• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of bilayer lengthened LDPC codes over expanded graph for relay channels①

    2015-04-17 07:25:21LiuYangLiYing
    High Technology Letters 2015年4期

    Liu Yang (劉 洋), Li Ying

    (State Key Laboratory of ISN, Xidian University, Xi’an 710071, P.R.China)

    ?

    Design of bilayer lengthened LDPC codes over expanded graph for relay channels①

    Liu Yang (劉 洋), Li Ying②

    (State Key Laboratory of ISN, Xidian University, Xi’an 710071, P.R.China)

    This paper presents a low complexity optimized algorithm for design of bilayer lengthened LDPC (BL-LDPC) code for decode-and-forward relay system. The design is performed over the expanded graph of the BL-LDPC code, which consists of the original bilayer graph and the extra added relay-generated parity check bits. To build up our proposed optimized algorithm, we present a modified Gaussian approximation algorithm for the expanded structure of the BL-LDPC code. Then using the proposed optimized algorithm, we find the optimum overall expanded graph of the BL-LDPC code. Simulation results show that the BL-LDPC codes obtained by our proposed optimized algorithm have excellent bit-error-rate performances and small gaps between the convergence thresholds and the theoretical limits when transmitted over the additive white Gaussian noise channels.

    bilayer LDPC codes, relay channel, decode-and-forward, Gaussian approximation,channel capacity

    0 Introduction

    The three-node relay channel was introduced in Ref.[1] and the first capacity results were presented in Ref.[2]. While the capacity of the general relay channel is still unknown, recent years there have been a vast amount of researches on this topic, both in the information theory and coding communities. Among them, one main relay protocol is the decode-and-forward (DF) relay scheme, which is proved to achieve the capacity of the relay channel for certain special cases[2]. The classic DF technique is based on random binning[1], where the relay decodes the source data and provides a re-encoded copy (bin index) of the source message to the destination.

    One of the important researches for practical implementation of a DF relay scheme is the design of practical codes. In this research field, authors in Ref.[3] proposed a novel bilayer LDPC code used in Gaussian relay channel, which was designed to approach the information theoretic limit of the DF scheme. Bilayer LDPC codes consist of two general types called bilayer-expurgated LDPC (BE-LDPC) codes and bilayer-lengthened LDPC (BL-LDPC) codes.

    A bilayer LDPC code consists of one higher rate code optimized for the source-to-relay link as well as one lower rate code optimized for the source-to-destination link. As for BL-LDPC code, the lower rate code is designed first and then the higher rate code is designed by increasing the codeword length while keeping the parameters of the lower rate code unchanged. In other words, designing a BL-LDPC code corresponds to finding a bilayer graph so that the lower graph corresponds to a good LDPC code at rate R-optimized for SNR-, while the bilayer graph represents a good LDPC code at rate R+optimized for SNR+. More researches on the design of BL-LDPC codes were found in Refs[4-6]. In Ref.[4], the authors designed BL-LDPC codes for the Gaussian relay channel using irregular check degrees. The design of BL-LDPC code for Rayleigh fading relay channels was studied in Ref.[5]. Authors in Ref.[6] proposed a technique to design complexity-optimized BL-LDPC codes. However, these designs are all based on the bilayer graph not on the overall expanded graph of the BL-LDPC codes, which expands with an addition of extra parity check bits from the relay.

    The authors in Ref.[7] first proposed a BL-LDPC code design when joint decoding was performed over the overall expanded graph. The optimization algorithm was based on density evolution, including three steps.

    They first optimized the lower graph of BL-LDPC codes at R-, then fixing the lower graph, optimized the upper graph of BL-LDPC codes so that the bilayer graph of BL-LDPC codes was optimized at R+. In the last stage, they optimized the overall expanded graph at R-by fixing the optimized BL-LDPC code. This three-stage method resulted in a lack of global optimization. Meanwhile, since density evolution algorithm is an infinite-dimensional problem, this optimization algorithm is very much complex.

    In this study, a low complexity algorithm is proposed for the design of the BL-LDPC codes over the overall expanded graph, denoted as expanded BL-LDPC codes. To simplify the process, only the mean of message updates will be tracked, which are supposed to be Gaussian mixtures[8]. Based on this fact, a modified Gaussian approximation for the expanded BL-LDPC codes will be presented. The proposed algorithm aims at optimizing the degree distributions of the lower variable nodes and the upper variable nodes simultaneously. the bit-error-rate (BER) performances of the expanded BL-LDPC codes obtained by the proposed optimization algorithm will be simulated and their decoding thresholds will be calculated using the modified Gaussian approximation. Simulation results show that the proposed expanded BL-LDPC codes are excellent in BER performances and small gaps between the convergence thresholds and the theoretical limits.

    1 Preliminaries

    1.1 DF strategy

    A Gaussian degraded relay channel is shown in Fig.1, where X1and X2denote the transmitted signals from the source and relay while Y and Y1denote the received signals at the destination and relay. The transmission can be defined by

    (1)

    where Z1~N(0,N1) and Z2~N(0,N1+N2) denote Gaussian noises at relay and destination respectively. The power constraints at the source and relay are P1and P2. The overall DF rate at source is

    (2)

    where α is the optimal cooperation factor to maximize the rate. To ensure a successful decoding at the destination, the rate for relay’s codeword X2must satisfy

    (3)

    Please refer to Ref.[2] to review a full DF strategy.

    Fig.1 Gaussian degraded relay channel model

    1.2 Coding for DF

    Based on the DF strategy in Ref.[1], authors in Ref.[3] formulized a general code design problem for the scheme. The code design involves the construction of two codebooks: source codebook X1and relay codebook X2. The relay codebook X2can be constructed as a conventional error-correcting code that guarantees successful decoding at the destination. In contrast, the source codebook X1must be constructed so that it can be decoded successfully at both relay and destination. The source’s codebook needs to be designed at two SNR values. The first SNR value ensures the relay can successfully decode X1at SNR+=αP1/N1while the second SNR value ensures a successful decoding of X1with the help of extra parity bits from the relay at SNR-=αP1/(N1+N2).

    The code construction problem is illustrated in a schematic form shown in Fig.2, where

    (4)

    denote the effective source-to-relay and source-to-destination rates. These two rates are the targeted rates for the bilayer LDPC code design.

    Fig.2 The achievable rates R+, R- and R2 using DF strategy

    2 Expanded BL-LDPC code design

    2.1 Expanded BL-LDPC code description

    The Tanner graph of the BL-LDPC code structure[3]is depicted in Fig.3. It is divided into lower and upper graphs, which have n1and n2variable nodes respectively. Both sets of the variable nodes are connected to k1check nodes. Note that the bilayer graph corresponds to a lengthened version of the lower graph by adding n2variable nodes while keeping k1check nodes fixed. As mentioned above, designing a BL-LDPC code corresponds to finding the bilayer graph so that the lower graph corresponds to a good LDPC code at rate R-optimized for SNR-while the bilayer graph represents a good LDPC code at rate R+optimized for SNR+.

    Fig.3 Tanner graph of a BL-LDPC code

    In this work, BL-LDPC code design over the overall expanded graph is proposed which consists of the bilayer graph of the BL-LDPC code and the relay-generated parity bits. The overall expanded graph of the BL-LDPC code is depicted in Fig.4, where it adds up k2extra relay-generated parity bits. At this point onwards, the Tanner graph in Fig.4 is refered as an expanded bilayer lengthened LDPC code (EBL-LDPC) and the Tanner graph in Fig.3 as a bilayer lengthened LDPC code (BL-LDPC).

    Fig.4 Tanner graph of an expanded BL-LDPC code

    Note that there are three edge types in Fig.4. The first edge type connects the sets of n1variable nodes and k1check nodes while the second edge type connects n2variable nodes and k1check nodes. The third edge type corresponds to the edges between n2variable nodes and k2extra parity bits. Now define two parameters η1and η2which denote the percentages of the first edge type and the second edge type respectively. It is easy to obtain the following relations.

    (5)

    The conventional design of EBL-LDPC codes can be divided into three stages. In the first stage, optimize the first edge type at R-which represents a good LDPC code for the lower graph of the BL-LDPC code in Fig.3. In the second stage, fixing the first edge type, optimize the second edge type so that the bilayer graph of the BL-LDPC code is a capacity-approaching LDPC code at R+. In the last stage, fixing the optimized BL-LDPC code at R+, search the third edge type in order that the overall expanded graph of the BL-LDPC code is optimized at R-.

    2.2 A modified Gaussian approximation for the EBL-LDPC codes

    In this section, only the mean of message updates is tracked instead of the complete distribution, based on which a modified Gaussian approximation algorithm is presented to design the EBL-LDPC codes over the overall expanded graph.

    (6)

    Hence, the average means of message updates at the n1and n2variable nodes are obtained as follows.

    (7)

    Similarly, working with the message updating rule at the check nodes, it is easy to obtain:

    (8)

    (9)

    Based on Eq.(6), the overall mean of message updates at the variable nodes is defined. This yields to

    (10)

    (11)

    According to Ref.[8], a necessary condition to obtain a successful decoding is given by

    (12)

    Eq.(12) is approximated linearly in λ[i,0,0]and λ[0,j,k], which allows for linear optimization programming.

    2.3 EBL-LDPC code optimization

    The overall expanded BL-LDPC codes can be now optimized. The most powerful algorithm probably consists of optimizing simultaneously n1variable nodes with degree distribution λ[i,0,0]and n2variable nodes with degree distribution λ[0,j,k].

    (13)

    (14)

    From Eq.(13), the following relation can be obtained:

    (15)

    (16)

    subject to:

    (17)

    (18)

    (19)

    A parameter μkis introduced in Ref.[3]. It is slowly increased at each optimization iteration and approaches 1 eventually.

    3 Simulation results

    In this paper, since it is needed to compare the results with those in Ref.[7], only the case of additive white Gaussian noise (AWGN) channel is dealt with.

    Recall that in Ref.[7], using density evolution, the code design starts with optimizing the bilayer graph of the BL-LDPC code at R+=0.7, which takes place in three stages. First, optimize the first edge type using an optimized irregular LDPC code at R-=0.5. Second, fix the optimized first edge type, and design the BL-LDPC code at R+=0.7 by adding n2variable nodes using the second edge type. In the next step, the optimized bilayer graph is fixed and the overall expanded graph is designed at R-=0.5 using the third edge type. They designed the optimized degree distribution (node-perspective) in the right side of Table 1. Denote this code as CODE(Ref). The gaps between the convergence thresholds of CODE(Ref) and the theoretical limits are calculated, denoted by gap+and gap-respectively.

    Table 1 The degree distributions of CODE and CODE(Ref)

    at target rate (R+,R-)=(0.7,0.5)

    For ease of comparison, take an overall code length of 10000 bits and denote this code as CODE. Applying our proposed optimized algorithm, the EBL-LDPC code is designed for (R+,R-)=(0.7,0.5) and then the optimized degree distributions (node-perspective) are given in the left side of Table 1.

    The convergence thresholds of CODE(Ref) are within 0.3266dB and 0.2312dB from the theoretical limits at R+=0.7 and R-=0.5, which are calculated using Gaussian approximation. In comparison, the convergence thresholds of CODE obtained by our proposed algorithm are within 0.3040dB and 0.205dB from the theoretical limits at R+=0.6925 and R-=0.4875. The gaps are slightly smaller than those in Ref.[7]. Although there exists minor rate loss, this is admissible as stated in Ref.[3]. Fig.5 plots the BER performances of these two codes. These curves show that the BER performance of CODE designed by our proposed algorithm is also slightly better than that of CODE(Ref) designed by density evolution. Here, it should be noted that the performance gains are more than the drop in theoretical limits due to the minor rate loss.

    To summarize, compared with the optimization process in Ref.[7], the proposed algorithm has low complexity while maintaining the same optimization accuracy as density evolution. Specially, our optimization algorithm is based on a modified Gaussian approximation which can convert an infinite-dimension problem of density evolution to a one-dimensional problem. By doing this, the complexity can be significantly reduced. Besides, the optimization process in Ref.[7] is divided into three stages which lacks of global optimization. Our algorithm is performed in one step which can optimize the degree distributions λ[i,0,0]and λ[0,j,k]simultaneously and the gaps to the theoretical limits of the proposed codes are smaller.

    Fig.5 Compare the BER performances of CODE with that of CODE(Ref). Solid straight lines represent theoretical limits of CODE; dashed straight lines represent the convergence thresholds of CODE

    4 Conclusion

    In this study, a low complexity optimized algorithm is proposed for the design of BL-LDPC codes over the expanded graph by adding up the extra relay-generated parity check bits. A modified Gaussian approximation algorithm is presented to build up the optimized algorithm and analyze the asymptotic performances. Our proposed algorithm shows that it is possible to optimize the degree distributions of the lower and the upper variable nodes simultaneously. Simulation results show that the BL-LDPC codes obtained by using the proposed low complexity algorithm have slightly better BER performances and smaller gaps to theoretical limits compared with those obtained by density evolution algorithm in Ref.[7].

    Reference

    [1] Thomas M C, Abbas A E G. Capacity theorems for the relay channel. IEEE Transactions on Informactions Theory, 1979, 25(5): 572-584

    [2] Gerhard K, Michael G, Piyush G. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Informactions Theory, 2005, 51(9): 3037-3063

    [3] Peyman R, Wei Y. Bilayer low-density parity-check codes for decode-and-forward in relay channels. IEEE Transactions on Informactions Theory, 2007, 53(10): 3723-3739

    [4] Marwan H A, Jinhong Y, Jun N, et al. Improved bilayer LDPC codes using irregular check node degree distribution. In: Proceedings of IEEE Symposium Information Theory, Toronto, Canada, 2008.141-145

    [5] Osso V, Masoud S. Design of bilayer lengthened LDPC codes for Rayleigh fading relay channels. In: Proceedings of the 45th Annual Conference on Information Sciences and Systems, Baltimore, USA, 2011. 1-5

    [6] Osso V, Masoud S. Design of complexity- optimized bilayer lengthened LDPC codes for relay channels. In: Proceedings of the 49th Annual Allerton Conference Allerton House, Monticello, USA, 2011. 1019-1024

    [7] Azmi M H, Yuan J H. Performance of bilayer-lengthened LDPC codes under joint decoding. In: Proceedings of IEEE Information Theory Workshop, Taormina, Italy, 2009. 163-167

    [8] Chung S Y, Richardson T J, et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Informaction Theory, 2001, 47(2): 657-670

    Liu Yang, born in 1988. She is now studying for a Ph.D degree in State Key Lab of ISN, Xidian University. She received her B.S. degree from Xidian University in 2010. Her research interests include the construction of LDPC codes, spatially coupled codes and the design of LDPC codes for relay systems.

    10.3772/j.issn.1006-6748.2015.04.017

    ①Supported by the National Basic Research Program of China (No. 2012CB316100) and the National Natural Science Foundation of China (No. 61072064, 61201140, 61301177).

    ②To whom correspondence should be addressed. E-mail: yli@mail.xidian.edu.cn Received on July 14, 2014, Su Yuping

    免费av中文字幕在线| 久久国产乱子免费精品| 国产精品久久久久久久久免| 国产 精品1| 男男h啪啪无遮挡| 舔av片在线| 日韩成人av中文字幕在线观看| 一区二区三区四区激情视频| 国产亚洲91精品色在线| 丝瓜视频免费看黄片| 狂野欧美白嫩少妇大欣赏| 99九九线精品视频在线观看视频| 亚洲精品国产成人久久av| 日韩精品有码人妻一区| 久久久国产一区二区| 亚洲国产欧美在线一区| 日本爱情动作片www.在线观看| 老司机影院成人| 日本黄色片子视频| 天天躁日日操中文字幕| 高清av免费在线| 日本与韩国留学比较| 一区二区av电影网| 在线观看一区二区三区| 国产亚洲午夜精品一区二区久久| 国产成人a∨麻豆精品| 亚洲精品久久午夜乱码| 狂野欧美激情性bbbbbb| 亚洲国产成人一精品久久久| 国产伦理片在线播放av一区| 身体一侧抽搐| 久久国产乱子免费精品| 在线观看三级黄色| 少妇裸体淫交视频免费看高清| 在线观看免费日韩欧美大片 | 在线天堂最新版资源| 成人一区二区视频在线观看| av视频免费观看在线观看| 亚洲性久久影院| 老女人水多毛片| a级一级毛片免费在线观看| 另类亚洲欧美激情| 国产欧美日韩一区二区三区在线 | 日韩国内少妇激情av| 亚洲av中文字字幕乱码综合| 日本vs欧美在线观看视频 | 熟女电影av网| 直男gayav资源| 亚洲精品国产av蜜桃| 国产成人精品一,二区| 亚洲精品一二三| 老司机影院毛片| 国产高潮美女av| 免费观看在线日韩| 精品一品国产午夜福利视频| 在线观看人妻少妇| 男女无遮挡免费网站观看| 国产精品一区二区在线观看99| 91久久精品电影网| 秋霞伦理黄片| 亚洲最大成人中文| 插逼视频在线观看| 国产亚洲5aaaaa淫片| 日本wwww免费看| 日本wwww免费看| 久久精品久久精品一区二区三区| 男女国产视频网站| 九色成人免费人妻av| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频 | 国产伦理片在线播放av一区| 国产黄片美女视频| 国产 一区精品| 街头女战士在线观看网站| 在线观看免费日韩欧美大片 | 亚洲精品乱码久久久v下载方式| 欧美高清性xxxxhd video| 男女无遮挡免费网站观看| 免费大片黄手机在线观看| 大香蕉久久网| 男女免费视频国产| 免费播放大片免费观看视频在线观看| 各种免费的搞黄视频| 日日撸夜夜添| 亚洲综合色惰| 99热这里只有精品一区| 久久ye,这里只有精品| 一级a做视频免费观看| 国产高清有码在线观看视频| 亚洲成人手机| 欧美xxxx性猛交bbbb| 乱系列少妇在线播放| 亚洲国产成人一精品久久久| 亚洲第一av免费看| 久久精品国产鲁丝片午夜精品| 成人美女网站在线观看视频| 日韩一区二区视频免费看| 亚洲久久久国产精品| 高清午夜精品一区二区三区| 交换朋友夫妻互换小说| 熟女电影av网| 中文欧美无线码| 91久久精品国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 成年免费大片在线观看| 国产深夜福利视频在线观看| 精品少妇黑人巨大在线播放| 插逼视频在线观看| 日本av免费视频播放| 亚州av有码| 色吧在线观看| 免费久久久久久久精品成人欧美视频 | 嫩草影院新地址| 亚洲va在线va天堂va国产| 国产精品久久久久久精品电影小说 | 精品一区二区三区视频在线| 欧美丝袜亚洲另类| 水蜜桃什么品种好| 亚洲图色成人| av在线app专区| 免费少妇av软件| 联通29元200g的流量卡| 18+在线观看网站| 少妇的逼水好多| 国产 一区 欧美 日韩| 久久久久性生活片| 久久久久久久久久久丰满| 日韩一区二区视频免费看| 国产精品.久久久| 亚洲电影在线观看av| 身体一侧抽搐| 久久久久久伊人网av| 天堂8中文在线网| 国产精品嫩草影院av在线观看| 亚洲欧美中文字幕日韩二区| 性色av一级| videos熟女内射| h视频一区二区三区| 精品熟女少妇av免费看| 日韩欧美 国产精品| 欧美日韩在线观看h| 亚洲国产欧美在线一区| 天堂8中文在线网| 久久国内精品自在自线图片| 亚洲欧美中文字幕日韩二区| 国产欧美日韩一区二区三区在线 | 国产国拍精品亚洲av在线观看| 国产国拍精品亚洲av在线观看| 大片免费播放器 马上看| 久久精品夜色国产| 涩涩av久久男人的天堂| 亚洲久久久国产精品| 三级国产精品欧美在线观看| 哪个播放器可以免费观看大片| 777米奇影视久久| 18禁在线播放成人免费| 性色avwww在线观看| 久久久久性生活片| 成人美女网站在线观看视频| 国产欧美亚洲国产| 亚洲国产日韩一区二区| 亚洲精品aⅴ在线观看| 日本免费在线观看一区| 欧美日韩视频精品一区| 一级a做视频免费观看| 欧美日韩国产mv在线观看视频 | 三级国产精品片| 国产亚洲av片在线观看秒播厂| 国产色婷婷99| 欧美激情国产日韩精品一区| 色综合色国产| 国产女主播在线喷水免费视频网站| 亚洲熟女精品中文字幕| 有码 亚洲区| 丰满少妇做爰视频| 狂野欧美激情性bbbbbb| 97在线人人人人妻| kizo精华| 1000部很黄的大片| 黄片wwwwww| 欧美少妇被猛烈插入视频| 18禁在线无遮挡免费观看视频| 日韩 亚洲 欧美在线| 又爽又黄a免费视频| 日日摸夜夜添夜夜添av毛片| 你懂的网址亚洲精品在线观看| 国产一区二区三区av在线| 一边亲一边摸免费视频| 大片免费播放器 马上看| 国产精品久久久久久精品古装| 欧美一级a爱片免费观看看| 免费看光身美女| 欧美精品人与动牲交sv欧美| 精品久久久久久久久亚洲| 日本猛色少妇xxxxx猛交久久| 嫩草影院入口| 欧美精品亚洲一区二区| 国产乱人偷精品视频| 国产成人freesex在线| 汤姆久久久久久久影院中文字幕| 亚洲av.av天堂| 久久精品久久精品一区二区三区| 日韩亚洲欧美综合| 亚洲av综合色区一区| 精品亚洲成a人片在线观看 | 精品国产乱码久久久久久小说| 在线观看三级黄色| 免费观看无遮挡的男女| 欧美xxxx性猛交bbbb| 一个人免费看片子| 国产有黄有色有爽视频| 蜜臀久久99精品久久宅男| 亚洲精品国产色婷婷电影| 麻豆乱淫一区二区| 欧美+日韩+精品| 日韩av不卡免费在线播放| 国产视频首页在线观看| 欧美xxxx黑人xx丫x性爽| 在线观看av片永久免费下载| 国产男女内射视频| 18禁裸乳无遮挡免费网站照片| 久久久久久久国产电影| 成人免费观看视频高清| 免费观看a级毛片全部| 久久人人爽人人爽人人片va| 2021少妇久久久久久久久久久| 超碰97精品在线观看| 国产成人一区二区在线| 亚洲一区二区三区欧美精品| 免费久久久久久久精品成人欧美视频 | 黑丝袜美女国产一区| 少妇丰满av| 校园人妻丝袜中文字幕| 三级国产精品片| 人妻一区二区av| 日韩av不卡免费在线播放| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区| 老女人水多毛片| 国产av码专区亚洲av| 成人国产麻豆网| 国产免费一区二区三区四区乱码| 亚洲不卡免费看| 一个人看的www免费观看视频| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 欧美高清性xxxxhd video| 岛国毛片在线播放| 我的女老师完整版在线观看| 好男人视频免费观看在线| 国产久久久一区二区三区| 国产白丝娇喘喷水9色精品| 中文欧美无线码| 欧美少妇被猛烈插入视频| 99热6这里只有精品| 亚洲国产毛片av蜜桃av| 黄色配什么色好看| 日本色播在线视频| 亚洲色图综合在线观看| 久久久久久久国产电影| 国产成人精品福利久久| 亚洲欧美日韩无卡精品| 搡老乐熟女国产| 午夜激情福利司机影院| h视频一区二区三区| 精品人妻偷拍中文字幕| 最近最新中文字幕免费大全7| 亚洲欧美清纯卡通| 亚洲精品一区蜜桃| 性高湖久久久久久久久免费观看| 欧美日韩在线观看h| 高清不卡的av网站| 熟妇人妻不卡中文字幕| 亚洲色图av天堂| 亚洲自偷自拍三级| 国产 精品1| 人妻 亚洲 视频| 国内少妇人妻偷人精品xxx网站| 18禁裸乳无遮挡动漫免费视频| 一区二区三区免费毛片| av线在线观看网站| 插逼视频在线观看| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 久久精品国产亚洲av天美| 女人久久www免费人成看片| 精品一区二区免费观看| 毛片一级片免费看久久久久| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 最新中文字幕久久久久| 国产精品久久久久久av不卡| 久久精品国产a三级三级三级| .国产精品久久| 亚洲国产av新网站| 一区二区三区乱码不卡18| 中文字幕人妻熟人妻熟丝袜美| 熟女电影av网| 十分钟在线观看高清视频www | 十分钟在线观看高清视频www | 免费久久久久久久精品成人欧美视频 | 自拍偷自拍亚洲精品老妇| 深爱激情五月婷婷| 日韩一区二区三区影片| 亚洲性久久影院| 国产一区二区三区av在线| 在线观看美女被高潮喷水网站| 亚洲av在线观看美女高潮| 午夜福利在线观看免费完整高清在| 一本—道久久a久久精品蜜桃钙片| 日韩亚洲欧美综合| 在线观看人妻少妇| 插逼视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 18禁在线无遮挡免费观看视频| 直男gayav资源| 色网站视频免费| 亚洲av.av天堂| 婷婷色综合www| 成人美女网站在线观看视频| 少妇丰满av| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 自拍欧美九色日韩亚洲蝌蚪91 | 人妻系列 视频| 久久精品国产亚洲av涩爱| 我的老师免费观看完整版| 国产精品久久久久久av不卡| 国产毛片在线视频| 又粗又硬又长又爽又黄的视频| 久久国内精品自在自线图片| 韩国高清视频一区二区三区| 欧美97在线视频| 99热国产这里只有精品6| 国产视频首页在线观看| 亚洲va在线va天堂va国产| 久久久精品免费免费高清| 亚洲av二区三区四区| 国产黄色免费在线视频| 免费观看在线日韩| av免费在线看不卡| 啦啦啦视频在线资源免费观看| 国产无遮挡羞羞视频在线观看| 赤兔流量卡办理| 91久久精品电影网| 欧美精品国产亚洲| 久久久色成人| 少妇精品久久久久久久| 精品国产露脸久久av麻豆| 99久久精品热视频| 高清不卡的av网站| 香蕉精品网在线| 日韩国内少妇激情av| 只有这里有精品99| 激情 狠狠 欧美| 精品人妻熟女av久视频| 久久这里有精品视频免费| 亚洲精品aⅴ在线观看| 久久久久久久精品精品| 亚洲精品乱码久久久v下载方式| 亚洲av中文av极速乱| 精品久久久久久久末码| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区| av卡一久久| 日日摸夜夜添夜夜添av毛片| 久久久国产一区二区| 精品亚洲成国产av| 亚洲欧洲国产日韩| 超碰97精品在线观看| 午夜福利网站1000一区二区三区| 亚洲国产精品一区三区| 一级爰片在线观看| 精华霜和精华液先用哪个| 国产精品99久久99久久久不卡 | 亚洲精品aⅴ在线观看| 在线观看美女被高潮喷水网站| 97在线人人人人妻| 日本av免费视频播放| 在线免费十八禁| 九九在线视频观看精品| 美女xxoo啪啪120秒动态图| 男女无遮挡免费网站观看| 色婷婷av一区二区三区视频| 婷婷色综合www| 久久久久国产网址| 日本黄大片高清| 2018国产大陆天天弄谢| 51国产日韩欧美| 看十八女毛片水多多多| 国产亚洲91精品色在线| 久久韩国三级中文字幕| 极品教师在线视频| 亚洲av中文av极速乱| 日韩中文字幕视频在线看片 | 国产黄色免费在线视频| 欧美xxxx黑人xx丫x性爽| 日韩一区二区视频免费看| 26uuu在线亚洲综合色| 日本一二三区视频观看| kizo精华| 1000部很黄的大片| 综合色丁香网| 内地一区二区视频在线| 男女边摸边吃奶| 少妇的逼好多水| av黄色大香蕉| 亚洲美女黄色视频免费看| 一级毛片电影观看| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 日本欧美国产在线视频| 久久鲁丝午夜福利片| 夫妻午夜视频| 亚洲不卡免费看| 日韩av在线免费看完整版不卡| av在线播放精品| h视频一区二区三区| 26uuu在线亚洲综合色| 黄色视频在线播放观看不卡| 国产在线免费精品| 多毛熟女@视频| 国产在线一区二区三区精| 亚洲一区二区三区欧美精品| 插阴视频在线观看视频| 80岁老熟妇乱子伦牲交| 九九久久精品国产亚洲av麻豆| 国产人妻一区二区三区在| 免费观看在线日韩| 18禁在线无遮挡免费观看视频| 欧美日本视频| 久久精品国产自在天天线| 在线免费十八禁| 精品酒店卫生间| 免费av中文字幕在线| 熟妇人妻不卡中文字幕| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 日韩成人伦理影院| 色吧在线观看| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃| 最近中文字幕高清免费大全6| 美女中出高潮动态图| 网址你懂的国产日韩在线| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 纵有疾风起免费观看全集完整版| 日韩强制内射视频| 97在线人人人人妻| 国产亚洲5aaaaa淫片| 好男人视频免费观看在线| 80岁老熟妇乱子伦牲交| 精品国产三级普通话版| 国产精品嫩草影院av在线观看| 在线精品无人区一区二区三 | 一级av片app| 欧美日韩一区二区视频在线观看视频在线| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 国产精品一区二区在线不卡| 亚洲婷婷狠狠爱综合网| 久久毛片免费看一区二区三区| 日韩av在线免费看完整版不卡| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| 国产精品人妻久久久久久| 少妇人妻久久综合中文| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 国产在线一区二区三区精| 日韩av不卡免费在线播放| 六月丁香七月| 色5月婷婷丁香| 在线观看三级黄色| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 久久国产亚洲av麻豆专区| 午夜视频国产福利| 国产成人免费观看mmmm| 超碰97精品在线观看| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 97超碰精品成人国产| 亚洲综合色惰| 新久久久久国产一级毛片| 成人国产av品久久久| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 久久久久久人妻| 国产精品成人在线| 亚洲综合精品二区| 人体艺术视频欧美日本| 嫩草影院入口| 亚洲av成人精品一区久久| 色综合色国产| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频 | 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| 超碰97精品在线观看| 国产真实伦视频高清在线观看| 男人爽女人下面视频在线观看| 久久人妻熟女aⅴ| 日韩亚洲欧美综合| 午夜福利高清视频| 在线免费十八禁| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 久久久亚洲精品成人影院| 久久午夜福利片| 国产av精品麻豆| 国产乱人视频| 日韩亚洲欧美综合| 国产精品一区二区性色av| 我要看黄色一级片免费的| 欧美最新免费一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 国产精品一区二区在线不卡| 日韩一区二区视频免费看| 国产精品国产三级国产av玫瑰| 国产欧美日韩一区二区三区在线 | 久久午夜福利片| 99国产精品免费福利视频| av国产精品久久久久影院| 国产男女超爽视频在线观看| 精品久久久精品久久久| 免费av不卡在线播放| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 18禁在线播放成人免费| 欧美日本视频| 免费大片18禁| 人人妻人人爽人人添夜夜欢视频 | 国产一区二区三区av在线| 国产亚洲一区二区精品| 亚洲精品,欧美精品| 免费看av在线观看网站| 亚洲熟女精品中文字幕| 免费看日本二区| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 自拍偷自拍亚洲精品老妇| 午夜激情福利司机影院| 22中文网久久字幕| 黄色视频在线播放观看不卡| 久久人妻熟女aⅴ| 春色校园在线视频观看| 欧美三级亚洲精品| 97热精品久久久久久| 国产av码专区亚洲av| 午夜福利影视在线免费观看| 99视频精品全部免费 在线| 亚洲av免费高清在线观看| 永久免费av网站大全| 久久久色成人| 身体一侧抽搐| 五月天丁香电影| 日韩人妻高清精品专区| 水蜜桃什么品种好| 成人毛片a级毛片在线播放| 久久久久精品性色| 亚洲欧美精品专区久久| 在线 av 中文字幕| 永久免费av网站大全| 国产 精品1| 男女边摸边吃奶| 国产黄色视频一区二区在线观看| 中文字幕av成人在线电影| 一级黄片播放器| 哪个播放器可以免费观看大片| 蜜桃久久精品国产亚洲av| 一本色道久久久久久精品综合| 成人午夜精彩视频在线观看| 嫩草影院新地址| 99精国产麻豆久久婷婷| av女优亚洲男人天堂| 国产免费福利视频在线观看| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 国产美女午夜福利| 国产精品成人在线| 欧美成人精品欧美一级黄| 在线观看一区二区三区| 亚洲美女搞黄在线观看| 亚州av有码| 少妇精品久久久久久久| 国产一区亚洲一区在线观看| 日韩视频在线欧美| 高清av免费在线| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 久久久欧美国产精品| 丰满迷人的少妇在线观看| 国产伦在线观看视频一区| 天美传媒精品一区二区| 亚洲欧美日韩东京热| 久久 成人 亚洲| av福利片在线观看| 最近手机中文字幕大全| 亚洲av日韩在线播放| 熟女人妻精品中文字幕| 亚洲精品自拍成人| 成年免费大片在线观看| 国产极品天堂在线| 啦啦啦啦在线视频资源|