• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sealed model and computation of hazardous waste landfill high voltage DC leakage detection①

    2015-04-17 07:17:17YangPing
    High Technology Letters 2015年4期

    Yang Ping (楊 萍

    (School of Information, Beijing Union University, Beijing 100101, P.R.China)

    ?

    Sealed model and computation of hazardous waste landfill high voltage DC leakage detection①

    Yang Ping (楊 萍②

    (School of Information, Beijing Union University, Beijing 100101, P.R.China)

    According to the structural characteristics of hazardous waste landfill and the leakage current model of high voltage DC Landfill leakage detection, a sealed model is established and analyzed in detail. The detection layer of the hazardous waste landfill is considered as a sealed space and it is assumed that the source current flows through the leak entirely. The leak is regarded as a positive current resource +I located at the current entrance or a negative resource -I located at the current exit, which depends on the placement of the current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural boundary condition for the high resistivity of high density polyethylene (HDPE) membrane. Based on which a numerical calculation method is developed. Satisfactory agreement between experimental data and simulated data validates the analysis. Parametric studies show that a larger horizontal distance between the power supply electrode and leak and a smaller distance between the detector electrodes and the detected liner are helpful to leak location. More parametric curves show that parameters leaks can be detected effectively with optimum selection of field survey.

    hazardous waste landfill, high voltage DC method, sealed space model

    0 Introduction

    High voltage DC potential detection has been developed to detect and locate leaks in geomembrane liner used in waste landfill to prevent environment from leachates contamination[1-4]. To establish a basis for evaluating the technique, Parra developed a theoretical analysis method that characterized the three-dimensional response of single leaks[5,6]. Wait developed a simple model and regarded the leak current as a point current source[7,8]. Author’s preliminary work showed that the leak current could be regarded as a negative current resource at the entrance or a positive one of the same size at the exit[9]. Based on the fact that the single-liner landfills always had a large scale, a stratified medium model was established[10-12], in which the waste material, the liner, and the soil under the liner were simulated as infinite in the horizontal direction. The relationship between the fraction of leak current I0to total current Isand the surface area of landfill has also been analyzed. And the results show that the relative amount of source current flowing through the leak decreases as the size of the geomembrane liner increases. For a waste landfill having an area of 3600m2(rl=60m), 90 percent of the source current flows through the leak. Theoretically all the studies are about single-liner waste landfill. However hazardous waste landfills and storages usually use double geomembrane liners and the scale of which is only about several thousands of square meters. It is unreasonable to simulate the hazardous waste landfill as an infinite stratified model[13], and the influence caused by side boundary is not negligible especially when a leak is near the boundary. Experiments in Chinese Research Academy of Environmental Sciences also demonstrate a big error when the stratified medium model is used to detect leaks in small scale double-liner landfill of 2000m2in area.

    According to the structural characteristics of hazardous waste landfills and the leakage current model of high voltage leakage detection, a sealed model is deeply discussed. In this paper, the detection layer is considered as a sealed space and it is assumed that the source current flows through the leak entirely. The leak is regarded as a positive current resource +I located at the current entrance or a negative resource -I located at the current exit, which depends on the placement of current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural boundary condition in view of the high resistivity of the HDPE membrane[9,14]. On the basis of above assumptions, hazardous waste landfill leakage detection’s sealed space model is established and analyzed in detail.

    1 Principle

    The electrical leak location method makes use of the high electrical resistivity of the geomembrane liner material. When no leak is presented, a voltage impressed across the liner produces a very low current flow. The low current density produces a relatively uniform potential distribution in the detection region. A leak in the geomember liner provides a conductive path for current flow, which produces an increase in the current density at the leak point. So the leak can be equaled to a current source. The localized current density causes an anomaly in the measured potential in the vicinity of the leak. Therefore, leaks can be located by measuring the potential distribution patterns in the material of the detection layer[15]. The basic principle is shown in Fig.1. For a double-lined hazardous waste landfill or storage, the detection layer can be regarded as a sealed space. Under this condition, the electrical potential distribution caused by a steady current is difficult to express analytically. So a new method is advanced to solve the problem of the potential distribution in the sealed detection region.

    Fig.1 Principle of hazardous waste landfill high voltage DC leakage detection

    2 Model and analysis

    2.1 Sealed space model

    The detection layer can be taken as a sealed space encapsulated by high resistivity material. The upper surface and lower surface are primary geomembrane and secondary geomembrane respectively. They are all composed of HDPE membrane with resistivity ρl=1014Ω·m[9]. The detection layer of depth h is full of clay soil with resistivity ρc=100Ω·m. A circular leak of radius a located at (x0, y0, z0) is used to represent the leakage in geomembrane liner, which provides a channel for current flow. If the current source outside the sealed space is positive, then the current flows from the leak to the current return electrode located at (xs, ys, zs). Since it provides a high current density which is equivalent to a current resource, the leak in the high resistivity material is regarded as a positive current resource I0located at the center of the leak. So the electrical potential φ of an arbitrary point in detection layer is the superposition of electrical potential caused by the leakage current I0and the return electrode current -Is. And the electrical potential φ satisfies Poisson equation ▽2φ=f[16-18].

    f=ρcI0δ(x-x0)(y-y0)(z-z0)-ρcIsδ(x-xs)(y-ys)(z-zs), where ρcis the resistivity of the detection layer material, (x0, y0, z0) and (xs, ys, zs) are the coordinates of the leak and the current received electrode respectively. I0and Isare the leakage current and the return electrode current. δ(x) is the δ function .The model is shown in Fig.2.

    Fig.2 Sealed space model of hazard waste landfill high voltage DC leakage detection

    The interfaces continuity of potential and current density requires that[16,17]:

    For a highly resistive liner, ρl>>ρc, which reduces the function to

    where φlis the electrical potential distribution in the thin geomembrane liner. And n is outside normal direction. Considering the current density approximately equal to zero in n direction, it can be derived that Is=I0.

    For a sealed region, it is difficult to give the analytical solution of the above Poisson equation. So a numerical calculation method is imported.

    2.2 Mathematical analysis

    2.2.1 Variational principle

    The variational principle is known to us that,[18]a differential equation defined by

    Lφ=f

    (1)

    If L is a selfadjoint operator, which means that = <φ, Lφ>, then the function can be solved by obtaining the stagnation point of the function

    (2)

    where φ and φ are the arbitrary functions that have the same boundary conditions, <> is an operation defined as

    <φ,φ>=∫Ωφφ*dΩ

    (3)

    where Ω expresses the region in question, * represents the complex conjugate operation.

    δF(φ)=0

    (4)

    (5)

    (6)

    Because φ, f are real functions, <φ, f>=, and it is concluded that

    (7)

    From the scalar Green theorem, it is deduced that[19]:

    (8)

    (9)

    2.2.2 Regional division

    2.2.3 Interpolation

    After regional discrete, unknown function φ in every tetrahedral element need to be expressed. Hence the tetrahedral element as Fig.3 is taken into account. In every tetrahedral element e, the unknown function φ can be described as[20-22]

    Fig.3 Linear tetrahedron cell

    φe(x, y, z)=ae+bex+cey+dez

    (10)

    (10-1)

    (10-2)

    (10-3)

    (10-4)

    Based on the above equations, it can be deduced that:

    (11-1)

    (11-2)

    (11-3)

    (11-4)

    where

    Taking the Coefficient ae、be、ce、deback to φe(x,y,z)=ae+bex+cey+dez, the following is got:

    (12)

    (13)

    2.2.4 Calculation formula of Ritz method

    After regional discretion and interpolation, Eq.(9) can be expressed as

    (14)

    where M is the total amount of the tetrahedral element,

    (15)

    (16)

    The matrix form is

    (17)

    where:

    (18)

    (19)

    Based on the fundamental formulae[17,18]:

    (20)

    (21)

    2.2.5 Combined into equations

    Based on Eq.(17), combining with all units, and imposing the Stagnation point condition to F, the following equation is got:

    (22)

    The compact form is

    [K]{φ}=

    (23)

    where

    2.2.6 Solution of the equations

    Generally, K in Eq.(22) is divided into an Upper triangular matrix U and a lower triangular matrix L. That is

    K=LU

    Firstly, the matrix equation is solved: Lφ=b

    (24)

    Then: Uφ=φ

    (25)

    Use the Crout decomposition method[19-21]

    uii=1

    i=1,2,3,…,n (26)

    i≥j (27)

    i

    Through step forward, φ[22]is obtained

    (29)

    i>1 (30)

    Then, through step backward, the value of φ at the endpoint of a tetrahedral element is got.

    φn=φn

    (31)

    i

    Finally, the value of φ at any point (x, y, z) can be obtained by element interpolating function.

    3 Experiment and computation

    3.1 Experiment verification

    To verify the validity of the model in locating leaks in geomembrane liner of hazard waste landfill, experiments are made at a double-lined simulated landfill (10m×10m×0.4m). As is shown in Fig.1, the landfill has two HDPE geomembrane liners with the thickness t=2mm. The primary liner is covered with water of 0.3m in depth. The detection layer of 0.4m depth is between the primary liner and the secondary liner. Fixed detection electrodes are buried in the detection layer during the construction of the simulated landfill, with 1m-distance from each other and 0.1m from the primary liner. One leak is on the primary liner, the other leak is on the secondary liner. Two leaks are on the center of the 11×11 measurement electrodes. To create an electrical flow through the leak, the positive electrode of DC current source is placed in the water used to simulate the hazardous waste when detecting primary liner or in soil when detecting secondary liner, the negative electrode (current return electrode) of DC current source is placed in the detection layer at the position (9.9, 0.1, 0.08) to form the current passage. The fixed electrode measurement is carried out by installing a potential reference electrode at the position (10, 5, 0.08), which is used to provide a common reference point for the potential measurements (the coordinate system in Fig.2 is referenced here). 121 data are collected over an area of 100m2.

    Table 1 shows the sealed model parameters for locating leaks. These parameters come from the test result of the facility.

    Table 1 Model parameters[23,24]

    Table 2 shows the experimental data collected from the detection electrodes laid on two crossed lines under or above the leaks and the corresponding simulated value based on sealed model. Leak 1 is located at the center of the primary liner. Leak 2 is located at the center of the secondary liner. The relative errors are also shown in Table 2.

    Data in Table 2 show that the relative errors between simulated data and experimental data are less than 5%. Considering the location error of detection electrodes during construction, the errors in measurement and the influence caused by noise and other factors, it can be concluded that the analysis method given above is valid.

    3.2 Parameter study

    The parameter studies below are aimed at charactering the performance of the method for variations in the detection layer material electrical parameters, the contamination, the detection electrodes and current supply electrode position, and the detection layer depth. The result demonstrates the general applicability of the method and may be used to optimize the technique for specific landfill survey application.

    3.2.1 Effect of detection layer resistivity

    The detection layer material’s resistivity ρcis controllable, which can be changed during the construction of a waste landfill. Fig.4 shows the anomaly responses for varying detection layer resistivity for detection electrodes survey data measured at a depth of d=0.05m below the primary liner. These results demonstrate that the strength of the anomaly response is increased and leak detectability is improved for high detection layer resistivity.

    Table 2 Comparison of experimental data and simulated data of two survey lines (V)

    Fig.4 Distribution of the electric potential besides the leak for different resistivity of the detecting liner

    3.2.2 Effect of the inhomogeneity of detection layer medium

    Leak in the liner allows the leachates from the waste materials to detection layer, so the resistivity of contaminated region will decrease. ρc′ is used here to present the resistivity of contaminated region. Fig.5 shows the family of leak anomaly responses for different contaminated hemisphere r and ρc′=10Ω.m . The anomaly decays rapidly as the contaminated radius increases, so the leakage should always be conducted timely.

    3.2.3 Effect of detection electrodes depth

    A family of leak anomaly responses for several detection electrodes depths below a single leak located in the primary liner is shown in Fig.6, which indicates the substantial improvement gained in detection sensitivity when the detection electrodes are closer to the detection liner. That is to say, the survey should always be conducted to the detection liner as close as possible.

    Fig.5 Distribution of the electric potential besides the leak for different radius of the pollution area

    Fig.6 Distribution of the electric potential besides the leak for different vertical distance from the leak

    3.2.4 Effect of leak current

    Fig.7 shows the anomaly responses for different leak current. The results illustrate that the higher the leak current, the higher the detectability.

    Fig.7 Distribution of the electric potential besides the leak for different current of the leak

    3.2.5 Effect of the offset distance from the leak to current resource electrode

    The offset distance of the leak to current resource electrode affects the anomaly response. To illustrate this characteristic, Fig.8 presents the distribution of the electric potential besides the leak for different horizontal distance horizontal distance (hd) from leak to source electrode. In Fig.9, the distribution for different vertical distance vertical distance (vd) from leak to source electrode is given. As expected, when the horizontal distance is far enough (>10m), the vertical distance from leak to source electrode has little influence on the leak anomaly responses. But when the source electrode is just below a leak, the range of the leak anomaly responses is very small. It is hard to detect the leak under this circumstance. Hence, in order to detect the entire region of a landfill, there are at least two power supply electrodes in the detection layer.

    Fig.8 Distribution of the electric potential besides the leak for different horizontal distance (hd) from leak to source electrode

    Fig.9 Distribution of the electric potential besides the leak for different vertical distance (vd) from leak to source electrode

    4 Conclusion

    For a hazardous waste landfill, when a high DC voltage is imposed on the both sides of the gemembrance liner, the detection liner can be seen as a sealed space excited by leakage current and the return electrode current, The leakage current is a positive current resource +I located at the current entrance or a negative resource -I located at the current exit. The electrical potential of an arbitrary in detection layer satisfies the Poisson equation. The boundary conditions satisfy natural boundary condition. Parametric studies show that big magnitude of leak current, high resistivity of detection liner, large horizontal distance between the power supply electrode and leak and small distance between the detector electrodes and the detected liner are helpful to leak location, but the vertical distance from leak to source electrode has little influence on the leak anomaly responses when the horizontal distance is far enough (>10m).

    The numerical method is effective in solving the problem of potential distribution in even an irregular region. But there exists some shortage such as low computational efficiency. How to improve the computation efficiency will be the emphasis for further research.

    Reference

    [ 1] Darilek G T, Laine D L, Parra J O. The electrical leak location method for geomembrane liners- Development and application. In: Proceedings of the Industrial Fabrics Association International Geosynthetics, San Diego, USA, 1989. 21-23

    [ 2] Darilek G T, Laine D L. Understanding electrical leak location systems of geomembrane liners and avoiding specifications pitfalls. In: Proceedings of the 10th National Conference, Superfund, Washington, D C, USA, 1989. 27-29

    [ 3] Smith B, Darilek G, Laine D. Enhanced geomembrane CQA through proper application of geomembrane leak location surveys. In: Proceedings of the Geosynthetics 2007 Conference Proceedings, Washington D C, USA, 2007. 16-19

    [ 4] Darilek G, Laine D. Experience with geosynthetic clay liners as a conductive layer in geomembrane leak location surveys. Geosynthetics, 2007,14 (6):30-33

    [ 5] Parra J O. Electrial response of a leak in a geomembrane liner. Geophysics, 1988,53 (11):1445-1452

    [ 6] Parra J O, Owen T E. Model studies of electrical leak detection in geomembrane lined impoundments. Geophysics, 1988,53(11):1453-1458

    [ 7] Wait J R. Complex resistivity of the Earth. Progress in Electromagnetic Research, 1989,1(1):171-175

    [ 8] Wait J R. Simple model for current leakage in insulating liner. IEEE transactions on geoscience and remote sensing, 1994,32(2): 472-474

    [ 9] Yang P, Nai C X, Dong L. Leak current model in leakage detection of HDPE liner using high voltage DC method . Acta Scientiae Circumstantiae,2005,25(10):1261-1364(in Chinese)

    [10] Yang P, Dong L, Wang Q. Multimedia model of single-liner landfill high voltage DC leak detection. China Environmental Science,2008, 28(1):63-67

    [11] Zhao X C, Yang P, Zhang Y D, et al.Finite element simulation of high voltage direct current electricity technology for double liner landfill leakage detection. China Environmental Science,2007,27(1):76-79

    [12] Guan S P, Nai C X, Dong L, et al. A direct current resistance circuit model for landfill leak detection. Acta Scientiae Circumstantiae, 2010. 30(6):1188-1192

    [13] Wang Z C, Chen Y Y. Hazardous waste landfill leakage detection based on transmission lines model. Advances in Information Sciences and Service Sciences, 2011.3(9):17-24

    [14] Nai C X, Dong L, Wang Q, et al. The stratified medium model for leakage detection in double liner landfills. Research of Environmental Sciences, 2008, 21(6):30-34

    [15] Yang P, Jiang Y X,Wang Y N, et al. Study on double-liner landfill leak location algorithm. Journal of Beijing Union University, 2013,27(1),81-85

    [16] Guan S P, Wang Y L,Nai C X. Application of electrical leak detection method in double-lined landfills.China Environmental Science,2011,31(12):2013-2017

    [17] Qiao S, Zhou M Y, Bai L. Theory of Exploration Electromagnetic Field. Beijing: China University Mining Technology Press, 1989. (In Chinese)

    [18] Yao D Z, Liang J B. Method of Mathematics and Physical. Wuhan: Wuhan University Press, 1997. (In Chinese)

    [19] Lang K M. Method of Mathematics and Physical. Beijing: High Education Press, 1997. (In Chinese)

    [20] Zong Z H, Gao M L, Xia Z H. Finite element model validation of the continuous rigid frame bridge based on structural health monitoring part I:FE model updating based on the response surface method.China Civil Engineering Jouranl,2011,2(44):90-98

    [21] Merla A , Donato D , Fazio D . Differential thermal infrared imaging for environmental inspection. Journal of applied remote sensing, 2014, 8(11):117-123

    [22] Abuel N , Hossam M. Bouazza A. Numerical characterization of advective gas flow through GM/GCL composite liners having a circular defect in the geomembrane. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1661-1671

    [23] Gao M L. Study on the Finite Element Model Validation of the Continuous Rigid Frame Bridge Based on Structural Health Monitoring:[Ph.D dissertation]. Fuzhou: Fuzhou University, 2008

    [24] Chen Y Y, Nai C X, Dong L, et al.Landfill leakage detection based on boundary localization method.Research of Environmental Sciences,2012,25(3) : 346-351

    Yang Ping, born in 1974. She received her Ph.D and M.S degrees from college of Mechatronic Engineering of China Mining & Technology University (Beijing) in 2006 and 2003 respectively. She also received her B.S degrees from XinYang Normal University in 1997. Her research interests include signal acquisition & processing and mathematical modeling.

    10.3772/j.issn.1006-6748.2015.04.012

    ①Supported by the National Basic Research Development Program of China (No. 2010CB428506), the National High Technology Research and Development Program (No.2007AA061303) and Beijing Higher Education Young Elite Teacher Project (YETP1756).

    ②To whom correspondence should be addressed. E-mail: xxtyangping@buu.edu.cn Received on Oct. 14, 2014, Tian Jinwen, Wang Yanni, Xue Lin

    久久热在线av| 视频区图区小说| 国产亚洲欧美在线一区二区| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频 | 黑人欧美特级aaaaaa片| 欧美少妇被猛烈插入视频| 亚洲天堂av无毛| 91老司机精品| 老司机午夜十八禁免费视频| 99热网站在线观看| 国产成人欧美在线观看 | 热re99久久精品国产66热6| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美 亚洲 国产 日韩一| 老司机亚洲免费影院| 9191精品国产免费久久| 咕卡用的链子| 国产免费视频播放在线视频| 搡老乐熟女国产| 两性夫妻黄色片| 香蕉国产在线看| 桃红色精品国产亚洲av| 一级,二级,三级黄色视频| 纵有疾风起免费观看全集完整版| 18禁国产床啪视频网站| 少妇精品久久久久久久| 脱女人内裤的视频| 亚洲精品久久午夜乱码| 两个人看的免费小视频| 大码成人一级视频| 老司机福利观看| 黄色a级毛片大全视频| 9色porny在线观看| 中国国产av一级| 男女高潮啪啪啪动态图| 正在播放国产对白刺激| 中文字幕高清在线视频| 黄片播放在线免费| 窝窝影院91人妻| 亚洲自偷自拍图片 自拍| xxxhd国产人妻xxx| 少妇猛男粗大的猛烈进出视频| 少妇猛男粗大的猛烈进出视频| av电影中文网址| 水蜜桃什么品种好| 久久人人97超碰香蕉20202| 纯流量卡能插随身wifi吗| 老司机靠b影院| 99国产极品粉嫩在线观看| 欧美av亚洲av综合av国产av| 国产成人系列免费观看| 中文字幕人妻丝袜一区二区| 国产一区二区激情短视频 | 中文字幕av电影在线播放| 精品卡一卡二卡四卡免费| 国产精品1区2区在线观看. | 中文字幕人妻丝袜制服| 在线天堂中文资源库| 俄罗斯特黄特色一大片| 久久久久精品人妻al黑| 一区福利在线观看| 国产在线视频一区二区| 欧美变态另类bdsm刘玥| 美女高潮到喷水免费观看| 欧美激情极品国产一区二区三区| www.av在线官网国产| 午夜免费观看性视频| 热99久久久久精品小说推荐| 欧美激情 高清一区二区三区| 国产免费现黄频在线看| 啦啦啦 在线观看视频| 亚洲第一青青草原| 国产av精品麻豆| 在线观看一区二区三区激情| 国产精品国产av在线观看| a级片在线免费高清观看视频| 亚洲九九香蕉| 99re6热这里在线精品视频| 人人妻人人爽人人添夜夜欢视频| 久久中文看片网| 日韩欧美免费精品| 亚洲第一av免费看| 十八禁网站免费在线| 欧美激情 高清一区二区三区| 成人国产一区最新在线观看| 99国产极品粉嫩在线观看| 亚洲国产看品久久| 国产xxxxx性猛交| 免费在线观看完整版高清| 一本一本久久a久久精品综合妖精| 99re6热这里在线精品视频| 国产欧美亚洲国产| 精品人妻熟女毛片av久久网站| 丝瓜视频免费看黄片| 日韩欧美国产一区二区入口| 无遮挡黄片免费观看| 亚洲成av片中文字幕在线观看| 日本a在线网址| 青草久久国产| 国产精品秋霞免费鲁丝片| 亚洲国产日韩一区二区| 黄频高清免费视频| 亚洲av国产av综合av卡| 精品久久久久久电影网| 精品国产乱子伦一区二区三区 | 久久99一区二区三区| 欧美精品一区二区免费开放| 成人三级做爰电影| 精品少妇内射三级| 亚洲专区国产一区二区| 好男人电影高清在线观看| 精品人妻在线不人妻| 少妇精品久久久久久久| 91精品三级在线观看| 性色av乱码一区二区三区2| 免费在线观看黄色视频的| 亚洲欧洲日产国产| 国产成人精品久久二区二区免费| 一级a爱视频在线免费观看| 新久久久久国产一级毛片| 中文字幕人妻丝袜一区二区| av超薄肉色丝袜交足视频| 热99re8久久精品国产| 久久影院123| 色老头精品视频在线观看| 亚洲全国av大片| 国产xxxxx性猛交| 国产欧美日韩精品亚洲av| 久久免费观看电影| 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| av免费在线观看网站| av天堂在线播放| 91精品三级在线观看| 黑丝袜美女国产一区| 亚洲av欧美aⅴ国产| 后天国语完整版免费观看| 国产精品 欧美亚洲| 亚洲成人手机| 性色av一级| 精品国产一区二区三区四区第35| 亚洲中文av在线| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 男女高潮啪啪啪动态图| 欧美国产精品va在线观看不卡| 亚洲精品国产av蜜桃| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 两人在一起打扑克的视频| 制服人妻中文乱码| 国产老妇伦熟女老妇高清| 十八禁高潮呻吟视频| 免费在线观看完整版高清| 高清黄色对白视频在线免费看| 两人在一起打扑克的视频| 精品一区二区三区av网在线观看 | 亚洲精品中文字幕一二三四区 | 最新在线观看一区二区三区| 高清在线国产一区| 精品卡一卡二卡四卡免费| 国产一级毛片在线| 国产欧美日韩一区二区三 | 大片电影免费在线观看免费| 国产免费视频播放在线视频| 9热在线视频观看99| 波多野结衣av一区二区av| 精品少妇黑人巨大在线播放| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 午夜免费鲁丝| 久久久久网色| 欧美av亚洲av综合av国产av| 久久av网站| 1024视频免费在线观看| 高清av免费在线| 精品高清国产在线一区| 午夜精品国产一区二区电影| 在线天堂中文资源库| 美女主播在线视频| 精品国内亚洲2022精品成人 | 中文欧美无线码| 男女高潮啪啪啪动态图| 黄色毛片三级朝国网站| 天天躁日日躁夜夜躁夜夜| 亚洲精品国产区一区二| 国产伦理片在线播放av一区| 国产在线视频一区二区| 亚洲av日韩在线播放| 国产欧美日韩一区二区精品| 免费不卡黄色视频| 男男h啪啪无遮挡| 亚洲三区欧美一区| 国产精品久久久av美女十八| www.av在线官网国产| 麻豆国产av国片精品| 50天的宝宝边吃奶边哭怎么回事| 免费日韩欧美在线观看| 国产成人系列免费观看| 91av网站免费观看| 成人国产av品久久久| 欧美少妇被猛烈插入视频| a级毛片黄视频| 少妇精品久久久久久久| 中文字幕人妻丝袜制服| 99久久精品国产亚洲精品| 91九色精品人成在线观看| 丝瓜视频免费看黄片| www.av在线官网国产| 99热国产这里只有精品6| 窝窝影院91人妻| 久久久久久人人人人人| 久久久水蜜桃国产精品网| 久久精品亚洲av国产电影网| 日韩有码中文字幕| 多毛熟女@视频| 一级黄色大片毛片| 成年动漫av网址| 伊人亚洲综合成人网| 国产激情久久老熟女| 老司机亚洲免费影院| h视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品一区在线观看国产| 国产精品久久久久久精品电影小说| 国产亚洲av片在线观看秒播厂| 中文字幕人妻丝袜制服| 日韩中文字幕视频在线看片| 丰满少妇做爰视频| 乱人伦中国视频| 黄色视频不卡| 国产黄频视频在线观看| 欧美国产精品一级二级三级| 久久国产精品影院| 人妻 亚洲 视频| a级毛片在线看网站| 国产人伦9x9x在线观看| 久久精品亚洲熟妇少妇任你| 操美女的视频在线观看| 9191精品国产免费久久| videos熟女内射| 日本黄色日本黄色录像| 久久香蕉激情| 欧美少妇被猛烈插入视频| 亚洲午夜精品一区,二区,三区| 精品一品国产午夜福利视频| 满18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三 | 50天的宝宝边吃奶边哭怎么回事| 999精品在线视频| 19禁男女啪啪无遮挡网站| 99久久国产精品久久久| 一区二区三区乱码不卡18| 国产在线观看jvid| 国产精品久久久久久人妻精品电影 | 老鸭窝网址在线观看| 男女高潮啪啪啪动态图| 久热爱精品视频在线9| 80岁老熟妇乱子伦牲交| 18在线观看网站| 国产精品亚洲av一区麻豆| 亚洲av片天天在线观看| 国产深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| tocl精华| 国产99久久九九免费精品| 麻豆乱淫一区二区| 在线精品无人区一区二区三| 香蕉国产在线看| 男男h啪啪无遮挡| 动漫黄色视频在线观看| 一二三四社区在线视频社区8| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 好男人电影高清在线观看| 90打野战视频偷拍视频| 欧美黄色淫秽网站| 色播在线永久视频| tube8黄色片| 一级片免费观看大全| 国产片内射在线| 久久久精品区二区三区| 他把我摸到了高潮在线观看 | 大香蕉久久成人网| 国产一区二区 视频在线| 欧美亚洲日本最大视频资源| 女人久久www免费人成看片| 欧美黄色淫秽网站| 国产精品99久久99久久久不卡| 国产又色又爽无遮挡免| 麻豆国产av国片精品| 一区二区三区四区激情视频| 在线亚洲精品国产二区图片欧美| 亚洲av日韩精品久久久久久密| 久久久精品国产亚洲av高清涩受| av电影中文网址| avwww免费| 1024视频免费在线观看| 9色porny在线观看| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av香蕉五月 | 丰满饥渴人妻一区二区三| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕| 制服人妻中文乱码| 国产成+人综合+亚洲专区| 国产xxxxx性猛交| 18在线观看网站| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 亚洲av欧美aⅴ国产| 91大片在线观看| 好男人电影高清在线观看| 免费观看av网站的网址| 亚洲精品国产一区二区精华液| 麻豆乱淫一区二区| 亚洲精品美女久久av网站| 国产97色在线日韩免费| a级毛片黄视频| a级片在线免费高清观看视频| 女警被强在线播放| 丰满少妇做爰视频| 国产真人三级小视频在线观看| 亚洲第一av免费看| 久久久久久久久久久久大奶| 91老司机精品| av天堂在线播放| 国产精品久久久久久人妻精品电影 | 中文字幕人妻丝袜制服| 老司机福利观看| 亚洲精品在线美女| 麻豆av在线久日| 黄色a级毛片大全视频| 男女午夜视频在线观看| 亚洲av欧美aⅴ国产| 久久久久国产一级毛片高清牌| 秋霞在线观看毛片| 99re6热这里在线精品视频| 国产区一区二久久| a 毛片基地| 深夜精品福利| e午夜精品久久久久久久| 一二三四在线观看免费中文在| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区 | 精品少妇内射三级| 精品一区二区三卡| 男人操女人黄网站| av不卡在线播放| 国产又色又爽无遮挡免| 精品熟女少妇八av免费久了| 欧美日韩国产mv在线观看视频| 考比视频在线观看| 久久久国产成人免费| 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 视频区图区小说| 亚洲专区国产一区二区| videosex国产| 国产高清videossex| 午夜免费成人在线视频| 午夜福利在线观看吧| 午夜日韩欧美国产| 国产一卡二卡三卡精品| 精品一区二区三区四区五区乱码| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 亚洲avbb在线观看| 老熟妇仑乱视频hdxx| 国产福利在线免费观看视频| 淫妇啪啪啪对白视频 | 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 一本综合久久免费| 宅男免费午夜| 99热网站在线观看| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 国产1区2区3区精品| 精品人妻在线不人妻| 免费不卡黄色视频| 狂野欧美激情性bbbbbb| 天天添夜夜摸| 亚洲情色 制服丝袜| 国产亚洲av片在线观看秒播厂| 青草久久国产| 男人爽女人下面视频在线观看| 国产亚洲欧美在线一区二区| av一本久久久久| 国产野战对白在线观看| 亚洲五月婷婷丁香| 欧美人与性动交α欧美软件| 十八禁网站免费在线| 国产亚洲午夜精品一区二区久久| 狠狠精品人妻久久久久久综合| 视频在线观看一区二区三区| 一区二区三区乱码不卡18| 日本精品一区二区三区蜜桃| 国产区一区二久久| 免费在线观看影片大全网站| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 一本一本久久a久久精品综合妖精| 熟女少妇亚洲综合色aaa.| 日韩欧美国产一区二区入口| 亚洲五月婷婷丁香| 黑人操中国人逼视频| 亚洲,欧美精品.| 黄色片一级片一级黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | av不卡在线播放| 黄色视频不卡| 亚洲欧洲日产国产| 精品亚洲成国产av| 欧美日韩一级在线毛片| 一级a爱视频在线免费观看| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看 | 国产精品影院久久| 日本av免费视频播放| 又紧又爽又黄一区二区| 黄频高清免费视频| 美女福利国产在线| 一二三四社区在线视频社区8| 亚洲精品国产一区二区精华液| 男女午夜视频在线观看| 日韩有码中文字幕| 建设人人有责人人尽责人人享有的| 久久99一区二区三区| 一本综合久久免费| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美国产一区二区入口| 久久精品亚洲av国产电影网| 精品福利观看| 91av网站免费观看| 国产99久久九九免费精品| 宅男免费午夜| 欧美中文综合在线视频| 无遮挡黄片免费观看| 日本vs欧美在线观看视频| 丝袜在线中文字幕| a在线观看视频网站| 午夜91福利影院| 亚洲精品国产精品久久久不卡| 久久综合国产亚洲精品| 国产av一区二区精品久久| 成年女人毛片免费观看观看9 | 精品国产一区二区久久| 国产精品一区二区精品视频观看| 国产91精品成人一区二区三区 | svipshipincom国产片| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 青春草亚洲视频在线观看| 久久久国产欧美日韩av| 一区二区三区精品91| 窝窝影院91人妻| 亚洲视频免费观看视频| 免费久久久久久久精品成人欧美视频| av在线app专区| 一区二区av电影网| 亚洲精品国产区一区二| 超色免费av| 久久国产精品影院| 久久免费观看电影| 久久久久网色| 丝袜美腿诱惑在线| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 精品高清国产在线一区| 手机成人av网站| 黄频高清免费视频| 一区二区三区乱码不卡18| 五月开心婷婷网| 欧美久久黑人一区二区| 巨乳人妻的诱惑在线观看| 一进一出抽搐动态| 亚洲国产欧美日韩在线播放| 青草久久国产| 国产亚洲av高清不卡| 亚洲精华国产精华精| 老司机亚洲免费影院| 美女脱内裤让男人舔精品视频| 亚洲 欧美一区二区三区| www.999成人在线观看| 国产男女内射视频| 欧美在线黄色| 亚洲精品乱久久久久久| 国产精品影院久久| 亚洲五月婷婷丁香| 午夜两性在线视频| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 亚洲黑人精品在线| 我要看黄色一级片免费的| 欧美激情高清一区二区三区| 国产成+人综合+亚洲专区| 欧美激情极品国产一区二区三区| 国产精品一区二区免费欧美 | 老司机午夜十八禁免费视频| 韩国精品一区二区三区| av福利片在线| 中文字幕制服av| 国产熟女午夜一区二区三区| 亚洲精品国产区一区二| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 交换朋友夫妻互换小说| 在线 av 中文字幕| 满18在线观看网站| 免费日韩欧美在线观看| 肉色欧美久久久久久久蜜桃| 人妻人人澡人人爽人人| 亚洲九九香蕉| netflix在线观看网站| 亚洲av电影在线进入| av在线播放精品| 午夜福利,免费看| 黄色a级毛片大全视频| 宅男免费午夜| 国产一区二区 视频在线| 亚洲成人国产一区在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| 欧美黑人精品巨大| 男女高潮啪啪啪动态图| 国产91精品成人一区二区三区 | 国产免费视频播放在线视频| 日韩熟女老妇一区二区性免费视频| 精品高清国产在线一区| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 久久狼人影院| 高清av免费在线| 精品一品国产午夜福利视频| 欧美国产精品一级二级三级| 欧美老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 亚洲男人天堂网一区| 淫妇啪啪啪对白视频 | 久久99一区二区三区| 岛国在线观看网站| 亚洲黑人精品在线| 欧美成人午夜精品| 亚洲人成电影观看| 国产一级毛片在线| 人人妻人人澡人人看| 日韩欧美国产一区二区入口| 成人国语在线视频| 在线观看一区二区三区激情| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩一区二区三 | 亚洲精品国产av蜜桃| 99热网站在线观看| 免费黄频网站在线观看国产| 国产成人啪精品午夜网站| 久久久欧美国产精品| 50天的宝宝边吃奶边哭怎么回事| videosex国产| 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 另类精品久久| 18禁黄网站禁片午夜丰满| 久久久国产欧美日韩av| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免| 亚洲精品久久午夜乱码| videosex国产| 亚洲va日本ⅴa欧美va伊人久久 | 午夜成年电影在线免费观看| 1024香蕉在线观看| xxxhd国产人妻xxx| 岛国毛片在线播放| 天天躁日日躁夜夜躁夜夜| 亚洲性夜色夜夜综合| 老熟妇乱子伦视频在线观看 | tube8黄色片| 精品久久蜜臀av无| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 日韩 欧美 亚洲 中文字幕| 青春草亚洲视频在线观看| 亚洲久久久国产精品| 9191精品国产免费久久| 亚洲一码二码三码区别大吗| 久热爱精品视频在线9| 超色免费av| 飞空精品影院首页| 日本vs欧美在线观看视频| 精品国产一区二区三区四区第35| 久久久精品94久久精品| 欧美日本中文国产一区发布| 91九色精品人成在线观看| 天天操日日干夜夜撸| 黄网站色视频无遮挡免费观看| 黄色片一级片一级黄色片| 国产在线观看jvid| 久久热在线av| 国产精品.久久久| 99国产精品一区二区三区| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线| 亚洲伊人久久精品综合| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 日韩三级视频一区二区三区| 99国产精品99久久久久| 黄频高清免费视频| 秋霞在线观看毛片|