观看日本| 别揉我奶头~嗯~啊~动态视频| 久久国产精品影院| av超薄肉色丝袜交足视频| 国产亚洲精品一区二区www| 亚洲精品美女久久av网站| 成人18禁在线播放| 国产主播在线观看一区二区| 欧美另类亚洲清纯唯美| 99re在线观看精品视频| 精品久久蜜臀av无| 精品人妻1区二区| 国产成人精品无人区| 久久午夜综合久久蜜桃| 欧美国产精品va在线观看不卡| 久久国产精品男人的天堂亚洲| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 国产激情偷乱视频一区二区| 午夜影院日韩av| 最近最新免费中文字幕在线| 国内精品久久久久精免费| 精品人妻1区二区| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 欧美国产日韩亚洲一区| 老司机靠b影院| 99国产综合亚洲精品| 成人18禁在线播放| 亚洲国产欧美日韩在线播放| 午夜亚洲福利在线播放| 观看免费一级毛片| 日韩精品免费视频一区二区三区| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观 | 18禁黄网站禁片免费观看直播| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 亚洲电影在线观看av| 一级片免费观看大全| 99国产精品一区二区三区| 嫩草影院精品99| 久久国产亚洲av麻豆专区| 波多野结衣高清作品| 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 国产亚洲欧美98| 神马国产精品三级电影在线观看 | 波多野结衣巨乳人妻| 一二三四社区在线视频社区8| 午夜久久久久精精品| 国产高清激情床上av| 老司机福利观看| 亚洲欧美日韩无卡精品| 精品久久蜜臀av无| 国产又爽黄色视频| 校园春色视频在线观看| 欧美黑人精品巨大| 成人18禁在线播放| 国产91精品成人一区二区三区| 国产久久久一区二区三区| 99re在线观看精品视频| 午夜久久久在线观看| 美女午夜性视频免费| 欧美中文日本在线观看视频| 美女免费视频网站| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 99久久综合精品五月天人人| 国产又色又爽无遮挡免费看| 亚洲国产中文字幕在线视频| 久久婷婷人人爽人人干人人爱| 成人三级做爰电影| 久久精品aⅴ一区二区三区四区| 精品日产1卡2卡| 亚洲自拍偷在线| 两人在一起打扑克的视频| 此物有八面人人有两片| e午夜精品久久久久久久| 午夜福利在线在线| 成人国语在线视频| 国产真人三级小视频在线观看| 可以免费在线观看a视频的电影网站| 国产亚洲精品第一综合不卡| 天天添夜夜摸| 国产精品野战在线观看| 露出奶头的视频| 男男h啪啪无遮挡| 亚洲中文av在线| 免费一级毛片在线播放高清视频| 19禁男女啪啪无遮挡网站| 99精品在免费线老司机午夜| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av片天天在线观看| 日韩欧美免费精品| 久久久久免费精品人妻一区二区 | 国产激情欧美一区二区| 色综合站精品国产| 91九色精品人成在线观看| 国产精品av久久久久免费| 91九色精品人成在线观看| 叶爱在线成人免费视频播放| 亚洲最大成人中文| 亚洲国产欧美一区二区综合| 亚洲成人免费电影在线观看| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三 | 国语自产精品视频在线第100页| 免费人成视频x8x8入口观看| 又紧又爽又黄一区二区| 亚洲成av人片免费观看| 日本免费一区二区三区高清不卡| 亚洲欧美激情综合另类| 美女大奶头视频| 欧美成人免费av一区二区三区| 精品国产一区二区三区四区第35| 高清在线国产一区| 男女床上黄色一级片免费看| 国产激情偷乱视频一区二区| 亚洲九九香蕉| 婷婷亚洲欧美| www.www免费av| 亚洲电影在线观看av| 一本一本综合久久| 成人国产一区最新在线观看| 久久久国产成人精品二区| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看| 精品国产美女av久久久久小说| 观看免费一级毛片| 亚洲精品粉嫩美女一区| 韩国av一区二区三区四区| 91av网站免费观看| 国产乱人伦免费视频| 国产精品久久视频播放| 亚洲精品中文字幕在线视频| 午夜老司机福利片| 国产在线观看jvid| 在线播放国产精品三级| 一二三四社区在线视频社区8| 日日夜夜操网爽| 亚洲无线在线观看| 日韩国内少妇激情av| 国产亚洲精品久久久久5区| 亚洲国产精品合色在线| 国产成人影院久久av| 欧美日韩黄片免| 欧美日韩一级在线毛片| 91成人精品电影| 老司机福利观看| 国产蜜桃级精品一区二区三区| 最新美女视频免费是黄的| 亚洲国产欧洲综合997久久, | 99国产精品一区二区蜜桃av| 久久香蕉精品热| 后天国语完整版免费观看| 伊人久久大香线蕉亚洲五| 桃红色精品国产亚洲av| 亚洲欧美精品综合一区二区三区| www.999成人在线观看| 人妻久久中文字幕网| 国产精品98久久久久久宅男小说| 日韩av在线大香蕉| 国产精品国产高清国产av| 极品教师在线免费播放| 欧美最黄视频在线播放免费| 1024香蕉在线观看| 国产成人啪精品午夜网站| 无遮挡黄片免费观看| 国产区一区二久久| 欧美+亚洲+日韩+国产| 中文字幕人妻熟女乱码| 欧美+亚洲+日韩+国产| 国产成人精品久久二区二区91| 可以在线观看毛片的网站| 国产成年人精品一区二区| 法律面前人人平等表现在哪些方面| av中文乱码字幕在线| 麻豆成人午夜福利视频| 少妇 在线观看| 日本免费a在线| 黑人操中国人逼视频| 在线天堂中文资源库| 最新美女视频免费是黄的| 在线观看一区二区三区| 欧美黄色淫秽网站| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品sss在线观看| 亚洲成国产人片在线观看| 男女做爰动态图高潮gif福利片| 久久久久久久久免费视频了| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 日韩大码丰满熟妇| 国产高清视频在线播放一区| 久久久国产成人精品二区| 久久婷婷人人爽人人干人人爱| 50天的宝宝边吃奶边哭怎么回事| 黑丝袜美女国产一区| 欧美不卡视频在线免费观看 | 怎么达到女性高潮| 久久人妻福利社区极品人妻图片| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 国产野战对白在线观看| 国产高清videossex| 亚洲精品粉嫩美女一区| 欧美国产精品va在线观看不卡| 在线观看午夜福利视频| 嫩草影视91久久| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 色播在线永久视频| av超薄肉色丝袜交足视频| 麻豆久久精品国产亚洲av| x7x7x7水蜜桃| 国产av一区二区精品久久| 国产99久久九九免费精品| 免费观看人在逋| 中文字幕精品免费在线观看视频| 天天添夜夜摸| 亚洲中文日韩欧美视频| 黄片小视频在线播放| 国产久久久一区二区三区| 18禁黄网站禁片免费观看直播| 久久草成人影院| 亚洲真实伦在线观看| 国产成人一区二区三区免费视频网站| 精品电影一区二区在线| av福利片在线| 色哟哟哟哟哟哟| 嫁个100分男人电影在线观看| 日韩中文字幕欧美一区二区| 成年人黄色毛片网站| 一区二区三区高清视频在线| 99精品久久久久人妻精品| 大型黄色视频在线免费观看| 99久久国产精品久久久| 一进一出抽搐gif免费好疼| 又大又爽又粗| 一级黄色大片毛片| 一级片免费观看大全| 手机成人av网站| 免费搜索国产男女视频| 美女国产高潮福利片在线看| 国产伦人伦偷精品视频| 中文资源天堂在线| 俄罗斯特黄特色一大片| 99久久99久久久精品蜜桃| or卡值多少钱| 韩国av一区二区三区四区| 俄罗斯特黄特色一大片| 美国免费a级毛片| 亚洲av电影在线进入| 亚洲av中文字字幕乱码综合 | 中文在线观看免费www的网站 | 亚洲性夜色夜夜综合| 精品国产国语对白av| 国产高清有码在线观看视频 | 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 嫁个100分男人电影在线观看| 国产成+人综合+亚洲专区| 中文字幕另类日韩欧美亚洲嫩草| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 成人国产综合亚洲| 国产精品久久久久久人妻精品电影| 亚洲一区中文字幕在线| or卡值多少钱| 色综合婷婷激情| 免费女性裸体啪啪无遮挡网站| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 欧美国产精品va在线观看不卡| 国产精品精品国产色婷婷| 黑人操中国人逼视频| 免费观看人在逋| 天天一区二区日本电影三级| 免费看美女性在线毛片视频| 9191精品国产免费久久| 亚洲狠狠婷婷综合久久图片| 黄色毛片三级朝国网站| 中文字幕人妻丝袜一区二区| 久久人妻av系列| 欧美黑人欧美精品刺激| 亚洲精品av麻豆狂野| 欧美激情极品国产一区二区三区| 午夜免费鲁丝| 啦啦啦 在线观看视频| 真人做人爱边吃奶动态| 亚洲中文av在线| 一级毛片精品| videosex国产| 国产99久久九九免费精品| 亚洲久久久国产精品| 亚洲在线自拍视频| 1024香蕉在线观看| 男女那种视频在线观看| 色综合亚洲欧美另类图片| 正在播放国产对白刺激| 午夜a级毛片| 一本精品99久久精品77| 免费av毛片视频| 久久久久精品国产欧美久久久| 精品国产美女av久久久久小说| 亚洲国产中文字幕在线视频| 久久99热这里只有精品18| 亚洲精品国产一区二区精华液| 少妇被粗大的猛进出69影院| 午夜久久久在线观看| avwww免费| 欧美中文综合在线视频| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| 搡老岳熟女国产| 高清在线国产一区| 欧美黄色片欧美黄色片| 久久 成人 亚洲| 香蕉丝袜av| 国产精品98久久久久久宅男小说| 一本一本综合久久| 自线自在国产av| 女人被狂操c到高潮| 日韩欧美一区视频在线观看| 亚洲在线自拍视频| 日韩视频一区二区在线观看| 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 在线十欧美十亚洲十日本专区| 久久亚洲真实| 免费在线观看视频国产中文字幕亚洲| 狠狠狠狠99中文字幕| 成年版毛片免费区| a在线观看视频网站| 老熟妇仑乱视频hdxx| 在线看三级毛片| 成人三级黄色视频| 亚洲欧美精品综合久久99| 欧美黑人精品巨大| 精品久久久久久久久久免费视频|