• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed power allocation over indoor multi-pico stations

    2015-04-22 06:17:32FEIZesong費澤松GAOQiang高強(qiáng)FUYou傅友TeroIsotaloJarnoNiemela
    關(guān)鍵詞:高強(qiáng)

    FEI Ze-song(費澤松), GAO Qiang(高強(qiáng)), FU You(傅友),Tero Isotalo , Jarno Niemela

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081,China;2.Department of Communication Engineering, Tampere University of Technology, Tampere, Finland)

    ?

    Distributed power allocation over indoor multi-pico stations

    FEI Ze-song(費澤松), GAO Qiang(高強(qiáng))1, FU You(傅友)1,Tero Isotalo2, Jarno Niemela2

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081,China;2.Department of Communication Engineering, Tampere University of Technology, Tampere, Finland)

    A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 50% energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.

    distributed power allocation; indoor communication; multi-pico stations

    The advancement in technologies and the needs for wireless communication services offered by service providers have led to an increasing level of high data transmitting in mobile applications[1]. Recent research shows that more than 50% of voice calls and more than 70% of data traffic are generated indoors[2]. However, current outdoor base stations (BSs) are not able to cope with growing demand of indoor wireless communication users, because the distance between outdoor BS and indoor user is too far and the penetration loss is huge. In order to fulfill the demand of indoor communication, telecommunication operators are paying more and more interest in indoor coverage design.

    In heterogeneous network deployment and applications, pico station, femto station and relay, which are low power nodes, can be set in the macro-only cell to shorten the distance between BSs and users, and then enhance the cell capacity. Due to the introduction of new low power nodes and dense deployment, the interference in heterogeneous network is getting more and more severe and complex than traditional macro-only network. Power allocation is a significant way to mitigate interference and to improve the spectrum efficiency. Many works have been done in this area. In Ref.[3], a distributed power allocation scheme was proposed to maximum throughput in wireless network. The author in Ref.[4] allocated transmitting power to low power nodes in Het-Net based on multi-objective nonlinear optimization to maximum utility function taken both capacity and power consumption into account. In Ref.[5], instead of throughput optimizing, the energy efficiency maximum scheme was proposed over a two-tier Het-Net. The authors in Ref.[6] presented a power and subcarrier allocation method to maximize the cell capacity in a two-tier network, but the algorithm complexity is very high.

    Most existing literatures concentrate on the maximization of cell capacity or the trade-off between transmitting power and user rate[3-6]. However, this is not fair to users having a bad channel condition, i.e. edge users. In practice, every user has a requirement of transmitting rate. Below this requirement, quality of experience (QoE) will be degraded[7]. As the required rate will be periodically varied, an efficient power allocation algorithm is needed to adaptively satisfy user’s changing requirement.

    In this paper, a low-complexity distributed power allocation algorithm is proposed based on the scenario of indoor multi-pico stations. Besides, the algorithm also can be applied in femto stations or other scenarios suffering severe interference.

    1 System model

    1.1 Indoor multi-pico stations scenario

    In this paper, we consider an indoor communication scenario in two 30 m×30 m rooms separated by a wall with multiple pico stations as shown in Fig.1. In the first scenario, there are 4 picocells with 2 pico stations in the corner of each room, and in the second scenario there are 8 picocells with 4 pico stations in the corner of each room. All the pico stations work on the same spectrum. The users in it select their service pico station based on the reference signal receiving power (RSRP).

    Fig.1 Layout for 4 and 8 Pico stations in two rooms

    1.2 Signal-to-noise-plus-interference ratio (SINR) and user rate comparison without power control

    In this subsection, the comparison of the SINR distribution and the user transmitting rate between two scenarios are given based on the simulation parameters in 3GPP TR 36.814. The transmitting power of pico stations is fixed in 30 dBm[8].

    Fig.2 shows the SINR distribution in two scenarios. Pixels that are close to pico stations have higher SINR. Additionally, the SINR of 4 picocells is higher than that of 8 picocells. This is because the interference is much stronger in the second scenario.

    Fig.2 SINR distribution in two scenarios

    Fig.3 shows the CDF curves of user transmitting rate calculated by Shannon capacity in two scenarios. Although the SINR distribution is worse in 8 picocells, the rates are higher compared with 4 picocells because of double resources. In addition, the rate improvement of the edge users is not obvious from 8 picocells to 4 picocells since these two curves are close to each other at the beginning. The obvious improvement occurs at the higher rate area and this is unfair for those users with a bad channel condition or the users far from pico stations. Moreover, when the required rate is low, there is little promotion in the number of satisfied users. The reason is that the pico stations transmit with maximum power no matter where the user is. It is not necessary to allocate too much power to the users which are close to pico stations because they have a good channel condition. The excess power will cause much interference to other users in adjacent picocells. The transmitting power of each user therefore should be limited to make more users work above their required rate.

    Fig.3 Averaged total rate under rate constrained power control case

    2 Distributed power allocation algorithm

    To tackle the problem mentioned above, a distributed power allocation algorithm is proposed to allocate proper transmitting power of each user without any exchanging information between pico stations. More users will be able to achieve their required rate and the perceived experience of edge users is promoted.

    In an OFDMA system, user’s transmitting rate is the sum of rate on each resource block (RB)[7]. For the reason that we only pay attention to power allocation algorithm, the RB are allocated to users in a random way followed Round Robin (RR) scheduling algorithm. Letri,kdenote the transmitting rate of userion thekthRB. According to the Shannon formula, the rate of useriis defined as

    (1)

    whereNiis the set of RB allocated to useri. TheSi,kis the SINR for the userion thekthRB andBdenotes the bandwidth of one RB. If we assume that the power on each of user is same and other adjacent pico stations transmit with the maximum power, the SINR on each RB of one user will be the same and Eq. (1) can be rewritten as

    |Ni|Blog2(1+Si,k)=

    Wilog2(1+Si,k)

    (2)

    whereWidenotes the bandwidth allocated to the useri. If we letRidenote the required rate of useri, the required SINR of userion thekthRB denoted byS′i,kwill be

    S′i,k=2Ri/Wi-1

    (3)

    In another way, the SINR of userion thekthRB can be denoted by

    (4)

    Aseachuserassumesotherpicostationstransmitwithmaximumpower,whichistheworstsituation,thetransmittingpowerofpicostationjonthekthRBtosatisfytherequiredrateofusericanbeobtainedfromEq. (3)andEq. (4)by

    (5)

    wherePj,k,maxorPt,k,maxdenotes the maximum transmitting power of pico station on thekthRB. For simplicity, we assume that the power constraint on each RB is the same. So,Pj,k,max=Pmax/N, whereNis the number of RB of each pico station. The second formula in Eq. (5) means the actual transmitting power cannot exceed the maximum value.

    If all users use this algorithm to decide their transmitting power, the most ofPj,kmust be lower than the maximum powerPj,k,max, which means that the practical situation must be better than the considered worst case. The actual transmitting rate should be higher than the required rate. However, with the rising of required rate, the situation will converge to the worst one, because more and more users can not satisfy their required rate and have to choose the maximum power.

    3 Simulation results and discussions

    In this section, we conduct simulations to demonstrate the performance improvement of the proposed distributed power allocation algorithm. The simulation model is illustrated in Fig.1 and the simulation parameters are listed in Tab.1.

    Tab.1 Simulation parameters

    3.1 Pico stations without periodical change in rate requirement

    The simulation is performed in two rooms with 2 or 4 pico stations in each corner. The rooms are separated by a wall with 20 dB attenuation. For comparison, we have performed four situations, which are 4 pico stations without power control, 4 pico stations with power control, 8 pico stations without power control, and 8 pico stations with power control.

    Fig.4 shows the calculative distribution function (CDF) of user transmitting rate with required rate equaling 500 kbit/s. After using proposed power allocation algorithm, the CDF curves will become sharper. That means the fairness of users has been improved. Take the 8 picocells with/without power control for example. The percentage of users whose transmitting rate is larger than 500 kbit/s varies from 83% to 99% after controlling transmitting power. Although there is some loss in high-rate users and total transmitting rate, more users will achieve their required rate and this is the real improvement of user experience.

    Fig.4 Comparison of transmitting rate with/without power control

    Comparison of the transmitting rate of 4 picocells and 8 picocells shows that the power allocation algorithm is more efficient in 8 picocells scenario. This is because the interference in 8 picocells is much stronger than 4 picocells, which makes the interference mitigation algorithm more efficient. Another reason is that the transmitting power cannot be reduced too much since it is more difficult for users in 4 picocells scenario to satisfy the required rate.

    3.2 Pico stations with periodic change in rate requirement

    Actually, the rate requirement or SINR requirement will not keep the same all the time. It varies in different spots at different time. To tackle this problem and evaluate the adaptiveness of proposed power allocation algorithm, a scenario which represents this characteristic is introduced. The scenario is similar to the previous one which has two separated 30 m by 30 m rooms with 8 pico stations each in the corner (Fig.1). The difference is that we assume the pico station 1, 4, 5 and 8 have a periodic variation in rate requirement. In the simulation this four pico stations are switching rate requirement simultaneously. The normal rate requirement is 500 kbit/s, which happens in time interval 0-T0, and low rate requirement is 200 kbps, which happens in time interval T0-T, where T0 denotes the time of pico station 1,4,5,8 working in normal rate requirement and can be changed according to different circumstances. The lengths of these two time interval are the same in our simulation. The simulation time is set to 10T and the result of users’ transmitting rate is shown in Fig.5.

    Fig.5 Comparison of transmitting rate considering periodical change

    In Fig.5, there is a reduction in transmitting rate of edge users when considering periodical variation of required rate. However, it does not mean the user experience has been degraded because of lower requirement in time interval T0-T. In fact, compared with previous scenario without periodical variation, the number of users which can achieve the required rate almost does not change, which will be shown later. On the other hand, the transmitting rate of high-rate users has a promotion comparing with previous scenario. This is because the interference to high-rate users is much lower when required rate is low in time interval T0-T.

    Fig.6 shows the sum of user transmitting rate in each picocell, which can be considered as the capacity of each pico station approximately. The capacity of pico stations without power control is higher than other two situations. However, its main contribution comes from the users have a good channel condition and it is not fair to edge users. Comparing the red bar with the green one, the capacity of pico stations numbered 1, 4, 5 and 8 will have a reduction. This is because the lower required rate in time interval T0-T when considering periodical change of users required rate. On the other hand, lower rate requirement will also mitigate the interference to the other four pico stations and result in an increment of transmitting rate of users in pico stations numbered 2, 3, 6, and 7.

    Fig.6 Transmitting rate of 8 picocells

    Finally, we take both power consumption and the outage ability into account as depicted in Fig.7. The normalized outage ability is defined as the number of users which can achieve the required rate divided by the number of users. And the normalized power consumption is defined as the sum of transmitting power divided by the transmitting power consumption without power control, i.e. the sum of maximum transmitting power. As we mentioned above, although the total transmitting rate has been degraded, the number of user achieving required rate will increase after using proposed power allocation algorithm. Moreover, from the perspective of power consumption, the proposed algorithm can save more than 50% energy without loss in outage ability. Especially, the energy saving will be further improved when considering periodical variation of required rate. That indicates the proposed algorithm efficiently promote the user experience and demonstrates the adaptiveness of algorithm. Fig.8. illustrates the energy efficiency of three situations. It is obvious that without power control system has to work in low efficiency and the improvement is observable after using proposed algorithm. The periodical adaptability of proposed power control scheme is also satisfactory according to simulation results.

    Fig.7 Comparison of normalized power consumption and outage ability

    Fig.8 Energy efficiency of three situations

    4 Conclusion

    In this paper, we propose a distributed power allocation algorithm over indoor multi-pico stations to permit pico stations to adjust the transmitting power of each user based on the rate requirement. The algorithm is low-complexity and does not need any exchanging information between pico stations. Simulation results confirm that the proposed power allocation algorithm can promote the fairness and user experience with a lot of energy being saved compared with traditional maximum transmitting power scheme.

    [1] Osman H, Zhu H L, Alade T. Deployment of distributed antenna systems in high buildings[C]∥IEEE 73rd Vehicular Technology Conference (VTC Spring), San Francisco, United State, 2011.

    [2] Chandrasekhar V, Andrews J, Gatherer A. Femtocell networks: a survey [J]. IEEE Communication Magazine, 2008, 46(9): 59-67.

    [3] Lee H W, Modiano E, Le L B. Distributed throughput maximization in wireless networks via random power allocation [J]. IEEE Transactions on mobile computing, 2012, 11(4): 577-590.

    [4] Li B. An effective inter-cell interference coordination scheme for heterogeneous network [C]∥IEEE 73rd Vehicular Technology Conference (VTC Spring), San Francisco, United State, 2011.

    [5] Quek T, Cheung W C, Kountouris M. Energy efficiency analysis of two-tier heterogeneous networks [C]∥11th European Wireless Conference, Vienna, Austria, 2011.

    [6] Gupta N K, Banerjee A. Power and subcarrier allocation for ofdma femto-cell based underlay cognitive radio in a two-tier network [C]∥IEEE 5th International Conference on Internet Multimedia Systems Architecture and Application, Karnataka, India, 2011.

    [7] Xie L L, Hu C J, Wu W J, et al. Qoe-aware power allocation algorithm in multiuser ofdm systems [C]∥7th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), Beijing, China, 2011.

    [8] 3GPP. TR 36.814, Further advancements for E-UTRA physical layer aspects[S]. v9.0.0 ed. Sophia Antipolis, France: 3GPP. 2010.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0214

    TP 391 Document code: A Article ID: 1004- 0579(2015)02- 0227- 06

    Received 2013- 12- 22

    Supported by National S & T Major Program of China(2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    高強(qiáng)
    高強(qiáng)
    文史月刊(2023年10期)2023-11-22 07:57:14
    輕質(zhì)高強(qiáng)堇青石多孔陶瓷的制備與表征
    高強(qiáng)鋼BS700MC焊接工藝性分析及驗證
    工程機(jī)械鏟斗用高強(qiáng)鋼板的研究與開發(fā)
    山東冶金(2019年5期)2019-11-16 09:09:02
    A32高強(qiáng)船板鋼生產(chǎn)工藝優(yōu)化控制
    山東冶金(2019年2期)2019-05-11 09:12:06
    看誰法力更高強(qiáng)
    童話世界(2018年8期)2018-05-19 01:59:17
    回火Q690高強(qiáng)鋼生產(chǎn)工藝研究
    新疆鋼鐵(2016年3期)2016-02-28 19:18:50
    低合金高強(qiáng)鋼板Q620E 的開發(fā)
    上海金屬(2014年5期)2014-12-20 07:58:35
    鋼纖維高強(qiáng)混凝土墻基于CONWEP的爆炸響應(yīng)
    高強(qiáng)鋼的高效焊接推動焊接材料的技術(shù)進(jìn)步
    国产又爽黄色视频| 亚洲精品粉嫩美女一区| 欧美 日韩 精品 国产| 亚洲国产中文字幕在线视频| 亚洲人成电影观看| 大香蕉久久网| 亚洲成人免费av在线播放| 亚洲午夜理论影院| 熟女少妇亚洲综合色aaa.| 热99re8久久精品国产| 电影成人av| 国产免费现黄频在线看| 精品亚洲乱码少妇综合久久| 国产老妇伦熟女老妇高清| 日日夜夜操网爽| 午夜成年电影在线免费观看| 最近最新免费中文字幕在线| 高清视频免费观看一区二区| 精品一区二区三区视频在线观看免费 | 纯流量卡能插随身wifi吗| 一级毛片女人18水好多| 亚洲精品乱久久久久久| 欧美亚洲 丝袜 人妻 在线| 国产一区二区激情短视频| 国产主播在线观看一区二区| 国产成人欧美| 国产亚洲av高清不卡| 99九九在线精品视频| 91大片在线观看| 少妇猛男粗大的猛烈进出视频| 脱女人内裤的视频| 国产男女内射视频| 精品久久久久久电影网| 亚洲天堂av无毛| 国产精品 国内视频| 99国产综合亚洲精品| 亚洲精品美女久久av网站| 国产野战对白在线观看| 亚洲精品成人av观看孕妇| 在线观看舔阴道视频| 人人澡人人妻人| 欧美日韩亚洲国产一区二区在线观看 | 夜夜骑夜夜射夜夜干| 国产99久久九九免费精品| 亚洲第一欧美日韩一区二区三区 | 欧美乱妇无乱码| 欧美精品人与动牲交sv欧美| 18禁国产床啪视频网站| 十八禁高潮呻吟视频| 激情视频va一区二区三区| av不卡在线播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区久久| √禁漫天堂资源中文www| 免费人妻精品一区二区三区视频| 91av网站免费观看| 电影成人av| 欧美日韩亚洲综合一区二区三区_| 国产午夜精品久久久久久| 亚洲精品美女久久av网站| 人人妻人人爽人人添夜夜欢视频| 丝袜喷水一区| 精品国产亚洲在线| 女性被躁到高潮视频| 欧美乱码精品一区二区三区| 国产1区2区3区精品| 制服人妻中文乱码| 在线观看舔阴道视频| 曰老女人黄片| 成人av一区二区三区在线看| 亚洲av成人不卡在线观看播放网| 国产高清视频在线播放一区| 啦啦啦免费观看视频1| 啦啦啦免费观看视频1| 精品亚洲成国产av| 国产男靠女视频免费网站| 欧美 日韩 精品 国产| 动漫黄色视频在线观看| 老熟妇乱子伦视频在线观看| 午夜福利影视在线免费观看| 中文字幕av电影在线播放| 国产高清国产精品国产三级| 国产精品自产拍在线观看55亚洲 | 热re99久久国产66热| 免费一级毛片在线播放高清视频 | 亚洲综合色网址| 欧美黄色淫秽网站| 三级毛片av免费| 久久午夜亚洲精品久久| 桃红色精品国产亚洲av| 免费人妻精品一区二区三区视频| 国产精品成人在线| 日本一区二区免费在线视频| 人成视频在线观看免费观看| 免费观看人在逋| 丝袜喷水一区| 欧美人与性动交α欧美软件| 真人做人爱边吃奶动态| 精品第一国产精品| 中文字幕高清在线视频| 男男h啪啪无遮挡| 热re99久久国产66热| 色播在线永久视频| 一区二区三区国产精品乱码| 亚洲午夜精品一区,二区,三区| 飞空精品影院首页| 午夜免费成人在线视频| 999精品在线视频| 亚洲精品国产区一区二| 亚洲伊人色综图| 在线观看免费视频网站a站| 国产精品免费一区二区三区在线 | 中文字幕最新亚洲高清| 欧美久久黑人一区二区| 亚洲欧美日韩高清在线视频 | 国产又爽黄色视频| 国产在线观看jvid| 成人国产一区最新在线观看| 精品一区二区三区视频在线观看免费 | 亚洲 欧美一区二区三区| 免费在线观看日本一区| 制服人妻中文乱码| 最新美女视频免费是黄的| av天堂久久9| 国产高清videossex| 黄色丝袜av网址大全| 色尼玛亚洲综合影院| 美女扒开内裤让男人捅视频| 91麻豆av在线| 亚洲综合色网址| 亚洲avbb在线观看| 成人三级做爰电影| 色综合欧美亚洲国产小说| 两个人看的免费小视频| 色综合欧美亚洲国产小说| 丰满迷人的少妇在线观看| 国产男女内射视频| www.熟女人妻精品国产| 夫妻午夜视频| 美女扒开内裤让男人捅视频| 久久人人爽av亚洲精品天堂| 真人做人爱边吃奶动态| 老司机亚洲免费影院| av不卡在线播放| 欧美国产精品va在线观看不卡| 侵犯人妻中文字幕一二三四区| 精品第一国产精品| 黑人欧美特级aaaaaa片| 国产日韩一区二区三区精品不卡| 多毛熟女@视频| 午夜久久久在线观看| 国产黄频视频在线观看| 黄频高清免费视频| 国产av一区二区精品久久| 热99久久久久精品小说推荐| 一进一出好大好爽视频| 久久亚洲精品不卡| 80岁老熟妇乱子伦牲交| kizo精华| 深夜精品福利| 欧美激情极品国产一区二区三区| 露出奶头的视频| 国产精品av久久久久免费| 男女下面插进去视频免费观看| 久久久久久久久久久久大奶| 一边摸一边抽搐一进一小说 | 99国产综合亚洲精品| 国产精品自产拍在线观看55亚洲 | 制服诱惑二区| 国产极品粉嫩免费观看在线| 午夜老司机福利片| e午夜精品久久久久久久| 亚洲成国产人片在线观看| 久久久久视频综合| 亚洲综合色网址| svipshipincom国产片| 夫妻午夜视频| 国产精品一区二区在线不卡| 久久热在线av| 免费在线观看日本一区| 色综合婷婷激情| 国产老妇伦熟女老妇高清| 少妇 在线观看| 精品国产亚洲在线| 国产高清视频在线播放一区| 亚洲av成人不卡在线观看播放网| 亚洲伊人色综图| 亚洲 国产 在线| 国产在线观看jvid| 另类亚洲欧美激情| 亚洲久久久国产精品| 亚洲熟妇熟女久久| 一个人免费在线观看的高清视频| 大陆偷拍与自拍| 性色av乱码一区二区三区2| 精品福利永久在线观看| 这个男人来自地球电影免费观看| 亚洲人成电影观看| 日本av免费视频播放| bbb黄色大片| av又黄又爽大尺度在线免费看| 国产亚洲午夜精品一区二区久久| 国产片内射在线| 天堂8中文在线网| 精品国产国语对白av| 久久精品亚洲熟妇少妇任你| 黑人巨大精品欧美一区二区mp4| 欧美日韩黄片免| 老司机靠b影院| 亚洲伊人色综图| 日韩欧美一区二区三区在线观看 | 国产在视频线精品| 悠悠久久av| 国产男靠女视频免费网站| av视频免费观看在线观看| 欧美黑人欧美精品刺激| 久久中文字幕一级| 精品福利永久在线观看| 亚洲熟女精品中文字幕| 在线av久久热| 男女高潮啪啪啪动态图| 少妇猛男粗大的猛烈进出视频| av不卡在线播放| 在线观看66精品国产| 欧美日韩亚洲高清精品| 国产真人三级小视频在线观看| 亚洲视频免费观看视频| 性高湖久久久久久久久免费观看| 中文字幕人妻丝袜制服| 麻豆av在线久日| av福利片在线| 高清在线国产一区| 免费av中文字幕在线| 久久久久精品国产欧美久久久| www.熟女人妻精品国产| 久久国产亚洲av麻豆专区| 老司机亚洲免费影院| 久久国产精品男人的天堂亚洲| 一夜夜www| 777米奇影视久久| 亚洲色图综合在线观看| 欧美日韩精品网址| 欧美日韩黄片免| 国产真人三级小视频在线观看| 亚洲精品粉嫩美女一区| 亚洲七黄色美女视频| 黄片大片在线免费观看| 99热网站在线观看| 国产aⅴ精品一区二区三区波| 亚洲av片天天在线观看| 国产日韩欧美视频二区| 免费黄频网站在线观看国产| 国产精品免费一区二区三区在线 | 亚洲av片天天在线观看| 国产精品久久久久成人av| 精品少妇内射三级| 国产精品久久久久成人av| 不卡一级毛片| 国产xxxxx性猛交| 亚洲精品美女久久av网站| 国产精品av久久久久免费| 亚洲天堂av无毛| 欧美精品人与动牲交sv欧美| 亚洲五月婷婷丁香| 少妇的丰满在线观看| 日日夜夜操网爽| 亚洲精品成人av观看孕妇| 97在线人人人人妻| 欧美黑人欧美精品刺激| 99国产精品一区二区蜜桃av | a级片在线免费高清观看视频| 露出奶头的视频| 国产黄频视频在线观看| 亚洲avbb在线观看| 日韩免费高清中文字幕av| 老司机靠b影院| 亚洲第一青青草原| 午夜精品久久久久久毛片777| 法律面前人人平等表现在哪些方面| 精品高清国产在线一区| 日本黄色视频三级网站网址 | 12—13女人毛片做爰片一| 男女无遮挡免费网站观看| 国产男女超爽视频在线观看| 日韩人妻精品一区2区三区| bbb黄色大片| 久久国产精品人妻蜜桃| 久久精品亚洲熟妇少妇任你| av线在线观看网站| 亚洲成av片中文字幕在线观看| 91av网站免费观看| 免费在线观看黄色视频的| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区视频在线观看| videosex国产| 国产精品成人在线| www.精华液| 亚洲专区字幕在线| 飞空精品影院首页| 80岁老熟妇乱子伦牲交| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 色播在线永久视频| 飞空精品影院首页| 国产91精品成人一区二区三区 | 精品国内亚洲2022精品成人 | 高清在线国产一区| 午夜两性在线视频| 久久亚洲精品不卡| 色精品久久人妻99蜜桃| 欧美成人免费av一区二区三区 | 桃花免费在线播放| 亚洲午夜理论影院| 乱人伦中国视频| 国产欧美日韩精品亚洲av| 国产色视频综合| 国产成人av激情在线播放| 国产精品1区2区在线观看. | 窝窝影院91人妻| 麻豆乱淫一区二区| 久久精品aⅴ一区二区三区四区| 一夜夜www| 91麻豆av在线| 亚洲一区中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 天天添夜夜摸| 国产极品粉嫩免费观看在线| 人人澡人人妻人| 女同久久另类99精品国产91| h视频一区二区三区| 狠狠婷婷综合久久久久久88av| 人人妻人人澡人人看| 国产99久久九九免费精品| 成人特级黄色片久久久久久久 | cao死你这个sao货| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 一进一出好大好爽视频| 国产成人影院久久av| 久久ye,这里只有精品| 国产一区二区在线观看av| netflix在线观看网站| 99久久人妻综合| 午夜福利在线免费观看网站| 国产一区二区在线观看av| 丰满少妇做爰视频| 精品亚洲成国产av| 极品教师在线免费播放| 成人三级做爰电影| 女性被躁到高潮视频| 精品一品国产午夜福利视频| 欧美在线一区亚洲| 亚洲avbb在线观看| 岛国在线观看网站| 一区福利在线观看| 啪啪无遮挡十八禁网站| 国产男女内射视频| 国产精品国产高清国产av | 国产成人系列免费观看| 满18在线观看网站| av一本久久久久| 女同久久另类99精品国产91| 另类亚洲欧美激情| 嫁个100分男人电影在线观看| 久久青草综合色| 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频| 日本wwww免费看| 久久精品亚洲精品国产色婷小说| 91成人精品电影| 纵有疾风起免费观看全集完整版| 国产亚洲午夜精品一区二区久久| 蜜桃国产av成人99| 国产福利在线免费观看视频| 看免费av毛片| 91成人精品电影| 最新的欧美精品一区二区| 精品卡一卡二卡四卡免费| 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 国产单亲对白刺激| 在线十欧美十亚洲十日本专区| 欧美精品高潮呻吟av久久| 满18在线观看网站| 欧美国产精品一级二级三级| 亚洲一区中文字幕在线| 久久精品国产亚洲av香蕉五月 | videosex国产| 国产精品美女特级片免费视频播放器 | 精品少妇一区二区三区视频日本电影| 午夜福利一区二区在线看| 青草久久国产| 人人妻人人添人人爽欧美一区卜| 999久久久精品免费观看国产| 91精品三级在线观看| 亚洲人成电影免费在线| 在线观看免费高清a一片| 亚洲精品在线观看二区| 国产免费福利视频在线观看| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 日本精品一区二区三区蜜桃| 国产av又大| 亚洲成人手机| 亚洲美女黄片视频| 狠狠婷婷综合久久久久久88av| 成人国语在线视频| 五月天丁香电影| 宅男免费午夜| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区久久| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 黄色怎么调成土黄色| 18禁观看日本| 久久人妻福利社区极品人妻图片| 2018国产大陆天天弄谢| 午夜两性在线视频| 极品教师在线免费播放| 2018国产大陆天天弄谢| 亚洲欧美激情在线| 亚洲精品粉嫩美女一区| 在线av久久热| 日韩一区二区三区影片| 久久精品人人爽人人爽视色| 777米奇影视久久| 日韩中文字幕欧美一区二区| 女性生殖器流出的白浆| 免费av中文字幕在线| 新久久久久国产一级毛片| 亚洲人成电影免费在线| 一级黄色大片毛片| 国产精品九九99| 婷婷丁香在线五月| 精品国产超薄肉色丝袜足j| 国产男女超爽视频在线观看| 免费久久久久久久精品成人欧美视频| 动漫黄色视频在线观看| 国产精品一区二区在线观看99| www.精华液| 在线亚洲精品国产二区图片欧美| 叶爱在线成人免费视频播放| 高清在线国产一区| 午夜免费成人在线视频| 亚洲av国产av综合av卡| 亚洲国产欧美网| 一区二区日韩欧美中文字幕| 后天国语完整版免费观看| 久久久久久久国产电影| 狠狠婷婷综合久久久久久88av| 亚洲欧洲精品一区二区精品久久久| 午夜精品国产一区二区电影| 51午夜福利影视在线观看| 国产一区二区 视频在线| 国产精品影院久久| 亚洲av国产av综合av卡| 国产精品国产高清国产av | 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 9191精品国产免费久久| 国产不卡av网站在线观看| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 黄色a级毛片大全视频| 欧美av亚洲av综合av国产av| 国产精品偷伦视频观看了| 国产成人精品久久二区二区免费| 99精品欧美一区二区三区四区| 极品人妻少妇av视频| 国产精品免费视频内射| av有码第一页| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 中文欧美无线码| 一二三四在线观看免费中文在| 国产福利在线免费观看视频| 亚洲自偷自拍图片 自拍| 国产伦人伦偷精品视频| 天天躁日日躁夜夜躁夜夜| 精品人妻在线不人妻| e午夜精品久久久久久久| 超碰97精品在线观看| 精品福利永久在线观看| 亚洲国产欧美网| kizo精华| 高清在线国产一区| 国产又爽黄色视频| 久久这里只有精品19| 欧美日韩黄片免| av网站免费在线观看视频| 亚洲av成人一区二区三| 国产精品二区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 视频在线观看一区二区三区| 中文字幕高清在线视频| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 免费看a级黄色片| 亚洲色图 男人天堂 中文字幕| a级毛片黄视频| 天堂中文最新版在线下载| 日日爽夜夜爽网站| 亚洲成人国产一区在线观看| 成年女人毛片免费观看观看9 | 久久人人爽av亚洲精品天堂| 日韩视频在线欧美| 老司机午夜十八禁免费视频| 动漫黄色视频在线观看| 久久精品91无色码中文字幕| 女性被躁到高潮视频| 欧美精品一区二区免费开放| 超碰成人久久| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频 | 成年女人毛片免费观看观看9 | 一级黄色大片毛片| av超薄肉色丝袜交足视频| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 啦啦啦视频在线资源免费观看| 国产一区二区激情短视频| 亚洲情色 制服丝袜| avwww免费| 欧美黄色淫秽网站| 老司机靠b影院| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| 精品免费久久久久久久清纯 | 久久精品国产综合久久久| 视频区欧美日本亚洲| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 久久热在线av| 18禁国产床啪视频网站| 在线播放国产精品三级| 热99久久久久精品小说推荐| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| 在线观看免费高清a一片| 极品教师在线免费播放| 91九色精品人成在线观看| 午夜福利在线免费观看网站| 精品国产国语对白av| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频| 黄色视频,在线免费观看| 久久国产亚洲av麻豆专区| 一二三四社区在线视频社区8| 黑人欧美特级aaaaaa片| 国产伦理片在线播放av一区| 两个人看的免费小视频| 欧美黑人欧美精品刺激| 黄片播放在线免费| 精品一品国产午夜福利视频| 色综合欧美亚洲国产小说| 啦啦啦免费观看视频1| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久av美女十八| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 在线亚洲精品国产二区图片欧美| 久久香蕉激情| 999久久久国产精品视频| 无人区码免费观看不卡 | 欧美日韩视频精品一区| 婷婷成人精品国产| 免费观看a级毛片全部| 日韩制服丝袜自拍偷拍| 两人在一起打扑克的视频| 丁香欧美五月| 国产激情久久老熟女| 国产又色又爽无遮挡免费看| 777米奇影视久久| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看 | 国产精品偷伦视频观看了| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费 | 免费不卡黄色视频| 极品少妇高潮喷水抽搐| 久久久久国内视频| 五月天丁香电影| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看| 久久久久精品人妻al黑| 91大片在线观看| www.999成人在线观看| 国精品久久久久久国模美| 欧美日韩中文字幕国产精品一区二区三区 | 交换朋友夫妻互换小说| 一级a爱视频在线免费观看| 母亲3免费完整高清在线观看| 国产精品1区2区在线观看. | 国产精品免费一区二区三区在线 | 日韩大码丰满熟妇| 亚洲成人免费电影在线观看| 69精品国产乱码久久久| 韩国精品一区二区三区| 老司机午夜十八禁免费视频| 国产一区有黄有色的免费视频| 人妻久久中文字幕网| 考比视频在线观看| 亚洲精品国产色婷婷电影| 一本一本久久a久久精品综合妖精| 一级毛片女人18水好多| 午夜福利免费观看在线| 我要看黄色一级片免费的|