• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resilience approach for heterogeneous distributed networked unmanned weapon systems

    2015-04-22 06:17:28JINYining晉一寧WUYanxuan吳炎烜FANNingjun范寧軍

    JIN Yi-ning(晉一寧), WU Yan-xuan(吳炎烜), FAN Ning-jun(范寧軍)

    (School of of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Resilience approach for heterogeneous distributed networked unmanned weapon systems

    JIN Yi-ning(晉一寧), WU Yan-xuan(吳炎烜), FAN Ning-jun(范寧軍)

    (School of of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units’ failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to achieve fault tolerance after weapon units’ failure due to attack or energy exhaustion. An improved genetic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.

    distributed heterogeneous network; unmanned weapon system; genetic algorithm; resilience

    With the development of communication, computer and network technologies, modern warfare gradually developed from a single-platform combat to a multi-platform network combat[1]. And a network-based combat is becoming an important tendency in the information warfare. Networked unmanned weapon system (NUWS) is a type of intelligent combat system illustrated in Fig.1. It uses the network connection to obtain multi-channel information and processing abilities (even the energy) from different weapon units to complete combat missions, such as battlefield reconnaissance, communication relay, targets attack, and damage assessment. NUWS usually executes missions by its large number of micro and small unmanned weapons units based on the network. After the failures of plenty of weapon units due to attack or energy exhaustion, the network is tore apart. In order to complete the combat tasks, how to restore the connectivity of the network in a certain degree becomes very important. And this is the resilienceproblem we focused on in this paper.

    Fig.1 Illustration of NUWS

    Currently, there is no public information about the NUWS resilience study, and the related studies are mainly concentrated in the wireless sensor networks (WSN) area. We classify the methods to achieve resilience in WSN into passive methods and active methods. The passive methods are redundancy methods[2-4]. And the active methods are relocating the existing nodes in the network[5-7]or adding extra relay nodes to form multi-hop network connectivity[8-11]. The redundancy methods realize fault-tolerance at the expense of high cost and energy consumption, while the weapon units in NUWS are much more expensive than the sensor nodes in WSN. Thus, it is impossible to deploy weapon units redundantly. Relocating methods are more suitable for small nodes failure scale as only local adjustment is needed. However, when large scale of weapon units are damaged in the battlefield, these methods require a global adjustment of the weapon units, which is inefficient and costly. Above all, the most efficient and low-cost resilience approach for NUWS is to add multiple extra weapon units to restore the network connectivity.

    The methods of adding relay nodes are mainly geometric methods, such as the MST-based (minimum spanning tree-based) algorithm[8-10]and CIDT (connectivity improvement using delaunay triangulation) algorithm[11]etc. They mainly focus on finding the least number of relay nodes needed to restore 100% connectivity in homogeneous WSN. However, in the application of NUWS, using a given limited number of relay weapon units to achieve a maximum level of connectivity is much more close to the real situation. Moreover, the geometric methods are not suitable for heterogeneous NUWS. The NUWS is a highly heterogeneous distributed system, which consists of different weapon units that use different communication devices and different communication radius. Therefore, the above methods are not suitable for solving the NUWS resilience problem. In this paper, genetic algorithm is going to be used to calculate and optimize the positions of the relay weapon units, with the purpose of restoring the connectivity of NUWS maximumly by a given limited number of relay weapon units and controlling the cost of implementation.

    1 Problem description and system modeling

    1.1 Problem description

    NUWS is a mobile autonomous combat network without infrastructure support, and the nodes in the network are micro and small unmanned weapon units, which can be employed in the water, on the land or in the sky. Compared with a centralized network, NUWS is a kind of distributed network, in which each weapon unit can only communicate directly with its adjacent units. This provides stronger survivability and invulnerability in harsh battlefield environments. However, due to the volume restriction, weapon units cannot provide enough energy for long-time work, and failures happen after running out of energy. Besides, weapon units may also fail as the results of enemy attack or harsh environments. In this case, the network connectivity has been greatly damaged, which may decrease the capability of NUWS, or even fail to complete the mission.

    Therefore the problem needs to be solved is described as follows. For a given area, after the failures of quite a few weapon units, the heterogeneous distributed NUWS becomes disconnected, the target is to calculate and optimize the positions for a given limited number of relay weapon units to restore the connectivity of NUWS maximally and take the implementation cost into consideration. The problem here is a non-deterministic polynomial complete (NPC) problem.

    1.2 System modeling

    In this paper, it is assumed that each weapon unit in NUWS is distributed randomly within a two-dimensional combat zone, and the damage probability of each unit obeys an exponential distribution and is independent from each other. NUWS is a highly heterogeneous network, and we are mainly focus on the communication heterogeneity in this paper. Each weapon unit has different communication radius. The remaining weapon units in NUWS after failure are called target units and are represented by the set UV={UV1,UV2,…,UVn}; the relay weapon units added into the damaged NUWS are represented by the set UR={UR1,UR2,…,URm}. Assuming that the communication radius of target units areRUVmin≤r(UVi)≤RUVmax, and all relay units have the same communication radiusr(URi)=RUR. Unidirectional communication link is proven to be costly[12], so bidirectional communication path is considered in this paper, along which communications existing in both directions. Thus, when and only when the Euclidean distance between two unitsi,j(i,j∈UV∪UR) is smaller than their communication radius, that isdij≤min (ri,rj), communication is established between them. NUWS is modeled as a undirected graphG=(UV∪UR,E), whereEis the set of all undirected communication links connecting two weapon units inG, the schematic diagram is shown in Fig.2. If and only ifdij≤min (ri,rj), the communication link is established andeij=eji=1.

    Fig.2 An example of the system model of NUWS

    2 Improved genetic algorithm

    As the problem here is a NPC problem, the computation increases exponentially with the growing number of weapon units in the NUWS, so it is difficult for numerical algorithms to find an optimal solution for this problem within a limited time. Therefore, the genetic algorithm (GA), a type of intelligent heuristic algorithm, is used here. The GA is based on the biological theory of natural selection and genetic mechanism. It has been proven to be a useful directed random search method for finding the global optima in complex problems with multi-dimensional, non-linear, discontinuous, and non-convex solution spaces. Furthermore, the search strategies and optimization calculations of GA do not depend on the gradient information. Besides, because of its inherent parallelism, GA can effectively handle large scale optimization problems.

    In the standard GA, the roulette selection strategy, fixed crossover probability and fixed mutation probability are often used. But the roulette selection strategy will easily cause premature convergences. The small mutation and crossover probabilities will cause a slow and premature convergence, while large probabilities will makethe algorithm fail to converge. Therefore, the GA is improved here to prevent premature convergences[13-14]by combining the elite individual reservation strategy and the roulette selection strategy, and using adaptive crossover and mutation probability. The improved GA is illustrated as follows.

    ① Encoding and initializing the population. Each chromosome in the population represents a potential location solution of m relay units. Every location is described by the values inxandycoordinates, which are encoded bylbits respectively. It is assumed that the combat zone is ad×dsquare area, the precision of encoding is

    (1)

    Thesizeofeverychromosomeism×2×lbits. Here,mis the number of relay units added into the NUWS. And the size of population is 60 here, which means it consists of 60 chromosomes. The initial set of population is generated randomly.

    ② Evaluation. The fitness function evaluates the performance of every chromosome. The aims of this algorithm are to realize resilience by recovering the NUWS’s connections and to control the implementation costs in a reasonable range. This is a multi-objective optimization problem, and the fitness function is designed to have two parts.

    The first part describes the performance of restoration, which is to connect the target units as much as possible by using a given limited number of the relay units. This can be described as

    (2)

    whereN′ is the number of target units in the largest connected component of network,Nis the number of target units in NUWS. The relay units are not included inN′ andN.

    The second part is the cost control problem, using the connection degree of relay units to evaluate. For instance, a relay unit is connected withKunits (including relay units and target units), so its connection degree isK. For the convenience of calculation, the connection degree calculation of each relay unit is transformed into the number calculation of edges. Thus, to minimize the cost is considered equal to minimize the increased number of edges. And

    ΔE=Eaf-Ebe

    (3)

    whereΔEisthenumberofincrementalcommunicationlinksafterdeployingtherelayunitsintheNUWS, EafandEberepresentthenumberofcommunicationlinksafterandbeforedeployingtherelayunitsrespectively,andEmaxisthenumberofallthepossiblelinksthatwillmakesthegraphastronglyconnectedgraph.

    So,thefitnessfunctionis

    (4)

    Hereωistheweight,andω=0.6.

    Throughthedesignedfitnessfunction,thecommunicationheterogeneousofNUWSissolved.

    ③Evolutionprocedure.Thepopulationevolvestowardbettersolutionsbyadoptinggeneticoperationsofselection,crossoverandmutationtogeneratethenewpopulation,andthenevaluateituntilmeetingthestoppingcriterion.

    Theeliteindividualreservationstrategyarecombinedwiththerouletteselectionstrategyhere.Thespecificprocedureisdescribedasfollows.Theparents,selectedbyarouletteselectionstrategyfromthelastgeneration,areintersectedandmutatedtogenerateoffspring.Andthenfindthebestandworstindividualwiththehighestandlowestscoreoffitnessevaluation.Ifthebestindividualintheoffspringisbetterthanthehistoricalbestindividual,thenewlybestoneisrecordedasthehistoricalbestone;otherwisethehistoricalbestoneiskept.Thereafter,thehistoricalbestindividualisusedtoreplacetheworstindividualintheoffspringtoformanewpopulation.Thus,thebestchromosomeispassedthroughthenewgeneration.

    TheadaptivecrossoverprobabilityPcandmutationprobabilityPmareappliedhere,whichare

    (5)

    (6)

    wherefis the larger fitness value of the two individuals going to be crossed,f′ is the fitness value of the individual going to be mutated,favgis the average fitness value of every generation, andfmaxis the fitness value of the largest one in this generation.

    In this way, the excellent genes have higher possibilities to be passed to the next generation. And the individuals with below-average fitness have larger crossover and mutation probabilities to increase the possibilities of elimination. Moreover, the outstanding individuals do not take dominate positions in the early stage of evolution, preventing from converging into local optima.

    ④ Stopping criterion. If the evolutionary generations reach to 500, the algorithm stops and outputs the individual with best fitness and its corresponding positions of the relay units as the optimal solution. Otherwise, the next step is to continue evolution.

    3 Simulation and results analysis

    Simulations are carried out with the proposed method and improved GA algorithm in MATLAB. The simulation parameters are explained in Tab.1. The restoration performance of the algorithm is evaluated by the connection rate using Eq. (2), and the cost of the implementation is evaluated by the connection degree of relay units.

    Tab.1 Parameters in simulation

    The NUWS works within a 200 m×200 m square. After failures of plenty weapon units, the NUWS becomes disconnected and divides into several partitions. There arenweapon units left. Considering of their communication heterogeneous, their communication radiuses are random distributed from 10 m to 70 m obeying a uniform distribution. Andmrelay units, whose communication radiuses arer(URi)=30 m, are added into the NUWS to maximally recover the connectivity. Thexandycoordinates of relay units are encoded with an 8 bit binary string respectively. So the accuracy of position encoding is 0.78 m according to Eq.(1), which is much less than the minimum communication radiusRUVmin=10 m in the NUWS, so this encoding length is appropriate. The size of population for the GA is 60, and the generation of evolutionary is 500 here.

    By changing the size of the network and the number of relay units, two sets of simulations in MATLAB are carried out to verify the resilience effectiveness of proposed improved GA. And the results are shown in Fig.3 and Fig.4, where the hollow circles represent the target units after damage and the asterisks indicate the added relay weapon units.

    The first group of simulation is 30 target units in the NUWS with different ratios of relay units, and the results are shown in Fig.3. There are 30 target units with different communication ranges randomly distributed in the square obeying uniform distribution and the connection rate is βb=0.500 0,whichisdescribedinFig.3a.Whenη=0.1 (m=3)relayunitsareaddedthatisshowninFig.3b,theNUWS’sconnectionratecanberecoveredtoβa=0.600 0.Whenη=0.2 (m=6)relayunitsareaddedthatisshowninFig.3c,theconnectionratecanberecoveredtoβa=0.866 7.AndinFig.3d,whenη=0.3(m=9)relayunitsareadded,theconnectionratecanberestoredtoβa=0.966 7.

    Fig.3 Connectivity before and after deployment of relay units with difference pairs of parameters(n=30)

    ItisrevealedfromFig.3,improvedGAcansignificantlyrepairthedamagedNUWS’sconnectivitybydeterminingandoptimizingthelocationsoflimitednumberofrelayunits.

    Thesecondgroupofsimulationis40targetunitsintheNUWSwithdifferentratiosofrelayunits,andtheresultsareshowninFig.4.

    Fig.4 Connectivity before and after deployment of relay units with difference pairs of parameters(n=40)

    ItisshownthatthecalculationtimeofGAgrowsfrom17.091sto28.583s.AlthoughthetimeriseswiththeincreasingnumberoftargetunitsandrelayunitsintheNUWS,itisstillacceptablewhenunder60s.

    Comparedthetwogroupsofsimulationabove,itisseenthatwhenn=30,themorerelayunitsareadded,themuchmorehighertheconnectionratesare.Butwhenn=40,theconnectionratesarenotsignificantlyraisedwhentheratioofrelayunitsisincreasedfromη=0.2toη=0.3.Toanalyzethisphenomenon,differentparametersofsimulationarecarriedoutfor100times,accordingtothestatisticaldata,theNUWS’saverageconnectionratesbeforeandafterdeploymentofrelayunitsareshowninFig.5.

    Fig.5 Average connectivity over 100 times with difference pairs of parameters

    ThehorizontalaxisinFig.5showstheaverageconnectionratebeforerestoration.Becauseoftherandomlydistributionofthetargetunits’positionsandtheircommunicationradius,theconnectionratesβbaredifferentevenwhenthenumberoftargetunitsintheNUWSisthesame.Whenn=30,theconnectionrateβbisdistributedintherange(0.2, 0.9),andwhenn=40, βbisdistributedintherange(0.2, 1.0).Theverticalaxisshowstheaverageconnectionrateβaafterrepairing,,andlineswithdifferentsymbolsindicatedifferentratiosofrelayunitsaddedintotheNUWS.ItisillustratedintheFig.5thattheapproachcansignificantlyreconnectthedamagedNUWSandincreasetheconnectionrate.Anditshowsthattheperformanceofconnectionrecoveryisrelatedwiththenumberofrelayunitsandthetargetunits,andtheconnectionrateβb.

    WhentheNUWS’sconnectionrateafterrestorationisβa≥0.900 0,theresilienceisconsideredtobeachievedandthefunctionoftheNUWSwillnotbeaffected.Thus,whentheratioofrelayunitsaddedintotheNUWSisη=0.3,theresilienceisobtained.

    Meanwhile,thestatisticsdatashowthattheconnectivitydegreeofrelayunitsafterdeploymentisnomorethan4,i.e. Kmax≤4.AndmostoftheconnectivitydegreesareK=2andK=3.Therefore,theimprovedGAproposedherenotonlyrepairedtheconnectionofNUWStosomeextent,butalsoithasprovidedacertainredundancyandenhancedresilience.Moreovertheconnectiondegreesarenotmorethan4,sotheimplementationcostislow.

    4 Conclusion

    TheresilienceproblemofdistributedheterogeneousNUWSisstudiedinthispaper.Apracticalapproach,addingrelayweaponunitsintotheNUWS,isproposedheretorestoretheconnectivitybetweentheremainingtargetunitsofNUWSafterthefailuresofplentyweaponunits.Thecommunicationrangedifferenceisconsideredasthemainheterogeneouscharacteristicsoftheweaponunitsinthispaper.TheGAisimprovedherebycombiningtheeliteindividualreservationstrategyandtherouletteselectionstrategy,andusingtheadaptivecrossoverandmutationprobabilitytopreventprematureconvergences.ThecodingandfitnessfunctionaredesignedforthismodifiedGA,whichisusedtodetermineandoptimizethepositionsofrelayunits.SimulationresultsinMatlabshowthattheproposedmethodhasagoodperformance,whichiscapableofmaximizingtheconnectivityoftheNUWSwithagivenlimitednumberofrelayunits.MeanwhiletheconnectiondegreeofrelayunitisK≤4fromthestatisticsdata,sotheimplementationcostislow.

    [1] Fu Xiaowei, Li Jinliang, Gao Xiaoguang. Modeling and analyzing of air-defense threat netting[J].Acta Armamentarii, 2013, 34(7): 904-909. (in Chinese)

    [2] Guo Wenzhong, Xiong Naixue, Athanasios V Vasilakos. Distributed k-connected fault-tolerant topology control algorithms with PSO in future autonomic sensor systems[J]. International Journal of Sensor Networks, 2012, 12(1): 53-62.

    [3] Taul Bari, Arunita Jaekel, Jin Jiang. Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements[J].Computer Communications, 2012, 35(3): 320-333.

    [4] Randles Martin, Lamb David, Odat E. Distributed redundancy and robustness in complex systems[J].Journal of Computer and System Sciences, 2011, 77(2): 293-304.

    [5] Ameer A Abbasi, Mohamed Younis, Kemal Akkaya. Movement-assisted connectivity restoration in wireless sensor and actor networks[J].IEEE Transactions on Parallel and Distributed Systems, 2009, 20(9): 1366-1379.

    [6] Kemal Akkaya, Fatih Senel, Aravind Thimmapuram. Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility[J].IEEE Transactions on Computers, 2010, 59(2): 258-271.

    [7] Cheng Xiuzhen, Du Dingzhu, Wang Lusheng. Relay sensor placement in wireless sensor networks[J].Wireless Networks, 2008, 14(3): 347-355.

    [8] Errol L Lloyd,Xue Guoliang. Relay node placement in wireless sensor networks[J].IEEE Transactions on Computers, 2007, 56(1): 134-138.

    [9] Lee Sookyoung, Mohamed Younis. Optimized relay node placement for connecting disjoint wireless sensor networks[J].Computer Networks, 2012, 56(12): 2788-2804.

    [10] Lee Sookyoung, Lee Meejeong. QRMSC: efficient QoS-aware relay node placement in wireless sensor networks using minimum Steiner tree on the convex hull[C]∥International Conference on Information Networking (ICOIN), 2013: 36-41.

    [11] Li Ning, Hou Jennifer C. Improving connectivity of wireless ad hoc networks[C]∥Mobile and Ubiquitous Systems: Networking and Services, 2005: 314-324.

    [12] Ravi Prakash. Unidirectional links prove costly in wireless ad hoc networks[C]∥DIALM’99 Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, 1999: 15-22.

    [13] Lei Yingjie, Zhang Shanwen, Li Xuwu. MATLAB genetic algorithm toolbox and its application[M].Xi’an: Xi’an University of Electronic Science and Technology Press, 2005: 11-31. (in Chinese)

    [14] Wang Xiaoping, Cao Liming. Genetic algorithms—theory, application and software implementation[M].Xi’an: Xi’an Jiaotong University Press, 2002: 73-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004- 0579.201524.0207

    E 837; TP 393 Document code: A Article ID: 1004- 0579(2015)02- 0180- 08

    Received 2013- 11- 05

    Supported by the Aviation Science Foundation of China(2013ZC72006)

    E-mail: alexwyx@bit.edu.cn

    嫁个100分男人电影在线观看| 午夜免费鲁丝| 在线观看免费视频日本深夜| 99re在线观看精品视频| 国产精品av久久久久免费| 国产av又大| 黄色丝袜av网址大全| 咕卡用的链子| 国产欧美日韩一区二区三区在线| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| av国产精品久久久久影院| 一边摸一边做爽爽视频免费| 黄片小视频在线播放| 久久久久久久久久久久大奶| 国产亚洲欧美精品永久| 成年版毛片免费区| 黄色女人牲交| 国产精品偷伦视频观看了| www.精华液| 日韩免费高清中文字幕av| 久久久久亚洲av毛片大全| 十八禁网站免费在线| 99国产精品一区二区蜜桃av| 免费av中文字幕在线| 亚洲午夜精品一区,二区,三区| 亚洲欧美日韩无卡精品| 满18在线观看网站| 精品欧美一区二区三区在线| 日韩精品中文字幕看吧| 国产一区在线观看成人免费| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边抽搐一进一出视频| 亚洲美女黄片视频| 欧美成人性av电影在线观看| 久久久国产一区二区| 欧美 亚洲 国产 日韩一| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看 | 国产精品香港三级国产av潘金莲| 国产1区2区3区精品| 久久人人爽av亚洲精品天堂| 在线播放国产精品三级| 精品第一国产精品| 黄片播放在线免费| 亚洲av片天天在线观看| 欧美精品啪啪一区二区三区| 欧美成人午夜精品| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品久久成人aⅴ小说| 91精品三级在线观看| 国内毛片毛片毛片毛片毛片| 视频在线观看一区二区三区| 国产成人一区二区三区免费视频网站| 成人18禁在线播放| 搡老熟女国产l中国老女人| 亚洲精品一卡2卡三卡4卡5卡| 午夜a级毛片| 69av精品久久久久久| 人妻久久中文字幕网| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 男人操女人黄网站| 精品国产国语对白av| 人人妻,人人澡人人爽秒播| 精品久久久久久久毛片微露脸| 很黄的视频免费| 91在线观看av| 在线观看一区二区三区| 亚洲人成电影观看| 中文字幕最新亚洲高清| 午夜精品国产一区二区电影| 极品教师在线免费播放| e午夜精品久久久久久久| 香蕉久久夜色| 一a级毛片在线观看| 交换朋友夫妻互换小说| 国产精品一区二区在线不卡| 精品国产亚洲在线| 亚洲人成77777在线视频| 操美女的视频在线观看| 又黄又爽又免费观看的视频| 午夜福利,免费看| 欧美乱妇无乱码| xxxhd国产人妻xxx| 欧美+亚洲+日韩+国产| 午夜日韩欧美国产| 精品人妻1区二区| 日本免费a在线| 狂野欧美激情性xxxx| 不卡av一区二区三区| 国产一区在线观看成人免费| 久久精品成人免费网站| 在线观看免费高清a一片| 国产av在哪里看| 亚洲九九香蕉| √禁漫天堂资源中文www| 少妇 在线观看| 日韩欧美三级三区| 在线观看日韩欧美| 国产免费男女视频| 啦啦啦免费观看视频1| 免费人成视频x8x8入口观看| 久久人人爽av亚洲精品天堂| 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清 | 老司机在亚洲福利影院| 国产91精品成人一区二区三区| 在线观看午夜福利视频| 国产精品一区二区免费欧美| 在线十欧美十亚洲十日本专区| 啦啦啦在线免费观看视频4| 日韩人妻精品一区2区三区| www.www免费av| 91麻豆av在线| 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 日本精品一区二区三区蜜桃| 国产精品av久久久久免费| 亚洲精品中文字幕一二三四区| 青草久久国产| 国产成人欧美在线观看| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 亚洲精品一区av在线观看| 长腿黑丝高跟| 日日干狠狠操夜夜爽| 视频区图区小说| 丰满迷人的少妇在线观看| www日本在线高清视频| 老熟妇仑乱视频hdxx| 1024香蕉在线观看| 51午夜福利影视在线观看| 国产国语露脸激情在线看| 人人妻人人添人人爽欧美一区卜| av免费在线观看网站| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| avwww免费| 十八禁人妻一区二区| 亚洲色图综合在线观看| 99re在线观看精品视频| 精品熟女少妇八av免费久了| 国产免费男女视频| 一二三四社区在线视频社区8| 国产成人av教育| 中文字幕精品免费在线观看视频| 国产精品一区二区三区四区久久 | 婷婷六月久久综合丁香| 一进一出抽搐动态| 精品少妇一区二区三区视频日本电影| 亚洲av日韩精品久久久久久密| 性欧美人与动物交配| 九色亚洲精品在线播放| 亚洲性夜色夜夜综合| 欧美成人免费av一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲熟妇熟女久久| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频| 免费观看精品视频网站| 亚洲国产看品久久| 成人手机av| 精品卡一卡二卡四卡免费| 99re在线观看精品视频| 女警被强在线播放| 老司机在亚洲福利影院| 嫩草影院精品99| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 久久人妻熟女aⅴ| 久久午夜综合久久蜜桃| 亚洲国产毛片av蜜桃av| 欧美色视频一区免费| 91在线观看av| 亚洲av成人av| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 一级片'在线观看视频| 妹子高潮喷水视频| 国产成人精品无人区| 91老司机精品| 亚洲片人在线观看| 极品人妻少妇av视频| 变态另类成人亚洲欧美熟女 | 欧美日韩福利视频一区二区| 欧美精品亚洲一区二区| 露出奶头的视频| √禁漫天堂资源中文www| 日本免费一区二区三区高清不卡 | 欧美一级毛片孕妇| 亚洲全国av大片| 69av精品久久久久久| 免费在线观看日本一区| av视频免费观看在线观看| 国产极品粉嫩免费观看在线| 侵犯人妻中文字幕一二三四区| 国产亚洲欧美在线一区二区| 国产片内射在线| 日韩精品青青久久久久久| 久久亚洲真实| 美国免费a级毛片| 精品国产美女av久久久久小说| 午夜老司机福利片| 亚洲成人免费电影在线观看| 久久人妻熟女aⅴ| 精品久久久久久久久久免费视频 | 别揉我奶头~嗯~啊~动态视频| 欧美人与性动交α欧美软件| 久久精品影院6| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 性色av乱码一区二区三区2| 亚洲情色 制服丝袜| 国产三级在线视频| 女警被强在线播放| 国产无遮挡羞羞视频在线观看| 国产伦人伦偷精品视频| 一区二区三区国产精品乱码| 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 久久精品91蜜桃| 亚洲一区高清亚洲精品| 激情视频va一区二区三区| 香蕉丝袜av| 午夜免费鲁丝| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 亚洲欧美激情在线| 久久久久久久精品吃奶| 欧美人与性动交α欧美软件| 精品久久久久久久毛片微露脸| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区| 国产成人av教育| 国产精品亚洲一级av第二区| 大型av网站在线播放| 窝窝影院91人妻| 日本 av在线| 精品一区二区三区四区五区乱码| 女人被躁到高潮嗷嗷叫费观| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 久久久水蜜桃国产精品网| 久久久国产一区二区| 成人国产一区最新在线观看| 午夜精品在线福利| 精品少妇一区二区三区视频日本电影| 久久久久久久精品吃奶| 亚洲国产欧美网| 亚洲精品一二三| 久久精品国产99精品国产亚洲性色 | 亚洲av片天天在线观看| 国产精品二区激情视频| 成人影院久久| 国产高清激情床上av| 日韩一卡2卡3卡4卡2021年| 日韩中文字幕欧美一区二区| 电影成人av| 精品久久久精品久久久| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| 黄色女人牲交| 精品久久蜜臀av无| 久久人人精品亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 成人特级黄色片久久久久久久| 日本免费a在线| 国产成人免费无遮挡视频| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 久9热在线精品视频| 欧美日韩av久久| 亚洲狠狠婷婷综合久久图片| 91精品国产国语对白视频| 亚洲视频免费观看视频| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av在线| 波多野结衣一区麻豆| 水蜜桃什么品种好| 亚洲国产精品一区二区三区在线| 超碰成人久久| 国产伦人伦偷精品视频| 91在线观看av| 日韩视频一区二区在线观看| 一区二区三区国产精品乱码| 女生性感内裤真人,穿戴方法视频| 制服人妻中文乱码| 国产蜜桃级精品一区二区三区| 首页视频小说图片口味搜索| 国产三级在线视频| 亚洲成a人片在线一区二区| 少妇粗大呻吟视频| 在线观看免费日韩欧美大片| 欧美成人午夜精品| 日韩高清综合在线| 女同久久另类99精品国产91| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 老鸭窝网址在线观看| 国产伦一二天堂av在线观看| 嫩草影院精品99| 啦啦啦在线免费观看视频4| 久久中文看片网| www.精华液| 亚洲国产毛片av蜜桃av| 久久精品国产99精品国产亚洲性色 | 亚洲欧美日韩另类电影网站| 老鸭窝网址在线观看| 热99国产精品久久久久久7| 亚洲av电影在线进入| 99精品在免费线老司机午夜| 国产黄a三级三级三级人| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 久久影院123| 日本 av在线| 亚洲欧美精品综合久久99| av中文乱码字幕在线| av福利片在线| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 老熟妇仑乱视频hdxx| 国产av又大| 日本黄色视频三级网站网址| 两性夫妻黄色片| 少妇 在线观看| 一个人观看的视频www高清免费观看 | 欧美最黄视频在线播放免费 | 免费久久久久久久精品成人欧美视频| avwww免费| 亚洲欧美精品综合久久99| 波多野结衣av一区二区av| aaaaa片日本免费| 18禁观看日本| 精品国产一区二区久久| av中文乱码字幕在线| 国产麻豆69| 国产精品综合久久久久久久免费 | 国产成人欧美在线观看| 亚洲第一av免费看| 老司机福利观看| 巨乳人妻的诱惑在线观看| 久久精品国产99精品国产亚洲性色 | 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 日韩免费av在线播放| 久久香蕉激情| 嫩草影视91久久| 国产成人av教育| 亚洲 国产 在线| 日本一区二区免费在线视频| 乱人伦中国视频| bbb黄色大片| 精品电影一区二区在线| 国产欧美日韩综合在线一区二区| 神马国产精品三级电影在线观看 | 国产不卡一卡二| 大码成人一级视频| av欧美777| 亚洲国产中文字幕在线视频| 精品国产美女av久久久久小说| 国产精品永久免费网站| 久久精品国产清高在天天线| 精品久久久久久久久久免费视频 | 免费av中文字幕在线| 日韩欧美一区视频在线观看| 正在播放国产对白刺激| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 淫秽高清视频在线观看| 午夜91福利影院| 大陆偷拍与自拍| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 精品久久久精品久久久| а√天堂www在线а√下载| 日韩国内少妇激情av| 欧美激情高清一区二区三区| 色老头精品视频在线观看| 精品福利永久在线观看| 国产视频一区二区在线看| 黄片大片在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品秋霞免费鲁丝片| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 亚洲片人在线观看| 最近最新中文字幕大全电影3 | 久久婷婷成人综合色麻豆| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 又大又爽又粗| 999久久久精品免费观看国产| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av | 波多野结衣av一区二区av| 91麻豆av在线| 国产欧美日韩一区二区三| av天堂久久9| 岛国视频午夜一区免费看| 国产成人av激情在线播放| 久久久水蜜桃国产精品网| 麻豆一二三区av精品| 亚洲人成77777在线视频| 午夜福利影视在线免费观看| 欧美成人性av电影在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲五月婷婷丁香| 欧美一区二区精品小视频在线| 69精品国产乱码久久久| 久久人人97超碰香蕉20202| 日本wwww免费看| 无遮挡黄片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 一a级毛片在线观看| 伦理电影免费视频| 久久久水蜜桃国产精品网| 丝袜美足系列| 性色av乱码一区二区三区2| 老熟妇乱子伦视频在线观看| 亚洲五月婷婷丁香| 天天躁夜夜躁狠狠躁躁| www国产在线视频色| 欧美黑人精品巨大| 两个人看的免费小视频| 久久精品影院6| 色播在线永久视频| 51午夜福利影视在线观看| 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕| 自线自在国产av| 桃色一区二区三区在线观看| 国产高清激情床上av| 欧美久久黑人一区二区| 国产精品九九99| 久久久久久久久久成人| 中国美女看黄片| 日本黄大片高清| 能在线免费观看的黄片| 97碰自拍视频| 亚洲av电影不卡..在线观看| 亚洲av免费在线观看| 午夜视频国产福利| 欧美成人性av电影在线观看| 国产精品久久久久久久电影| 美女 人体艺术 gogo| 亚洲精品日韩av片在线观看| 亚洲成人免费电影在线观看| 日韩亚洲欧美综合| 日本与韩国留学比较| 精品久久久久久成人av| 久久精品国产自在天天线| 97超级碰碰碰精品色视频在线观看| 我的老师免费观看完整版| 十八禁人妻一区二区| 三级男女做爰猛烈吃奶摸视频| 国产黄色小视频在线观看| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 久久久国产成人精品二区| 又粗又爽又猛毛片免费看| 免费观看的影片在线观看| 免费无遮挡裸体视频| 51午夜福利影视在线观看| 9191精品国产免费久久| 国产av不卡久久| 亚洲av不卡在线观看| 亚洲欧美日韩无卡精品| 免费观看的影片在线观看| 亚洲专区国产一区二区| 少妇裸体淫交视频免费看高清| 赤兔流量卡办理| 亚洲熟妇熟女久久| 亚洲人成网站高清观看| www.色视频.com| 91麻豆av在线| 亚洲自拍偷在线| 三级毛片av免费| 国产三级中文精品| 午夜精品久久久久久毛片777| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 91字幕亚洲| 成熟少妇高潮喷水视频| 亚洲熟妇中文字幕五十中出| 91九色精品人成在线观看| 性插视频无遮挡在线免费观看| av在线蜜桃| 99热这里只有是精品在线观看 | 久久久精品大字幕| 欧美日韩福利视频一区二区| 亚洲av成人不卡在线观看播放网| 国产成人啪精品午夜网站| 久久精品影院6| 欧美激情国产日韩精品一区| www.www免费av| 日韩精品青青久久久久久| 久久精品国产99精品国产亚洲性色| av中文乱码字幕在线| 国产亚洲精品久久久com| 欧美黄色淫秽网站| av在线观看视频网站免费| 精品人妻熟女av久视频| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 欧美精品啪啪一区二区三区| or卡值多少钱| 麻豆一二三区av精品| 欧美一区二区国产精品久久精品| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 99热这里只有是精品在线观看 | 亚洲av电影在线进入| 在线播放无遮挡| 欧美日韩乱码在线| 欧美不卡视频在线免费观看| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 18禁在线播放成人免费| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 99精品在免费线老司机午夜| 久久精品影院6| 韩国av一区二区三区四区| 免费观看人在逋| 色5月婷婷丁香| 欧美性感艳星| 欧美+日韩+精品| 亚洲国产精品成人综合色| 一区二区三区激情视频| 久久久国产成人免费| 人人妻人人澡欧美一区二区| 色视频www国产| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| 少妇被粗大猛烈的视频| 首页视频小说图片口味搜索| av国产免费在线观看| 中文字幕免费在线视频6| 亚洲精品成人久久久久久| 美女 人体艺术 gogo| eeuss影院久久| 99久国产av精品| 国内揄拍国产精品人妻在线| 国产久久久一区二区三区| 久久久久久久久大av| 午夜精品一区二区三区免费看| 欧美性感艳星| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添av毛片 | 毛片一级片免费看久久久久 | 久久久久久久久久成人| av视频在线观看入口| 成人特级黄色片久久久久久久| 三级毛片av免费| 国产不卡一卡二| 国产色婷婷99| 欧美一区二区亚洲| 在线观看66精品国产| 国产欧美日韩一区二区精品| 免费看a级黄色片| 蜜桃亚洲精品一区二区三区| 午夜a级毛片| 天堂影院成人在线观看| 免费高清视频大片| 欧美一区二区精品小视频在线| 男人和女人高潮做爰伦理| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 精华霜和精华液先用哪个| 国产又黄又爽又无遮挡在线| a级毛片a级免费在线| 免费无遮挡裸体视频| 成年人黄色毛片网站| 中文字幕av成人在线电影| 国产日本99.免费观看| 男人舔女人下体高潮全视频| 怎么达到女性高潮| 偷拍熟女少妇极品色| 国产老妇女一区| 精品人妻熟女av久视频| 人人妻人人澡欧美一区二区| 婷婷丁香在线五月| 欧美午夜高清在线| 国产精品野战在线观看| 亚洲av熟女| 亚洲中文字幕日韩| 十八禁人妻一区二区| 国产爱豆传媒在线观看| 国产v大片淫在线免费观看| 亚洲精品色激情综合| 熟妇人妻久久中文字幕3abv| 毛片一级片免费看久久久久 | 黄色日韩在线| 在现免费观看毛片| 精品人妻1区二区| 蜜桃久久精品国产亚洲av| 长腿黑丝高跟| 国产精品乱码一区二三区的特点| 禁无遮挡网站| 国产精品久久久久久亚洲av鲁大| 日本黄色片子视频| 久久婷婷人人爽人人干人人爱| 啦啦啦观看免费观看视频高清|