• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flow field simulation of supercritical carbon dioxide jet: Comparison and sensitivity analysis*

    2015-04-20 05:52:23WANGHaizhu王海柱LIGensheng李根生TIANShouceng田守嶒CHENGYuxiong程宇雄HEZhenguo賀振國(guó)YUShuijie于水杰
    關(guān)鍵詞:振國(guó)

    WANG Hai-zhu (王海柱), LI Gen-sheng (李根生), TIAN Shou-ceng (田守嶒),CHENG Yu-xiong (程宇雄), HE Zhen-guo (賀振國(guó)), YU Shui-jie (于水杰)

    1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing),Beijing 102200, China, E-mail: whz0001@126.com 2. Sinopec International Petroleum Exploration and Production Corporation, Beijing 100029, China

    Introduction

    During previous decades, the high-pressure water jet technology plays an important role in the oil and gas well drilling and the fracturing stimulations[1,2].Meanwhile, with the rapid development of the oil and gas exploitation, in the petroleum industry, the unconventional oil and gas exploration starts to attract attentions[3]. However, the operating risks and costs of the unconventional oil and gas exploration are high, while not much improvement of the water jet technology can be made. In this context, the supercritical carbon dioxide (SC-CO2) jet technology was proposed[4]. The unique properties of the SC-CO2fluid, such as the adjustable density, the low viscosity and the high diffusivity, bring about many advantages for the SC-CO2jet to be applied in the oil and gas exploration[5].

    Firstly, the threshold pressure of the SC-CO2jet is far smaller than that of the water jet. The experiment results indicate that the threshold pressure of the CO2jet is 2/3 of that of the water jet for the granite and less than half of that of the water jet for the shale[6-8]. Secondly, because there is no solid particle or water in the SC-CO2fluid, the SC-CO2flooding in oil and gas reservoirs makes no damage to the reservoirs, while increasing the porosity and the permeability of the pay zone, enlarging the fluidity of the crude oil, and enhancing the reservoir energy[9]. Furthermore,since the adsorption capacity of CO2with respect to the reservoir rocks is stronger than that of CH4, CO2would replace the adsorbed shale-gas and the coal bed methane, enhancing the single well production and the oil and gas recovery[10].

    Experimental results show that the rock-breakingcapacity of the SC-CO2jet is much better than that of the water jet[6]. However its mechanism remains not very clear. Meanwhile, the influences of various parameters on the flow field of the SC-CO2jet also remain to be explored. In this paper, the flow fields of the SCCO2jet are simulated using the computational fluid dynamics (CFD) method. The pressure and velocity fields of the SC-CO2jet are compared with those of the water jet. The influences of several parameters on the flow field of the SC-CO2jet are studied as well.These results provide a theoretical basis for the application of the SC-CO2jet in the oil and gas well drilling and the fracturing stimulation.

    Fig.1 Geometric model of the flow field

    1. CFD model

    1.1 Flow field

    As shown in Fig.1, a two-dimensional geometric model of the SC-CO2jet flow field is built for the simulation, where the cylindrical polar coordinate system is used. The model consists of two parts: the internal space of the nozzle (including the conical section and the cylinder section), and the jet region. This model is symmetrical vertically with respect to the nozzle axis (bd). According to the literature about the conical nozzle for the water jet[11,12], the structure parameters of the conical nozzle for the SC-CO2jet are chosen. The length parameters are as follows: the diameter of the nozzle inlet (a1) is 0.016 m, the diameter of the nozzle outlet (hj) is 0.006 m, the length of the conical section (bc) is 0.020 m, the length of the cylinder (ci) is 0.012 m, the standoff distance (id) is 0.028 m, and the height of the flow field (me) is 0.100 m.

    In the SC-CO2jet, SC-CO2flows through the nozzle inlet (a1), enters the jet region, impacts on the wall (me), and then flows out of the flow field through the outlet (fg) and (kn). The nozzle inlet (a1) is defined as the pressure inlet boundary, while the flow field outlets (fg) and (kn) are defined as the pressure outlet boundary, with the pressure called the confining pressure. Other boundaries (fe, em, nm) are defined as no-slip wall boundaries.

    1.2 Model details

    The SC-CO2jet fracturing involves the heat transfer and the compressible fluid, therefore, the energy equations, as well as the mass equations and the momentum equations, should be considered. As the SCCO2jet is a turbulent flow of the high-speed CO2fluid,the gravity is ignored, and the standardk-εmodel is adopted for the turbulence closure. The governing equations are as follows[13]:

    The mass equations are

    whereρis the density,vis the velocity vector.

    In the cylindrical polar coordinate system, the momentum equations take the form

    wherexis the axial coordinate,ris the radial coordinate,vxis the axial velocity,vris the radial velocity,vzis the swirl velocity,μis the dynamic viscosity,pis the pressure,FxandFrare the components of the body force.

    The energy equations are

    whereCpis the isobaric specific heat,Tis the temperature,kis the heat transfer coefficient,STis the viscous dissipation term.

    2. The comparison of flow fields between sc-co2 jet and water jet

    2.1 Conversion between velocity and pressure

    The velocities and the pressures along the axis are compared between the SC-CO2jet and the water jet. As shown in Fig.2, wherevmeans the fluid velocity,Dmeans the distance to the nozzle outlet along theZaxis, when SC-CO2and water flow through the conical section of the nozzle, the fluid velocity increases gradually while the pressure decreases,indicating that the pressure energy is converted into the kinetic energy. After SC-CO2and water enter the cylinder section of the nozzle, the pressure and the velocity remain constant, indicating that no conversion happens between the pressure energy and the kinetic energy. When SC-CO2enters the jet region and impacts on the wall, the velocity decreases sharply while the pressure increases, indicating that the kinetic energy is converted into the pressure energy. Finally, the velocity becomes zero and the pressure increases to a value, slightly lower than the nozzle inlet pressure.The results indicate that like the water jet, the velocity and the pressure of the SC-CO2jet could be converted to each other.

    Fig.2 Velocity and pressure curves of the two jets

    According to the fluid mechanics theory, the impact pressure on the wall of the high-speed fluid is

    2.2 Comparison of pressure field

    As shown in Fig.3, for three different nozzle pressure drops (10 MPa, 20 MPa, 30 MPa), the axial pressures of the two jets are substantially consistent. The main difference is that the axial pressures of the SCCO2jet are slightly higher than those of the water jet at the right end, indicating that the SC-CO2jet has a stronger impact pressure than the water jet. This can partly explain why the SC-CO2jet has a smaller threshold pressure and a stronger rock-breaking capacity than the water jet. This has also to do with the fact that the penetration capability of the SC-CO2fluid is stronger because of its lower viscosity and surface tension,so the impact pressure of the SC-CO2jet can be transmitted to the micro pores and fractures easily[4]. In a word, the stronger impact pressure of the SC-CO2jet is advantageous for the rock breaking and can increase the rate of penetration of the SC-CO2jet drilling.

    Fig.3 Axial pressure comparison of the two jets

    Fig.4 Comparison of pressure loss ratio

    The relation between the pressure loss ratio and the nozzle pressure drop is shown in Fig.4. The pressure loss ratioRPLis defined as

    wherePinis the nozzle inlet pressure. As shown in Fig.4, wherenPmeans the nozzle pressure drop, the pressure loss ratio of the SC-CO2jet is smaller than that of the water jet for the three different nozzle pressure drops. It is indicated that the SC-CO2jet has a smaller pressure energy loss than the water jet underthe same conditions. It is mainly because the viscosity of the SC-CO2is much smaller than that of the water

    Fig.5 Velocity contours of SC-CO2 jet and water jet (m/s)

    Fig.6 Axial velocity comparison of the two jets

    2.3 Comparison of velocity field

    As shown in Fig.5, the maximum velocity of the SC-CO2jet reaches up to 228 m/s, apparently higher than that of the water jet (163 m/s). This is because the SC-CO2jet has a higher impact pressure than the water jet under the same nozzle inlet pressure and confining pressure, as discussed previously, and the density of the SC-CO2(657 kg/m3-664 kg/m3) in the high-speed jet region is apparently smaller than that of the water (1 000 kg/m3). So according to Eq.(5), with the neglect of the influence ofPf, the maximum velocity of the SC-CO2jet is larger than that of the water jet. The results indicate that the SC-CO2jet has a higher velocity than the water jet under the same conditions, which would increase the perforation speed of the SC-CO2jet against abrasives.

    The axial velocities of the two jets under the same conditions are compared as well. As shown in Fig.6, the SC-CO2jet has apparently a higher maximum velocity than the water jet for the two different nozzle pressure drops (10 MPa, 30 MPa).

    3. Parameteric sensitivity analyses

    3.1 Nozzle pressure drop

    The nozzle pressure drop is a key parameter determining the kinetic energy of the jet and the kinetic energy of the jet directly affects the flow field[14]. So the axial pressure and the velocity of the SC-CO2jet with different nozzle pressure drops are studied. As shown in Fig.7, the maximum velocity of the SC-CO2jet increases with the increase of the nozzle pressure drop.

    Fig.7 Influences of nozzle pressure drop on the axial velocity of SC-CO2 jet

    Fig.8 Influences of nozzle pressure drop on the axial pressure of SC-CO2 jet

    As shown in Fig.8, the axial pressures in the nozzle cylinder section for five different nozzle pressure drops are coincided with each other, which are mainly dominated by the confining pressure (30 MPa in thesecases). When the SC-CO2fluid reaches the nozzle cylinder section, the pressure energy is converted into the kinetic energy and the axial pressures for different nozzle pressure drops are all reduced to the confining pressure. At the right end of the flow field, the impact pressure increases with the increase of the nozzle pressure drop, because the larger the nozzle pressure drop,the larger the kinetic energy and the impact pressure will be.

    3.2 Confining pressure

    As shown in Fig.9, whereiPmeans the impact pressure andcPmeans the confining pressure, the impact pressure increases gradually with the increase of the confining pressure, but the increment is small. The increase rate decreases with the increase of the confining pressure.

    Fig.9 Influence of confining pressure on impact pressure of SCCO2 jet

    Fig.10 Influences of confining pressure on axial velocity of SCCO2 jet

    The influences of the confining pressure on the axial velocity of the SC-CO2jet are shown in Fig.10.It is indicated that, for the same nozzle pressure drops and the fluid temperatures, the velocity in the highspeed jet region increases with the increase of the confining pressure.

    3.3 SC-CO2 temperature

    The properties of the SC-CO2fluid are sensitive to the temperature and the change of the properties can influence the structural form of the SC-CO2jet[15-18]. So the influences of the SC-CO2temperature on the axial pressure and the velocity of the SC-CO2jet are studied.

    As shown in Fig.11, the axial pressure of the SCCO2jet is substantially the same when the temperature increases from 360 K to 420 K, which indicates that under the stimulation conditions of this study the pressure distributions of the SC-CO2jet are hardly affected by the temperature change. However, as shown in the enlarged drawings of the impact pressure, the impact pressure decreases slightly with the increase of the temperature. In general, the influence of the SCCO2temperature on the impact pressure could be neglected in engineering applications.

    Fig.11 Influence of temperature on axial pressure of SC-CO2 jet

    Fig.12 Influences of SC-CO2 temperature on axial velocity of SC-CO2 jet

    As shown in Fig.12, the maximum velocity increases with the increase of the SC-CO2temperature.It is mainly due to the decrease of the fluid density along with the increase of the SC-CO2temperature,without considering the influence of the temperature on the impact pressure. So according to Eq.(5), ignoring the influence ofPf, the maximum velocity increases with the increase of the fluid temperature.

    4. Conclusions

    (1) Like the water jet, the velocity and the pre-ssure of the SC-CO2jet could be converted to each other, and the SC-CO2jet can generate a significant impact pressure on the wall.

    (2) The SC-CO2jet can generate a stronger impact pressure on the wall than the water jet under the same conditions, which is advantageous for the rock breaking and can increase the rate of penetration of the SC-CO2jet drilling.

    (3) The SC-CO2jet has a higher velocity than the water jet under the same conditions, which would increase the perforation speed of the SC-CO2jet against abrasives.

    (4) The maximum velocity and the impact pressure of the SC-CO2jet increase with the increase of the nozzle pressure drop.

    (5) In the stimulation condition of this study, the influence of the SC-CO2temperature on the impact pressure is small and can be neglected in engineering applications, while the maximum velocity of the SCCO2jet increases with the increase of the fluid temperature.

    Acknowledgement

    This work was supported by the Science Foundation of China University of Petroleum (Beijing) (Grant No. 2462013YJRC017).

    [1] NI Hong-jian, DU Yu-kun and MA Lin et al. Study on structure optimization of self-excited pulsed jet with suck-in annulus fluids[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 487-493(in Chinese).

    [2] ABDULLAH A. F. Mechanistic modeling of an underbalanced drilling operation utilizing supercritical carbon dioxide[D]. Doctoral Thesis, Baton Rouge, USA:Louisiana State University, 2007.

    [3] WANG H., SHEN Z. and LI G. The development and prospect of supercritical carbon dioxide drilling[J]. Petroleum Science and Technology, 2012, 30(16): 1670-1676.

    [4] WANG H., LI G. and SHEN Z. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide[J]. Energy Source Part A, 2012, 34(15): 1426-1435.

    [5] BI G., LI G. and SHEN Z. et al. Experimental research on the technology of hydra-jet sidetracking of radial micro-borehole[J]. Journal of Engineering Science and Technology Review, 2013, 6(5): 137-142.

    [6] KOLLE J. J. Coiled-tubing drilling with supercritical carbon dioxide[C]. SPE65534. Calgary, Alberta,Canada, 2000.

    [7] GUPTA A. P., GUPTA A. and LANGLINAIS J. Feasibility of supercritical carbon dioxide as a drilling fluid for deep underbalanced drilling operation[C].SPE96992. Dallas, Texas, USA, 2005.

    [8] WANG Rui-he, HUO Hong-jun and SONG Hui-fang et al. An experimental study of bottom hole temperature and pressure distribution of SC-CO2jet[C]. Asia-Pacific Power and Energy Engineering Conference.Shanghai, China, 2012.

    [9] WANG Zai-ming. Feature research of supercritical carbon dioxide drilling fluid[D]. Doctoral Thesis,Qingdao, China: China University of Petroleum (East China), 2008(in Chinese).

    [10] SHEN Z., WANG H. and LI G. Feasibility analysis of coiled tubing drilling with super critical carbon dioxide[J]. Petroleum Exploration and Development, 2010,37(6): 743-747.

    [11] QU H., LI G. and HUANG Z. et al. The boosting mechanism and effects in cavity during hydrajet fracturing process[J]. Petroleum Science and Technology. 2010,28(13): 1345-1350.

    [12] HUANG Zhong-hua, XIE Ya. Research on structure parameters of conical nozzle[J]. Journal of Machine Design, 2011, 28(12): 62-65(in Chinese).

    [13] SPAN R., WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triplepoint temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1999, 25(6): 1509-1596.

    [14] NIU Ji-lei, LI Gens-heng and SONG Jian et al. An experimental study on abrasive water jet perforation parameters[J]. Petroleum Drilling Techniques, 2003, 31(2):14-16(in Chinese).

    [15] HAN Bu-xing. Supercritical fluid science and technology[M]. Beijing, China: China Petrochemical Press,2005(in Chinese).

    [16] CHENG Y., LI G. and WANG H. et al. Pressure boosting effect in perforation cavity during supercritical carbon dioxide jet fracturing[J]. Atomization and Spray, 2013, 23(5): 463-474.

    [17] DU Yu-kun, WANG Rui-he and NI Hong-jian et al.Rock-breaking experiment with supercritical carbon dioxide jet[J]. Journal of China University of Petroleum (East China), 2012, 36(4): 93-96(in Chinese).

    [18] GUPTA A. Feasibility of supercritical carbon dioxide as a drilling fluid for deep underbalanced drilling operations[D]. Master Thesis, Baton Rouge, USA: Louisiana State University, 2006.

    猜你喜歡
    振國(guó)
    Magnetic ground state of plutonium dioxide: DFT+U calculations
    Magnetic phase diagram of single-layer CrBr3?
    NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant
    愛(ài)在拉薩
    我和繼父13年
    我和繼父13年
    文苑·感悟(2019年12期)2019-12-23 07:24:46
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父13年
    我和繼父的13年
    中外文摘(2019年16期)2019-08-29 06:01:30
    国产成人91sexporn| 久久精品人人爽人人爽视色| 精品国产露脸久久av麻豆| 插逼视频在线观看| 国产伦理片在线播放av一区| 中国三级夫妇交换| 精品一区二区免费观看| 久久精品熟女亚洲av麻豆精品| 日本爱情动作片www.在线观看| 水蜜桃什么品种好| 亚洲欧美日韩卡通动漫| 国产欧美日韩综合在线一区二区| 色5月婷婷丁香| 自线自在国产av| 狂野欧美激情性bbbbbb| 色婷婷久久久亚洲欧美| 99九九在线精品视频| 在线观看美女被高潮喷水网站| 国产男女内射视频| 在线观看三级黄色| 极品人妻少妇av视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久综合国产亚洲精品| 欧美精品亚洲一区二区| 内地一区二区视频在线| 十八禁网站网址无遮挡| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 搡女人真爽免费视频火全软件| 精品久久国产蜜桃| 亚洲综合精品二区| 国产精品蜜桃在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品国产鲁丝片午夜精品| 考比视频在线观看| .国产精品久久| 亚洲激情五月婷婷啪啪| 2018国产大陆天天弄谢| 亚洲婷婷狠狠爱综合网| 国产亚洲一区二区精品| 少妇被粗大的猛进出69影院 | 丝瓜视频免费看黄片| 男女无遮挡免费网站观看| 欧美激情极品国产一区二区三区 | 男女免费视频国产| 日产精品乱码卡一卡2卡三| 久久久久久伊人网av| 在线观看国产h片| 一本大道久久a久久精品| 超碰97精品在线观看| 日韩精品免费视频一区二区三区 | 搡女人真爽免费视频火全软件| 久热这里只有精品99| 国产男女内射视频| 久久ye,这里只有精品| 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站| 国产又色又爽无遮挡免| 亚洲av国产av综合av卡| 亚洲内射少妇av| 亚洲婷婷狠狠爱综合网| 午夜精品国产一区二区电影| 亚洲在久久综合| 欧美精品人与动牲交sv欧美| 五月玫瑰六月丁香| 免费日韩欧美在线观看| 日本欧美视频一区| 国产成人精品福利久久| 五月伊人婷婷丁香| 国产成人av激情在线播放 | 亚洲激情五月婷婷啪啪| 国产亚洲午夜精品一区二区久久| 99久国产av精品国产电影| 国产精品久久久久久精品古装| 日韩电影二区| 大话2 男鬼变身卡| 国产国拍精品亚洲av在线观看| 日本爱情动作片www.在线观看| 国产精品一区www在线观看| 久久久久久人妻| 亚洲精品一二三| 免费观看av网站的网址| 亚洲精品乱久久久久久| 插阴视频在线观看视频| 日本91视频免费播放| 国产成人精品福利久久| 亚洲怡红院男人天堂| 亚洲精品久久午夜乱码| 晚上一个人看的免费电影| 国产精品人妻久久久久久| 久久99一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲,欧美,日韩| 久久99一区二区三区| 成人国语在线视频| 日本欧美国产在线视频| 精品久久久噜噜| 一级毛片黄色毛片免费观看视频| 免费不卡的大黄色大毛片视频在线观看| 黄色怎么调成土黄色| 亚洲精品第二区| 亚洲人成网站在线观看播放| 久久久午夜欧美精品| 有码 亚洲区| 国内精品宾馆在线| 亚洲丝袜综合中文字幕| 只有这里有精品99| 久久人人爽av亚洲精品天堂| 少妇人妻精品综合一区二区| 另类亚洲欧美激情| 91久久精品电影网| 久久久精品94久久精品| 三级国产精品片| 日韩电影二区| 久久免费观看电影| 成人漫画全彩无遮挡| 国产成人aa在线观看| 日韩精品免费视频一区二区三区 | 18在线观看网站| 丰满乱子伦码专区| 欧美丝袜亚洲另类| 日韩成人伦理影院| 69精品国产乱码久久久| 亚洲婷婷狠狠爱综合网| 日本91视频免费播放| 狠狠婷婷综合久久久久久88av| 亚洲av男天堂| 日韩亚洲欧美综合| 少妇被粗大的猛进出69影院 | 日本色播在线视频| 精品卡一卡二卡四卡免费| 中文字幕制服av| 成年人免费黄色播放视频| 亚洲天堂av无毛| 国产精品女同一区二区软件| 欧美丝袜亚洲另类| 国产男女超爽视频在线观看| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 午夜视频国产福利| 欧美日韩成人在线一区二区| 国产黄片视频在线免费观看| 内地一区二区视频在线| 天堂中文最新版在线下载| xxx大片免费视频| 免费日韩欧美在线观看| 午夜福利,免费看| 大香蕉久久成人网| 午夜福利视频精品| 国产成人精品一,二区| 精品熟女少妇av免费看| 日韩强制内射视频| 天堂俺去俺来也www色官网| a级片在线免费高清观看视频| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| 99精国产麻豆久久婷婷| 日本色播在线视频| 91精品国产国语对白视频| 99久久精品国产国产毛片| 中文字幕人妻熟人妻熟丝袜美| 成年女人在线观看亚洲视频| 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 波野结衣二区三区在线| 国产亚洲欧美精品永久| 婷婷色av中文字幕| 亚洲成人av在线免费| 99久久中文字幕三级久久日本| 99久国产av精品国产电影| 精品视频人人做人人爽| 黄片无遮挡物在线观看| av国产久精品久网站免费入址| 新久久久久国产一级毛片| 国产成人精品久久久久久| 精品午夜福利在线看| a级毛片黄视频| 亚洲精华国产精华液的使用体验| 五月伊人婷婷丁香| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| av线在线观看网站| 国产男人的电影天堂91| 午夜av观看不卡| 欧美 日韩 精品 国产| 黄色怎么调成土黄色| 久久99精品国语久久久| 麻豆成人av视频| 欧美成人午夜免费资源| 免费黄色在线免费观看| 国精品久久久久久国模美| 十分钟在线观看高清视频www| 伊人亚洲综合成人网| 久久精品国产亚洲av涩爱| 嘟嘟电影网在线观看| 亚洲av不卡在线观看| videosex国产| 国产欧美另类精品又又久久亚洲欧美| 三级国产精品片| 国产精品.久久久| 美女国产视频在线观看| 国产黄色视频一区二区在线观看| 99国产精品免费福利视频| 91aial.com中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| av在线app专区| 国产精品久久久久久久电影| 黑人猛操日本美女一级片| 少妇人妻精品综合一区二区| 国产欧美亚洲国产| 免费不卡的大黄色大毛片视频在线观看| 日本欧美国产在线视频| 免费看不卡的av| 视频区图区小说| 99久久精品国产国产毛片| 色吧在线观看| 麻豆乱淫一区二区| 成人亚洲欧美一区二区av| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 十八禁网站网址无遮挡| 午夜激情久久久久久久| 中文字幕制服av| 精品国产一区二区三区久久久樱花| av又黄又爽大尺度在线免费看| 最近2019中文字幕mv第一页| 日韩熟女老妇一区二区性免费视频| 七月丁香在线播放| 麻豆精品久久久久久蜜桃| 五月开心婷婷网| 精品午夜福利在线看| 国产精品一二三区在线看| 女人久久www免费人成看片| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 岛国毛片在线播放| 国国产精品蜜臀av免费| 成年av动漫网址| 亚洲欧美一区二区三区黑人 | 久久久久久久久久成人| 爱豆传媒免费全集在线观看| 热re99久久精品国产66热6| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 一本久久精品| 伊人久久精品亚洲午夜| 精品久久久久久久久av| 特大巨黑吊av在线直播| 永久免费av网站大全| 人人妻人人添人人爽欧美一区卜| 日韩视频在线欧美| 一区在线观看完整版| 人妻人人澡人人爽人人| 人人妻人人爽人人添夜夜欢视频| 一边亲一边摸免费视频| 18禁观看日本| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 亚洲丝袜综合中文字幕| 久久久久久久久大av| 久久人人爽人人片av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产高清三级在线| 制服诱惑二区| 水蜜桃什么品种好| 免费高清在线观看日韩| 亚洲精品国产色婷婷电影| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 成人黄色视频免费在线看| 王馨瑶露胸无遮挡在线观看| 日韩视频在线欧美| 亚洲精品乱码久久久久久按摩| 久久韩国三级中文字幕| 亚洲无线观看免费| av又黄又爽大尺度在线免费看| 国产精品国产三级国产专区5o| 色网站视频免费| 欧美日韩视频高清一区二区三区二| 在线观看一区二区三区激情| 一区二区av电影网| 妹子高潮喷水视频| 亚洲精品视频女| av电影中文网址| 蜜桃在线观看..| 亚洲av男天堂| 999精品在线视频| 插逼视频在线观看| 一二三四中文在线观看免费高清| 欧美老熟妇乱子伦牲交| 亚洲内射少妇av| 国产在线一区二区三区精| 免费人妻精品一区二区三区视频| 丝袜脚勾引网站| 国产精品99久久久久久久久| 精品久久国产蜜桃| videos熟女内射| 亚洲美女黄色视频免费看| 亚洲高清免费不卡视频| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 亚洲国产最新在线播放| 亚洲成色77777| 激情五月婷婷亚洲| 日韩电影二区| 久久人人爽人人爽人人片va| 欧美精品高潮呻吟av久久| 日本色播在线视频| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| 国精品久久久久久国模美| 亚洲欧美成人精品一区二区| 精品久久国产蜜桃| 成人午夜精彩视频在线观看| 国产精品国产三级国产av玫瑰| 如何舔出高潮| 国产黄频视频在线观看| av电影中文网址| 亚洲精品国产av蜜桃| 中文字幕久久专区| 国产精品久久久久久精品古装| 日韩成人伦理影院| 久久精品国产自在天天线| 人妻人人澡人人爽人人| 午夜免费观看性视频| av在线观看视频网站免费| 欧美日韩视频高清一区二区三区二| 国产爽快片一区二区三区| 色网站视频免费| 国国产精品蜜臀av免费| 国产欧美日韩一区二区三区在线 | 女人精品久久久久毛片| 99热国产这里只有精品6| 国产精品久久久久久av不卡| 久久毛片免费看一区二区三区| 成人毛片a级毛片在线播放| 男女国产视频网站| 国产精品蜜桃在线观看| 夫妻性生交免费视频一级片| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的| 成人午夜精彩视频在线观看| 免费观看a级毛片全部| 一本久久精品| 精品人妻在线不人妻| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 自线自在国产av| 满18在线观看网站| 欧美另类一区| 午夜激情福利司机影院| 国产在线视频一区二区| 七月丁香在线播放| 久久精品国产亚洲网站| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 啦啦啦啦在线视频资源| 色网站视频免费| 亚洲av电影在线观看一区二区三区| 九九爱精品视频在线观看| 91久久精品电影网| 国产黄片视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 免费观看的影片在线观看| 两个人免费观看高清视频| 欧美精品一区二区免费开放| 韩国高清视频一区二区三区| 日本av免费视频播放| 三级国产精品片| 中文天堂在线官网| 丝袜脚勾引网站| 天天操日日干夜夜撸| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 亚洲成人手机| 国产成人精品在线电影| 卡戴珊不雅视频在线播放| 国产精品不卡视频一区二区| 黄片播放在线免费| 久久久久久久久久成人| 国产成人免费无遮挡视频| 免费大片黄手机在线观看| 青青草视频在线视频观看| 高清视频免费观看一区二区| 天堂8中文在线网| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 大香蕉久久网| 精品国产国语对白av| 女性生殖器流出的白浆| 成人无遮挡网站| 亚洲av二区三区四区| 91精品国产国语对白视频| 日本黄色日本黄色录像| 中文字幕av电影在线播放| 国产成人freesex在线| 天堂8中文在线网| 精品少妇黑人巨大在线播放| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区成人| 看免费成人av毛片| xxxhd国产人妻xxx| 日韩熟女老妇一区二区性免费视频| 在线观看免费高清a一片| 亚洲中文av在线| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 大片免费播放器 马上看| 黑丝袜美女国产一区| 亚洲精品国产av成人精品| 高清黄色对白视频在线免费看| 国产片特级美女逼逼视频| 永久免费av网站大全| 久久久久国产精品人妻一区二区| 欧美日韩在线观看h| 久热久热在线精品观看| 国产伦精品一区二区三区视频9| 91成人精品电影| 18禁裸乳无遮挡动漫免费视频| 亚洲av成人精品一区久久| 又粗又硬又长又爽又黄的视频| 久久婷婷青草| 国产日韩一区二区三区精品不卡 | 日韩av在线免费看完整版不卡| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| 国产一区二区三区av在线| 国产一级毛片在线| 日韩制服骚丝袜av| 免费少妇av软件| 有码 亚洲区| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产日韩一区二区| 亚洲国产精品一区三区| 91精品一卡2卡3卡4卡| 9色porny在线观看| 看免费成人av毛片| 丰满少妇做爰视频| 人成视频在线观看免费观看| 韩国av在线不卡| 日本与韩国留学比较| 蜜桃国产av成人99| 亚洲国产av影院在线观看| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 大香蕉久久网| 国产精品久久久久成人av| 在线看a的网站| 久久久久国产精品人妻一区二区| 男人操女人黄网站| 欧美 日韩 精品 国产| 极品人妻少妇av视频| 国产成人精品一,二区| 欧美另类一区| 国产在线视频一区二区| 国语对白做爰xxxⅹ性视频网站| 国产成人精品无人区| 亚洲精品成人av观看孕妇| freevideosex欧美| 香蕉精品网在线| 亚洲美女视频黄频| 亚洲欧美色中文字幕在线| 黑人猛操日本美女一级片| 伦精品一区二区三区| 亚洲精品av麻豆狂野| .国产精品久久| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版| 51国产日韩欧美| 我的老师免费观看完整版| 狂野欧美激情性bbbbbb| 国产 一区精品| 乱人伦中国视频| 日本wwww免费看| 91成人精品电影| 日韩av免费高清视频| 亚洲精品一二三| av一本久久久久| 在线观看一区二区三区激情| 亚洲一区二区三区欧美精品| 日韩av不卡免费在线播放| 精品少妇内射三级| 久久毛片免费看一区二区三区| 七月丁香在线播放| 亚洲av不卡在线观看| 街头女战士在线观看网站| 国内精品宾馆在线| 欧美激情国产日韩精品一区| 国产精品欧美亚洲77777| av在线app专区| 又大又黄又爽视频免费| 精品人妻熟女av久视频| 精品熟女少妇av免费看| 色视频在线一区二区三区| 一区二区日韩欧美中文字幕 | www.av在线官网国产| 国产日韩一区二区三区精品不卡 | av网站免费在线观看视频| 精品久久久精品久久久| 久久久国产精品麻豆| 青青草视频在线视频观看| 另类亚洲欧美激情| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 少妇丰满av| 国产色爽女视频免费观看| 免费av中文字幕在线| 精品人妻熟女毛片av久久网站| av国产久精品久网站免费入址| 两个人的视频大全免费| 亚洲国产欧美日韩在线播放| 各种免费的搞黄视频| 国产午夜精品一二区理论片| 中文字幕av电影在线播放| 亚洲av日韩在线播放| 少妇人妻精品综合一区二区| 久久精品国产自在天天线| 免费人成在线观看视频色| 国精品久久久久久国模美| 永久网站在线| 99热这里只有是精品在线观看| 成人国产麻豆网| 成年女人在线观看亚洲视频| 国产成人免费无遮挡视频| 美女大奶头黄色视频| 亚洲国产成人一精品久久久| 有码 亚洲区| videosex国产| 婷婷色综合www| 日本-黄色视频高清免费观看| 99久国产av精品国产电影| 男的添女的下面高潮视频| 丰满饥渴人妻一区二区三| 亚洲综合色惰| 国产毛片在线视频| 热99国产精品久久久久久7| 69精品国产乱码久久久| av专区在线播放| 亚洲高清免费不卡视频| 蜜臀久久99精品久久宅男| videos熟女内射| 久久影院123| 中文字幕人妻丝袜制服| 妹子高潮喷水视频| 久久久国产一区二区| 少妇高潮的动态图| 国产 精品1| 又大又黄又爽视频免费| 久久久欧美国产精品| 一区二区三区乱码不卡18| 黄片无遮挡物在线观看| 青春草视频在线免费观看| av在线播放精品| 久久免费观看电影| 欧美丝袜亚洲另类| 一本色道久久久久久精品综合| 国产伦理片在线播放av一区| 亚洲av免费高清在线观看| av福利片在线| 热99久久久久精品小说推荐| 丰满少妇做爰视频| 成人黄色视频免费在线看| 一级毛片aaaaaa免费看小| 精品少妇内射三级| 久久99精品国语久久久| 精品久久久噜噜| 91久久精品国产一区二区成人| 亚洲av中文av极速乱| 国产爽快片一区二区三区| 一级a做视频免费观看| 国产高清不卡午夜福利| a级毛色黄片| 自拍欧美九色日韩亚洲蝌蚪91| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| 黑人高潮一二区| 亚洲中文av在线| 日韩一区二区三区影片| 国产精品国产三级国产av玫瑰| 国产一区二区三区综合在线观看 | 久久久欧美国产精品| 国产精品久久久久成人av| 26uuu在线亚洲综合色| 午夜视频国产福利| 高清欧美精品videossex| 26uuu在线亚洲综合色| 亚洲欧美成人精品一区二区| 9色porny在线观看| 日本免费在线观看一区| 国产精品久久久久成人av| 五月伊人婷婷丁香| 日日啪夜夜爽| 欧美精品一区二区免费开放| 亚洲成人一二三区av| 国产一区亚洲一区在线观看| 性高湖久久久久久久久免费观看| 麻豆精品久久久久久蜜桃| 一区在线观看完整版| 日韩欧美一区视频在线观看| 日韩免费高清中文字幕av| 我的老师免费观看完整版| 97在线人人人人妻| 一区二区三区四区激情视频| www.av在线官网国产|