• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sealed model and computation of hazardous waste landfill high voltage DC leakage detection①

    2015-04-17 07:17:17YangPing
    High Technology Letters 2015年4期

    Yang Ping (楊 萍

    (School of Information, Beijing Union University, Beijing 100101, P.R.China)

    ?

    Sealed model and computation of hazardous waste landfill high voltage DC leakage detection①

    Yang Ping (楊 萍②

    (School of Information, Beijing Union University, Beijing 100101, P.R.China)

    According to the structural characteristics of hazardous waste landfill and the leakage current model of high voltage DC Landfill leakage detection, a sealed model is established and analyzed in detail. The detection layer of the hazardous waste landfill is considered as a sealed space and it is assumed that the source current flows through the leak entirely. The leak is regarded as a positive current resource +I located at the current entrance or a negative resource -I located at the current exit, which depends on the placement of the current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural boundary condition for the high resistivity of high density polyethylene (HDPE) membrane. Based on which a numerical calculation method is developed. Satisfactory agreement between experimental data and simulated data validates the analysis. Parametric studies show that a larger horizontal distance between the power supply electrode and leak and a smaller distance between the detector electrodes and the detected liner are helpful to leak location. More parametric curves show that parameters leaks can be detected effectively with optimum selection of field survey.

    hazardous waste landfill, high voltage DC method, sealed space model

    0 Introduction

    High voltage DC potential detection has been developed to detect and locate leaks in geomembrane liner used in waste landfill to prevent environment from leachates contamination[1-4]. To establish a basis for evaluating the technique, Parra developed a theoretical analysis method that characterized the three-dimensional response of single leaks[5,6]. Wait developed a simple model and regarded the leak current as a point current source[7,8]. Author’s preliminary work showed that the leak current could be regarded as a negative current resource at the entrance or a positive one of the same size at the exit[9]. Based on the fact that the single-liner landfills always had a large scale, a stratified medium model was established[10-12], in which the waste material, the liner, and the soil under the liner were simulated as infinite in the horizontal direction. The relationship between the fraction of leak current I0to total current Isand the surface area of landfill has also been analyzed. And the results show that the relative amount of source current flowing through the leak decreases as the size of the geomembrane liner increases. For a waste landfill having an area of 3600m2(rl=60m), 90 percent of the source current flows through the leak. Theoretically all the studies are about single-liner waste landfill. However hazardous waste landfills and storages usually use double geomembrane liners and the scale of which is only about several thousands of square meters. It is unreasonable to simulate the hazardous waste landfill as an infinite stratified model[13], and the influence caused by side boundary is not negligible especially when a leak is near the boundary. Experiments in Chinese Research Academy of Environmental Sciences also demonstrate a big error when the stratified medium model is used to detect leaks in small scale double-liner landfill of 2000m2in area.

    According to the structural characteristics of hazardous waste landfills and the leakage current model of high voltage leakage detection, a sealed model is deeply discussed. In this paper, the detection layer is considered as a sealed space and it is assumed that the source current flows through the leak entirely. The leak is regarded as a positive current resource +I located at the current entrance or a negative resource -I located at the current exit, which depends on the placement of current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural boundary condition in view of the high resistivity of the HDPE membrane[9,14]. On the basis of above assumptions, hazardous waste landfill leakage detection’s sealed space model is established and analyzed in detail.

    1 Principle

    The electrical leak location method makes use of the high electrical resistivity of the geomembrane liner material. When no leak is presented, a voltage impressed across the liner produces a very low current flow. The low current density produces a relatively uniform potential distribution in the detection region. A leak in the geomember liner provides a conductive path for current flow, which produces an increase in the current density at the leak point. So the leak can be equaled to a current source. The localized current density causes an anomaly in the measured potential in the vicinity of the leak. Therefore, leaks can be located by measuring the potential distribution patterns in the material of the detection layer[15]. The basic principle is shown in Fig.1. For a double-lined hazardous waste landfill or storage, the detection layer can be regarded as a sealed space. Under this condition, the electrical potential distribution caused by a steady current is difficult to express analytically. So a new method is advanced to solve the problem of the potential distribution in the sealed detection region.

    Fig.1 Principle of hazardous waste landfill high voltage DC leakage detection

    2 Model and analysis

    2.1 Sealed space model

    The detection layer can be taken as a sealed space encapsulated by high resistivity material. The upper surface and lower surface are primary geomembrane and secondary geomembrane respectively. They are all composed of HDPE membrane with resistivity ρl=1014Ω·m[9]. The detection layer of depth h is full of clay soil with resistivity ρc=100Ω·m. A circular leak of radius a located at (x0, y0, z0) is used to represent the leakage in geomembrane liner, which provides a channel for current flow. If the current source outside the sealed space is positive, then the current flows from the leak to the current return electrode located at (xs, ys, zs). Since it provides a high current density which is equivalent to a current resource, the leak in the high resistivity material is regarded as a positive current resource I0located at the center of the leak. So the electrical potential φ of an arbitrary point in detection layer is the superposition of electrical potential caused by the leakage current I0and the return electrode current -Is. And the electrical potential φ satisfies Poisson equation ▽2φ=f[16-18].

    f=ρcI0δ(x-x0)(y-y0)(z-z0)-ρcIsδ(x-xs)(y-ys)(z-zs), where ρcis the resistivity of the detection layer material, (x0, y0, z0) and (xs, ys, zs) are the coordinates of the leak and the current received electrode respectively. I0and Isare the leakage current and the return electrode current. δ(x) is the δ function .The model is shown in Fig.2.

    Fig.2 Sealed space model of hazard waste landfill high voltage DC leakage detection

    The interfaces continuity of potential and current density requires that[16,17]:

    For a highly resistive liner, ρl>>ρc, which reduces the function to

    where φlis the electrical potential distribution in the thin geomembrane liner. And n is outside normal direction. Considering the current density approximately equal to zero in n direction, it can be derived that Is=I0.

    For a sealed region, it is difficult to give the analytical solution of the above Poisson equation. So a numerical calculation method is imported.

    2.2 Mathematical analysis

    2.2.1 Variational principle

    The variational principle is known to us that,[18]a differential equation defined by

    Lφ=f

    (1)

    If L is a selfadjoint operator, which means that = <φ, Lφ>, then the function can be solved by obtaining the stagnation point of the function

    (2)

    where φ and φ are the arbitrary functions that have the same boundary conditions, <> is an operation defined as

    <φ,φ>=∫Ωφφ*dΩ

    (3)

    where Ω expresses the region in question, * represents the complex conjugate operation.

    δF(φ)=0

    (4)

    (5)

    (6)

    Because φ, f are real functions, <φ, f>=, and it is concluded that

    (7)

    From the scalar Green theorem, it is deduced that[19]:

    (8)

    (9)

    2.2.2 Regional division

    2.2.3 Interpolation

    After regional discrete, unknown function φ in every tetrahedral element need to be expressed. Hence the tetrahedral element as Fig.3 is taken into account. In every tetrahedral element e, the unknown function φ can be described as[20-22]

    Fig.3 Linear tetrahedron cell

    φe(x, y, z)=ae+bex+cey+dez

    (10)

    (10-1)

    (10-2)

    (10-3)

    (10-4)

    Based on the above equations, it can be deduced that:

    (11-1)

    (11-2)

    (11-3)

    (11-4)

    where

    Taking the Coefficient ae、be、ce、deback to φe(x,y,z)=ae+bex+cey+dez, the following is got:

    (12)

    (13)

    2.2.4 Calculation formula of Ritz method

    After regional discretion and interpolation, Eq.(9) can be expressed as

    (14)

    where M is the total amount of the tetrahedral element,

    (15)

    (16)

    The matrix form is

    (17)

    where:

    (18)

    (19)

    Based on the fundamental formulae[17,18]:

    (20)

    (21)

    2.2.5 Combined into equations

    Based on Eq.(17), combining with all units, and imposing the Stagnation point condition to F, the following equation is got:

    (22)

    The compact form is

    [K]{φ}=

    (23)

    where

    2.2.6 Solution of the equations

    Generally, K in Eq.(22) is divided into an Upper triangular matrix U and a lower triangular matrix L. That is

    K=LU

    Firstly, the matrix equation is solved: Lφ=b

    (24)

    Then: Uφ=φ

    (25)

    Use the Crout decomposition method[19-21]

    uii=1

    i=1,2,3,…,n (26)

    i≥j (27)

    i

    Through step forward, φ[22]is obtained

    (29)

    i>1 (30)

    Then, through step backward, the value of φ at the endpoint of a tetrahedral element is got.

    φn=φn

    (31)

    i

    Finally, the value of φ at any point (x, y, z) can be obtained by element interpolating function.

    3 Experiment and computation

    3.1 Experiment verification

    To verify the validity of the model in locating leaks in geomembrane liner of hazard waste landfill, experiments are made at a double-lined simulated landfill (10m×10m×0.4m). As is shown in Fig.1, the landfill has two HDPE geomembrane liners with the thickness t=2mm. The primary liner is covered with water of 0.3m in depth. The detection layer of 0.4m depth is between the primary liner and the secondary liner. Fixed detection electrodes are buried in the detection layer during the construction of the simulated landfill, with 1m-distance from each other and 0.1m from the primary liner. One leak is on the primary liner, the other leak is on the secondary liner. Two leaks are on the center of the 11×11 measurement electrodes. To create an electrical flow through the leak, the positive electrode of DC current source is placed in the water used to simulate the hazardous waste when detecting primary liner or in soil when detecting secondary liner, the negative electrode (current return electrode) of DC current source is placed in the detection layer at the position (9.9, 0.1, 0.08) to form the current passage. The fixed electrode measurement is carried out by installing a potential reference electrode at the position (10, 5, 0.08), which is used to provide a common reference point for the potential measurements (the coordinate system in Fig.2 is referenced here). 121 data are collected over an area of 100m2.

    Table 1 shows the sealed model parameters for locating leaks. These parameters come from the test result of the facility.

    Table 1 Model parameters[23,24]

    Table 2 shows the experimental data collected from the detection electrodes laid on two crossed lines under or above the leaks and the corresponding simulated value based on sealed model. Leak 1 is located at the center of the primary liner. Leak 2 is located at the center of the secondary liner. The relative errors are also shown in Table 2.

    Data in Table 2 show that the relative errors between simulated data and experimental data are less than 5%. Considering the location error of detection electrodes during construction, the errors in measurement and the influence caused by noise and other factors, it can be concluded that the analysis method given above is valid.

    3.2 Parameter study

    The parameter studies below are aimed at charactering the performance of the method for variations in the detection layer material electrical parameters, the contamination, the detection electrodes and current supply electrode position, and the detection layer depth. The result demonstrates the general applicability of the method and may be used to optimize the technique for specific landfill survey application.

    3.2.1 Effect of detection layer resistivity

    The detection layer material’s resistivity ρcis controllable, which can be changed during the construction of a waste landfill. Fig.4 shows the anomaly responses for varying detection layer resistivity for detection electrodes survey data measured at a depth of d=0.05m below the primary liner. These results demonstrate that the strength of the anomaly response is increased and leak detectability is improved for high detection layer resistivity.

    Table 2 Comparison of experimental data and simulated data of two survey lines (V)

    Fig.4 Distribution of the electric potential besides the leak for different resistivity of the detecting liner

    3.2.2 Effect of the inhomogeneity of detection layer medium

    Leak in the liner allows the leachates from the waste materials to detection layer, so the resistivity of contaminated region will decrease. ρc′ is used here to present the resistivity of contaminated region. Fig.5 shows the family of leak anomaly responses for different contaminated hemisphere r and ρc′=10Ω.m . The anomaly decays rapidly as the contaminated radius increases, so the leakage should always be conducted timely.

    3.2.3 Effect of detection electrodes depth

    A family of leak anomaly responses for several detection electrodes depths below a single leak located in the primary liner is shown in Fig.6, which indicates the substantial improvement gained in detection sensitivity when the detection electrodes are closer to the detection liner. That is to say, the survey should always be conducted to the detection liner as close as possible.

    Fig.5 Distribution of the electric potential besides the leak for different radius of the pollution area

    Fig.6 Distribution of the electric potential besides the leak for different vertical distance from the leak

    3.2.4 Effect of leak current

    Fig.7 shows the anomaly responses for different leak current. The results illustrate that the higher the leak current, the higher the detectability.

    Fig.7 Distribution of the electric potential besides the leak for different current of the leak

    3.2.5 Effect of the offset distance from the leak to current resource electrode

    The offset distance of the leak to current resource electrode affects the anomaly response. To illustrate this characteristic, Fig.8 presents the distribution of the electric potential besides the leak for different horizontal distance horizontal distance (hd) from leak to source electrode. In Fig.9, the distribution for different vertical distance vertical distance (vd) from leak to source electrode is given. As expected, when the horizontal distance is far enough (>10m), the vertical distance from leak to source electrode has little influence on the leak anomaly responses. But when the source electrode is just below a leak, the range of the leak anomaly responses is very small. It is hard to detect the leak under this circumstance. Hence, in order to detect the entire region of a landfill, there are at least two power supply electrodes in the detection layer.

    Fig.8 Distribution of the electric potential besides the leak for different horizontal distance (hd) from leak to source electrode

    Fig.9 Distribution of the electric potential besides the leak for different vertical distance (vd) from leak to source electrode

    4 Conclusion

    For a hazardous waste landfill, when a high DC voltage is imposed on the both sides of the gemembrance liner, the detection liner can be seen as a sealed space excited by leakage current and the return electrode current, The leakage current is a positive current resource +I located at the current entrance or a negative resource -I located at the current exit. The electrical potential of an arbitrary in detection layer satisfies the Poisson equation. The boundary conditions satisfy natural boundary condition. Parametric studies show that big magnitude of leak current, high resistivity of detection liner, large horizontal distance between the power supply electrode and leak and small distance between the detector electrodes and the detected liner are helpful to leak location, but the vertical distance from leak to source electrode has little influence on the leak anomaly responses when the horizontal distance is far enough (>10m).

    The numerical method is effective in solving the problem of potential distribution in even an irregular region. But there exists some shortage such as low computational efficiency. How to improve the computation efficiency will be the emphasis for further research.

    Reference

    [ 1] Darilek G T, Laine D L, Parra J O. The electrical leak location method for geomembrane liners- Development and application. In: Proceedings of the Industrial Fabrics Association International Geosynthetics, San Diego, USA, 1989. 21-23

    [ 2] Darilek G T, Laine D L. Understanding electrical leak location systems of geomembrane liners and avoiding specifications pitfalls. In: Proceedings of the 10th National Conference, Superfund, Washington, D C, USA, 1989. 27-29

    [ 3] Smith B, Darilek G, Laine D. Enhanced geomembrane CQA through proper application of geomembrane leak location surveys. In: Proceedings of the Geosynthetics 2007 Conference Proceedings, Washington D C, USA, 2007. 16-19

    [ 4] Darilek G, Laine D. Experience with geosynthetic clay liners as a conductive layer in geomembrane leak location surveys. Geosynthetics, 2007,14 (6):30-33

    [ 5] Parra J O. Electrial response of a leak in a geomembrane liner. Geophysics, 1988,53 (11):1445-1452

    [ 6] Parra J O, Owen T E. Model studies of electrical leak detection in geomembrane lined impoundments. Geophysics, 1988,53(11):1453-1458

    [ 7] Wait J R. Complex resistivity of the Earth. Progress in Electromagnetic Research, 1989,1(1):171-175

    [ 8] Wait J R. Simple model for current leakage in insulating liner. IEEE transactions on geoscience and remote sensing, 1994,32(2): 472-474

    [ 9] Yang P, Nai C X, Dong L. Leak current model in leakage detection of HDPE liner using high voltage DC method . Acta Scientiae Circumstantiae,2005,25(10):1261-1364(in Chinese)

    [10] Yang P, Dong L, Wang Q. Multimedia model of single-liner landfill high voltage DC leak detection. China Environmental Science,2008, 28(1):63-67

    [11] Zhao X C, Yang P, Zhang Y D, et al.Finite element simulation of high voltage direct current electricity technology for double liner landfill leakage detection. China Environmental Science,2007,27(1):76-79

    [12] Guan S P, Nai C X, Dong L, et al. A direct current resistance circuit model for landfill leak detection. Acta Scientiae Circumstantiae, 2010. 30(6):1188-1192

    [13] Wang Z C, Chen Y Y. Hazardous waste landfill leakage detection based on transmission lines model. Advances in Information Sciences and Service Sciences, 2011.3(9):17-24

    [14] Nai C X, Dong L, Wang Q, et al. The stratified medium model for leakage detection in double liner landfills. Research of Environmental Sciences, 2008, 21(6):30-34

    [15] Yang P, Jiang Y X,Wang Y N, et al. Study on double-liner landfill leak location algorithm. Journal of Beijing Union University, 2013,27(1),81-85

    [16] Guan S P, Wang Y L,Nai C X. Application of electrical leak detection method in double-lined landfills.China Environmental Science,2011,31(12):2013-2017

    [17] Qiao S, Zhou M Y, Bai L. Theory of Exploration Electromagnetic Field. Beijing: China University Mining Technology Press, 1989. (In Chinese)

    [18] Yao D Z, Liang J B. Method of Mathematics and Physical. Wuhan: Wuhan University Press, 1997. (In Chinese)

    [19] Lang K M. Method of Mathematics and Physical. Beijing: High Education Press, 1997. (In Chinese)

    [20] Zong Z H, Gao M L, Xia Z H. Finite element model validation of the continuous rigid frame bridge based on structural health monitoring part I:FE model updating based on the response surface method.China Civil Engineering Jouranl,2011,2(44):90-98

    [21] Merla A , Donato D , Fazio D . Differential thermal infrared imaging for environmental inspection. Journal of applied remote sensing, 2014, 8(11):117-123

    [22] Abuel N , Hossam M. Bouazza A. Numerical characterization of advective gas flow through GM/GCL composite liners having a circular defect in the geomembrane. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1661-1671

    [23] Gao M L. Study on the Finite Element Model Validation of the Continuous Rigid Frame Bridge Based on Structural Health Monitoring:[Ph.D dissertation]. Fuzhou: Fuzhou University, 2008

    [24] Chen Y Y, Nai C X, Dong L, et al.Landfill leakage detection based on boundary localization method.Research of Environmental Sciences,2012,25(3) : 346-351

    Yang Ping, born in 1974. She received her Ph.D and M.S degrees from college of Mechatronic Engineering of China Mining & Technology University (Beijing) in 2006 and 2003 respectively. She also received her B.S degrees from XinYang Normal University in 1997. Her research interests include signal acquisition & processing and mathematical modeling.

    10.3772/j.issn.1006-6748.2015.04.012

    ①Supported by the National Basic Research Development Program of China (No. 2010CB428506), the National High Technology Research and Development Program (No.2007AA061303) and Beijing Higher Education Young Elite Teacher Project (YETP1756).

    ②To whom correspondence should be addressed. E-mail: xxtyangping@buu.edu.cn Received on Oct. 14, 2014, Tian Jinwen, Wang Yanni, Xue Lin

    日本 欧美在线| 亚洲av成人精品一区久久| 精品久久久久久久人妻蜜臀av| 亚洲avbb在线观看| 在线免费十八禁| 麻豆国产av国片精品| 在线观看美女被高潮喷水网站| 九九久久精品国产亚洲av麻豆| 国产视频一区二区在线看| 赤兔流量卡办理| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 欧美日韩中文字幕国产精品一区二区三区| av女优亚洲男人天堂| 级片在线观看| 日韩,欧美,国产一区二区三区 | 国产精品一区www在线观看 | 午夜亚洲福利在线播放| 国产视频内射| 亚洲无线观看免费| 色在线成人网| 国产精品女同一区二区软件 | 午夜影院日韩av| 国产国拍精品亚洲av在线观看| 啪啪无遮挡十八禁网站| 精品日产1卡2卡| 欧美+日韩+精品| 国内少妇人妻偷人精品xxx网站| 91麻豆精品激情在线观看国产| 我要搜黄色片| 成人亚洲精品av一区二区| netflix在线观看网站| 国产一区二区三区视频了| 搡女人真爽免费视频火全软件 | 日本 欧美在线| 色视频www国产| 成人一区二区视频在线观看| 网址你懂的国产日韩在线| 国产精品福利在线免费观看| 99九九线精品视频在线观看视频| 久久99热6这里只有精品| 久久久精品大字幕| 久久久久久九九精品二区国产| 美女黄网站色视频| 日韩高清综合在线| 亚洲av成人精品一区久久| 欧美最新免费一区二区三区| 草草在线视频免费看| 日本爱情动作片www.在线观看 | 国产亚洲精品综合一区在线观看| 免费看a级黄色片| 久久精品综合一区二区三区| 韩国av在线不卡| 国产欧美日韩精品一区二区| 成人国产一区最新在线观看| 色哟哟·www| 亚洲四区av| 午夜激情福利司机影院| 精品久久久久久久末码| 欧美一区二区亚洲| 亚洲一级一片aⅴ在线观看| 亚洲av.av天堂| 国产主播在线观看一区二区| 村上凉子中文字幕在线| 亚洲成av人片在线播放无| 久久久久久久久久久丰满 | 真实男女啪啪啪动态图| 亚洲人成网站在线播| 俺也久久电影网| 免费黄网站久久成人精品| 天天躁日日操中文字幕| 中亚洲国语对白在线视频| 在线观看午夜福利视频| 99riav亚洲国产免费| 亚洲最大成人av| 日韩强制内射视频| 国产精品一及| 日韩欧美国产一区二区入口| www日本黄色视频网| 精品乱码久久久久久99久播| 欧美性猛交╳xxx乱大交人| 午夜免费激情av| 狂野欧美白嫩少妇大欣赏| 亚洲av电影不卡..在线观看| 日日夜夜操网爽| 国产精品乱码一区二三区的特点| 全区人妻精品视频| 国产男靠女视频免费网站| 99热网站在线观看| 国产精品爽爽va在线观看网站| 日韩高清综合在线| 国产久久久一区二区三区| 欧美不卡视频在线免费观看| avwww免费| 免费人成视频x8x8入口观看| 久久人妻av系列| 熟女电影av网| 久久精品综合一区二区三区| 婷婷丁香在线五月| 黄色配什么色好看| 国产私拍福利视频在线观看| 日韩 亚洲 欧美在线| 天堂av国产一区二区熟女人妻| 一区二区三区高清视频在线| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 免费一级毛片在线播放高清视频| 午夜福利高清视频| 丰满乱子伦码专区| 校园春色视频在线观看| 身体一侧抽搐| 黄色视频,在线免费观看| 韩国av在线不卡| 91狼人影院| 久久国产乱子免费精品| 久久午夜福利片| 久久人妻av系列| av在线蜜桃| 亚洲精品粉嫩美女一区| 国产精品久久久久久久久免| h日本视频在线播放| 日韩欧美一区二区三区在线观看| 在现免费观看毛片| 看黄色毛片网站| 99国产极品粉嫩在线观看| 黄色视频,在线免费观看| 中出人妻视频一区二区| 黄色日韩在线| 少妇被粗大猛烈的视频| 最新中文字幕久久久久| 97超视频在线观看视频| av在线天堂中文字幕| or卡值多少钱| 国产一区二区亚洲精品在线观看| 国产精品一区二区三区四区久久| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 别揉我奶头 嗯啊视频| 日本黄色视频三级网站网址| 国产国拍精品亚洲av在线观看| 午夜激情欧美在线| 一个人看的www免费观看视频| 色综合亚洲欧美另类图片| 桃红色精品国产亚洲av| 欧美日本视频| 国产伦精品一区二区三区视频9| 一边摸一边抽搐一进一小说| 日韩在线高清观看一区二区三区 | 最近最新免费中文字幕在线| 天堂av国产一区二区熟女人妻| 久久精品人妻少妇| 亚洲欧美日韩卡通动漫| 久久人妻av系列| 国产免费一级a男人的天堂| 国产精品日韩av在线免费观看| 在线免费观看不下载黄p国产 | 美女cb高潮喷水在线观看| 亚洲人成网站高清观看| 日韩欧美 国产精品| 琪琪午夜伦伦电影理论片6080| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点| 色吧在线观看| 人妻少妇偷人精品九色| 18+在线观看网站| 无遮挡黄片免费观看| 国产高清有码在线观看视频| 亚洲不卡免费看| 亚洲国产高清在线一区二区三| 国产欧美日韩精品亚洲av| 久99久视频精品免费| 美女被艹到高潮喷水动态| 精品人妻1区二区| 啪啪无遮挡十八禁网站| 国产精品人妻久久久久久| 成人国产麻豆网| 1024手机看黄色片| 国产精品国产高清国产av| 亚洲av免费在线观看| 少妇人妻精品综合一区二区 | 色av中文字幕| 日本免费一区二区三区高清不卡| 天天躁日日操中文字幕| 国产亚洲精品av在线| 久久精品夜夜夜夜夜久久蜜豆| 国内精品宾馆在线| 色5月婷婷丁香| 色噜噜av男人的天堂激情| 国产亚洲精品久久久com| 亚洲国产日韩欧美精品在线观看| 日日啪夜夜撸| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 三级毛片av免费| 麻豆av噜噜一区二区三区| 亚洲第一电影网av| 亚洲欧美日韩高清在线视频| 亚洲国产日韩欧美精品在线观看| 成人美女网站在线观看视频| 欧美成人免费av一区二区三区| 99久久精品一区二区三区| 搡老熟女国产l中国老女人| 免费在线观看影片大全网站| 免费看a级黄色片| 亚洲精品亚洲一区二区| 神马国产精品三级电影在线观看| 久久久久久九九精品二区国产| 深夜精品福利| 五月玫瑰六月丁香| 有码 亚洲区| 亚洲精品国产成人久久av| 91久久精品国产一区二区三区| a级毛片免费高清观看在线播放| 丰满乱子伦码专区| 午夜亚洲福利在线播放| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av香蕉五月| 亚州av有码| 亚洲国产欧美人成| 久久亚洲真实| av女优亚洲男人天堂| 美女xxoo啪啪120秒动态图| 99九九线精品视频在线观看视频| 亚洲一级一片aⅴ在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲最大成人av| 欧美3d第一页| 国产aⅴ精品一区二区三区波| av专区在线播放| av福利片在线观看| 国产精品一及| 精品午夜福利在线看| 国产主播在线观看一区二区| 美女免费视频网站| 久久久久久伊人网av| 丰满乱子伦码专区| 69人妻影院| 最近最新免费中文字幕在线| 亚洲成a人片在线一区二区| 国内久久婷婷六月综合欲色啪| 国产精品久久电影中文字幕| 久久人妻av系列| 成人一区二区视频在线观看| 精品一区二区三区av网在线观看| 天堂av国产一区二区熟女人妻| 午夜日韩欧美国产| 熟妇人妻久久中文字幕3abv| 欧美人与善性xxx| 一个人看的www免费观看视频| 成人国产综合亚洲| 内射极品少妇av片p| 亚洲va日本ⅴa欧美va伊人久久| 亚洲无线观看免费| 精品福利观看| 悠悠久久av| 高清日韩中文字幕在线| 日本精品一区二区三区蜜桃| 久久婷婷人人爽人人干人人爱| 五月玫瑰六月丁香| 国产一区二区在线av高清观看| 亚洲国产欧美人成| 国产精品一区二区三区四区久久| 日本与韩国留学比较| 久久精品国产亚洲av香蕉五月| 五月伊人婷婷丁香| 国产一区二区在线观看日韩| 三级男女做爰猛烈吃奶摸视频| 99久久成人亚洲精品观看| 久久久久精品国产欧美久久久| 午夜久久久久精精品| 成人综合一区亚洲| 欧美精品啪啪一区二区三区| 国内少妇人妻偷人精品xxx网站| 五月伊人婷婷丁香| 天堂√8在线中文| 国产精品女同一区二区软件 | 淫妇啪啪啪对白视频| 身体一侧抽搐| 狂野欧美白嫩少妇大欣赏| 麻豆国产97在线/欧美| 国产成人福利小说| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添av毛片 | 国产伦精品一区二区三区视频9| 久久九九热精品免费| 国产伦精品一区二区三区四那| 白带黄色成豆腐渣| 少妇猛男粗大的猛烈进出视频 | 婷婷六月久久综合丁香| 色精品久久人妻99蜜桃| 啦啦啦韩国在线观看视频| av天堂在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产精品美女特级片免费视频播放器| 成人高潮视频无遮挡免费网站| 色吧在线观看| 一进一出抽搐动态| 精品久久久久久久人妻蜜臀av| 成人国产麻豆网| 久久久国产成人免费| 成人永久免费在线观看视频| 国产精品免费一区二区三区在线| 亚洲va在线va天堂va国产| 女人被狂操c到高潮| 日本一本二区三区精品| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片| 国内久久婷婷六月综合欲色啪| 午夜视频国产福利| 欧美+亚洲+日韩+国产| 我要搜黄色片| 日本 av在线| 亚洲国产欧美人成| 国产中年淑女户外野战色| av专区在线播放| 欧美三级亚洲精品| 国产伦精品一区二区三区视频9| 免费人成视频x8x8入口观看| 中文字幕精品亚洲无线码一区| 日日摸夜夜添夜夜添小说| 成人特级黄色片久久久久久久| 高清日韩中文字幕在线| 色播亚洲综合网| 99热精品在线国产| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 国内精品久久久久久久电影| 人人妻人人看人人澡| 又粗又爽又猛毛片免费看| 噜噜噜噜噜久久久久久91| 国产精品一区www在线观看 | 精品人妻偷拍中文字幕| 美女高潮喷水抽搐中文字幕| 国产 一区精品| 亚洲自拍偷在线| 国产一级毛片七仙女欲春2| 亚洲中文字幕日韩| 免费av不卡在线播放| 欧美绝顶高潮抽搐喷水| 韩国av一区二区三区四区| av天堂中文字幕网| 小说图片视频综合网站| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区激情视频| 国产白丝娇喘喷水9色精品| 亚洲经典国产精华液单| 国产午夜福利久久久久久| 色在线成人网| 亚洲精品成人久久久久久| 精品人妻视频免费看| 国产爱豆传媒在线观看| 亚洲美女黄片视频| 在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲av日韩精品久久久久久密| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美免费精品| 男插女下体视频免费在线播放| 色尼玛亚洲综合影院| 18+在线观看网站| av天堂中文字幕网| 亚洲av免费在线观看| 最后的刺客免费高清国语| 色尼玛亚洲综合影院| 日本熟妇午夜| 国产男靠女视频免费网站| av视频在线观看入口| 中出人妻视频一区二区| 伊人久久精品亚洲午夜| 久久99热这里只有精品18| 中国美女看黄片| 久久久久精品国产欧美久久久| 人妻夜夜爽99麻豆av| 哪里可以看免费的av片| 乱系列少妇在线播放| 黄色一级大片看看| 最新中文字幕久久久久| 变态另类成人亚洲欧美熟女| 国国产精品蜜臀av免费| 成熟少妇高潮喷水视频| 成年女人看的毛片在线观看| 国产亚洲91精品色在线| 久久精品国产鲁丝片午夜精品 | 国产淫片久久久久久久久| 老熟妇乱子伦视频在线观看| 日本爱情动作片www.在线观看 | 亚洲中文日韩欧美视频| 日本精品一区二区三区蜜桃| 成人美女网站在线观看视频| 国产精品久久久久久精品电影| 麻豆av噜噜一区二区三区| 成年女人看的毛片在线观看| 人妻少妇偷人精品九色| 日本-黄色视频高清免费观看| 亚洲aⅴ乱码一区二区在线播放| 天堂网av新在线| 亚洲国产欧洲综合997久久,| 欧美高清性xxxxhd video| 亚洲精品一区av在线观看| 免费看av在线观看网站| 日韩欧美国产一区二区入口| 亚洲人与动物交配视频| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 网址你懂的国产日韩在线| 精品久久久久久久久av| 国产精品电影一区二区三区| 深夜精品福利| 日韩欧美国产在线观看| 亚洲av成人av| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 真实男女啪啪啪动态图| 精品一区二区免费观看| 亚洲国产精品久久男人天堂| 国产 一区精品| 婷婷丁香在线五月| 亚洲精品日韩av片在线观看| 99热6这里只有精品| 午夜免费成人在线视频| 很黄的视频免费| 少妇人妻一区二区三区视频| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 亚洲第一电影网av| 国产av不卡久久| 一本精品99久久精品77| 自拍偷自拍亚洲精品老妇| 最近最新免费中文字幕在线| 亚洲av五月六月丁香网| 久久久久九九精品影院| h日本视频在线播放| 国产av麻豆久久久久久久| 国产一区二区在线观看日韩| 在现免费观看毛片| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 亚洲最大成人av| 别揉我奶头~嗯~啊~动态视频| 大又大粗又爽又黄少妇毛片口| 在线观看一区二区三区| 欧美成人一区二区免费高清观看| 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 哪里可以看免费的av片| 嫩草影院新地址| 又爽又黄a免费视频| 永久网站在线| 黄片wwwwww| 好男人在线观看高清免费视频| 国产高清不卡午夜福利| 岛国在线免费视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 性插视频无遮挡在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 看片在线看免费视频| 搡女人真爽免费视频火全软件 | 久久欧美精品欧美久久欧美| 中亚洲国语对白在线视频| 永久网站在线| 1024手机看黄色片| 国产午夜精品久久久久久一区二区三区 | 国产麻豆成人av免费视频| 国产一级毛片七仙女欲春2| 99国产精品一区二区蜜桃av| 黄色配什么色好看| 夜夜爽天天搞| 久久精品91蜜桃| 亚洲欧美清纯卡通| 国产成人一区二区在线| 国产精品久久久久久av不卡| 国产精品国产高清国产av| 丰满乱子伦码专区| 老女人水多毛片| 五月伊人婷婷丁香| 久久草成人影院| 精华霜和精华液先用哪个| 欧美3d第一页| 国产真实伦视频高清在线观看 | 日韩欧美精品v在线| 亚洲欧美激情综合另类| 自拍偷自拍亚洲精品老妇| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区在线观看日韩| 欧洲精品卡2卡3卡4卡5卡区| 精品午夜福利在线看| 国产色爽女视频免费观看| 久久久久久久久久黄片| 午夜日韩欧美国产| 国产精品自产拍在线观看55亚洲| 久久久久免费精品人妻一区二区| 啪啪无遮挡十八禁网站| 亚洲专区国产一区二区| 俺也久久电影网| 男人舔奶头视频| bbb黄色大片| 中文字幕av成人在线电影| 欧美中文日本在线观看视频| 深夜a级毛片| 国产精品久久久久久久久免| 五月玫瑰六月丁香| 日韩一区二区视频免费看| 国产成人福利小说| 内射极品少妇av片p| 乱人视频在线观看| 国产精品亚洲美女久久久| www.www免费av| 夜夜看夜夜爽夜夜摸| 一区二区三区免费毛片| 一区二区三区高清视频在线| 国产真实乱freesex| 中文字幕av成人在线电影| 婷婷丁香在线五月| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片 | 精品午夜福利视频在线观看一区| 少妇人妻一区二区三区视频| 九色国产91popny在线| 99久久中文字幕三级久久日本| 又爽又黄a免费视频| 日韩强制内射视频| 搞女人的毛片| a级毛片免费高清观看在线播放| 伦理电影大哥的女人| 久久久久国内视频| 中文亚洲av片在线观看爽| 在现免费观看毛片| 小说图片视频综合网站| 69av精品久久久久久| 老司机深夜福利视频在线观看| 最近中文字幕高清免费大全6 | 12—13女人毛片做爰片一| 久久精品国产99精品国产亚洲性色| av国产免费在线观看| 美女高潮的动态| 久久中文看片网| 精品一区二区三区av网在线观看| 嫩草影院精品99| 亚洲最大成人中文| 性插视频无遮挡在线免费观看| 成人毛片a级毛片在线播放| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 国产午夜精品久久久久久一区二区三区 | 久久99热这里只有精品18| 黄色欧美视频在线观看| 天堂√8在线中文| 国产精品电影一区二区三区| 色播亚洲综合网| 亚洲人成网站在线播放欧美日韩| 亚洲人成伊人成综合网2020| 国产一区二区三区av在线 | 国产精品女同一区二区软件 | 亚洲一级一片aⅴ在线观看| 国产大屁股一区二区在线视频| 成人特级av手机在线观看| 一个人看视频在线观看www免费| 日本免费a在线| 精品一区二区三区人妻视频| 18禁黄网站禁片午夜丰满| 久久精品国产自在天天线| 国产综合懂色| 成年女人永久免费观看视频| 国产精品1区2区在线观看.| 亚洲四区av| 久久人人精品亚洲av| 日本在线视频免费播放| 午夜a级毛片| 十八禁国产超污无遮挡网站| 波多野结衣高清作品| 日日夜夜操网爽| 最近最新免费中文字幕在线| 成人特级黄色片久久久久久久| 久久草成人影院| 香蕉av资源在线| 中文字幕久久专区| 男女视频在线观看网站免费| 国产精品亚洲一级av第二区| 亚洲四区av| 在线观看一区二区三区| 亚洲av成人精品一区久久| 女人十人毛片免费观看3o分钟| 99视频精品全部免费 在线| 国产精品伦人一区二区| 久久久久久伊人网av| 亚洲三级黄色毛片| 亚洲av熟女| 久久精品91蜜桃| 午夜福利成人在线免费观看| 在线免费观看的www视频| 黄色配什么色好看| 亚洲四区av| 精品国产三级普通话版| 中文字幕久久专区| 女人十人毛片免费观看3o分钟| 男人舔奶头视频| 精品午夜福利视频在线观看一区| 欧美日韩中文字幕国产精品一区二区三区| 99视频精品全部免费 在线| 亚洲人与动物交配视频| 免费av毛片视频| 男女那种视频在线观看| 我要搜黄色片| 精品人妻偷拍中文字幕| 人妻久久中文字幕网| 亚洲精品国产成人久久av| 久久久久久久久久成人| 性色avwww在线观看| 3wmmmm亚洲av在线观看| 精品一区二区三区av网在线观看| 夜夜爽天天搞| 国产极品精品免费视频能看的| 成熟少妇高潮喷水视频| 欧美性猛交╳xxx乱大交人|