• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of human motion effects on 60GHz indoor office propagation①

    2015-04-17 07:17:15ZhaoJunhui趙軍輝
    High Technology Letters 2015年4期
    關(guān)鍵詞:趙軍

    Zhao Junhui(趙軍輝

    (*School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P.R.China)(**National Mobile Communication Research Laboratory, Southeast University, Nanjing 210096, P.R.China)

    ?

    Investigation of human motion effects on 60GHz indoor office propagation①

    Zhao Junhui(趙軍輝②

    (*School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P.R.China)(**National Mobile Communication Research Laboratory, Southeast University, Nanjing 210096, P.R.China)

    A modified random walk model for human motion is proposed to investigate characteristics of 60 GHz indoor office propagation. Compared with the classic random walk model, the movement tendency in the walking process is taken into account in the modified model. Based on the proposed model, path gains of the propagation environment are simulated under a variety of settings by using a ray tracing method. Simulation results and analysis show that human motion is a major source of disturbance to the indoor office propagation and results in performance degradation in some areas.

    60GHz, human motion, indoor propagation, modified random walk model, ray tracing

    0 Introduction

    Due to the rapid development of consumer electronic devices, such as smartphones, tablet computers, and HDTVs, the demand for a short-range and high-rate indoor wireless communication system is becoming more and more urgent[1]. Especially, networks that utilize millimeter-wave bands, typically 60GHz, have attracted lots of attentions for indoor wireless applications. The bandwidth of several gigahertzes around 60 GHz will be very beneficial to the design and implementation of the future advanced indoor wireless communication systems. Furthermore, the spectrum around 60GHz is license-free in many countries. In a word, 60GHz millimeter-wave radio technology is one of the most prospective communication technologies in the future 10 years.

    There are mainly two approaches to get insight into the characteristics of wireless propagation in an indoor environment: measurement and simulation. Many researchers have reported measurement results around 60GHz in an indoor environment to assist the channel modeling[2,3]. However, the cost of channel measurement is extremely high and the collected data have very limited expansibility for general use. On the other hand, simulation techniques are free from the limitations of experiments. In principle, all details of the propagation can be obtained by solving the Maxwell’s equations with boundary conditions that make allowance for the physical properties of the walls and objects within the environment. But it needs sophisticated computational resources to carry out simulations and overspends too much time. Therefore, a ray tracing method based on geometrical optics is proposed for propagation predictions.

    So far, a lot of efforts have been done concerning the ray tracing simulations in the 60GHz band. Ref.[4] examined the millimeter-wave propagation in a conference room and proved the validation of ray tracing results. Ref.[5] addressed the 60GHz propagation characteristics in an indoor office environment by using the ray tracing software of Wireless InSite. However, only little work concerning the human motion effects has been done and even the done work did not take account of the movement tendency or the furniture in the propagation environment, i.e., they assumed an empty room with random moving human bodies[4,5]. In this paper, it will explore the influences of human motion to the propagation in a relatively more realistic indoor office room based on the proposed modified random walk model and the conventional ray tracing algorithm.

    The remainder of this paper is organized as follows. Section 1 presents a brief description of the ray tracing theory. Section 2 describes the propagation environment and the human motion model. Simulation results and analysis are discussed in detail in Section 3. Section 4 is devoted to conclusions summarizing this work.

    1 Ray tracing theory

    1.1 Ray tracing method

    Ray tracing is a viable technique for predictions of propagation characteristics, such as impulse response, path gain, local mean power, and delay spread. The idea of this technique is to determine the propagation characteristics of a spatial environment from its geometrical and material properties assuming that radio waves follow the rules of geometrical optics. Every propagation path is modeled as a straight line and it is a good approximation providing that the radio wavelength is short enough compared to the environment dimensions. At a boundary between two adjacent media, i.e., the ray hits some obstacle, reflection as well as transmission occurs and the incident ray is split up into a reflected one and a transmitted one[6]. Diffraction can be also investigated by involving the uniform geometrical theory of diffraction (UTD). It plays an important role for coverage prediction when shadow regions are to be taken into account.

    The basic concept of ray tracing based on image method[6]is illustrated in Fig.1. The image method is applied to simulate the effect of flat surfaces and it is not only useful when the number of objects or obstacles is relatively small, as in an indoor environment, but also easy to be implemented. The first step is to find virtual image S′ of source S and the next step is to link receiver R with virtual image S′ by a straight line, then the intersection point I can be determined as well as the whole ray trajectory. The construction that uses the virtual image and determines the point of reflection on the reflecting surface is valid for multiple reflections.

    Fig.1 Illustration of image method

    A simplified diffraction model is illustrated in Fig.2. When the ray hits the corner of an obstacle, no matter what incidence angle is, diffracted rays will be generated to all directions around the obstacle[7].

    Fig.2 Illustration of diffraction model

    Applying the above methods, all of the rays connecting the transmitter and the receiver can be constructed for an indoor environment. In order to find all valid propagation paths, rays are launched from the transmitter in all directions. For a quantitative analysis of the reception, propagation attenuation and delay of every ray are required.

    1.2 Ray tracing algorithm

    For investigations a simplified two-dimension (2D) ray tracing algorithm is used which is capable of simulating the wave propagation taking account of reflections, transmissions and diffractions. The ray tracing algorithm operates on a 2D model of the propagation environment described by numerous rectangles and each of them is related with its dimensions. By specifying the coordinates of the transmitter and the receiver, the sequence of computations begins with the direct path if it exists, followed by all paths with one propagation, two interactions, and so on, up to five reflections, one transmission and two diffractions. For every path, the distance dependent path loss is simply the free space propagation loss which is proportional to the total length squared. The total path loss is computed as the product of the free space propagation loss timing the reflection, transmission, and diffraction losses[8]. The antenna radiation patterns are not considered temporally.

    The flow chart of the 2D ray tracing algorithm is shown in Fig.3. Two termination conditions are set: the maximum number of allowed reflections Nref, transmissions Ntrans, and diffractions Ndiff, the power threshold T.

    Fig.3 Simplified 2D ray tracing algorithm

    2 Propagation environment and human motion model

    2.1 Propagation environment

    The floor plan of the propagation environment is depicted in Fig.4. It is an office room located on the fourth floor of our institute building. The dimensions of the office are 8.0m length and 4.0m width. The walls of the room are made of concrete. There are a glass window and a glass door between the outer room and the inner room. The outer room is provided with six desks, one laboratory table, and a wooden door towards the corridor, while the inner room is furnished with two desks, two bookcases, and one couch. The outer door as well as the inner door is 1.0m width and the glass window is 3.0m width. The dimensions of others objects are summarized in Table 1.

    Fig.4 Floor plan of the office room

    ObjectsDimensionsDesk1.0m×0.5mLaboratorytabletable2.0m×1.0mBookcase1.0m×0.5mCouch2.0m×1.0m

    Table 2 Dielectric properties of objects

    2.2 Human motion model

    A 2D human body model is needed to be in accordance with the 2D ray tracing algorithm described in the above section. So a rectangle with the dimension of 0.3m×0.3m is used to represent the human body which can be considered as a common scatterer like other obstacles except that it is not static. Certainly, the modeling of human motion is the key to the validity and expansibility of the analysis on the human body movement effects to indoor propagations. In Ref.[12], the human motion is modeled as a random walk process which consists of a succession of random steps. It is modeled as a Markov chain that the next step is totally independent of the past trail. Unfortunately, the random walk model is not accurate enough because human body has a movement tendency, even time varying, in the walking process. In order to reproduce the movement of human body as realistic as possible, a modified random walk model is proposed as follows. Four simulation examples are presented in Fig.5, each corresponding to one, three, five, and ten moving bodies in the room.

    (a) one moving body

    (b) three moving bodies

    (c) five moving bodies

    (d) ten moving bodies

    Step 1 Choose a valid point as the starting position randomly and set Count=0.

    Step 2 Select a direction (forward, backward, left, or right) for the next step in random and set Count=Count+1.

    Step 3 Determine whether the selected direction is valid for the next step. If so, go on to Step 4, otherwise, go back to Step 2 as long as Count 4.

    Step 4 Try to keep the movement tendency based on

    the last two positions. If fails, try to turn left or turn right with an equal probability. If it fails again, try the opposed direction (left or right). If it still doesn’t work, turn around and step backwards.

    Step 5 Loop Step 4 until reaching the specified number of steps.

    3 Simulation results and analysis

    The reference system as indicated in Fig.4 is used for ray tracing. The outer door is kept to be closed, while the inner door is assumed to be open during the ray tracing process. As shown in Fig.3, the maximum number of transmissions is limited to one, which means that only the transmission through the glass window and glass door needs to be calculated. Based on the propagation environment model and the modified random walk model, parameters used for simulation are summarized below in Table 3. The simulation tools used are Microsoft Visual Studio 2008 and Matlab 7.10.0 (R2010a).

    Table 3 Simulation parameters

    Transmitter Tx is located at the origin coordinate of the reference system, and the coordinate value of (2.0, -1.0) is chosen as the receiver. It is assumed that both of them are equipped with omnidirectional antennas. Fig.6 shows the ray tracing results between the transmitter and the receiver under the constraints of Nref≤1, Ntrans=0 and Ndiff≤1 at a certain time instant. The multipath disturbance due to the human body movement can be seen from these figures intuitively.

    (a) no moving bodies

    (b) one moving body

    (c) three moving bodies

    (d) five moving bodies

    Simulation is taken with regular time intervals, which makes it possible to compute the positions of the human bodies again and make a new calculation of the parameters of the channel. To investigate the human motion effects on the path gains of different positions, the office room is gridded into a group of squares each with the dimension of 0.1m×0.1m. The path gain of the central point of the square can be used to approximately represent the transmission loss inside it. Especially, the power threshold 1.0×10-15W is used to represent the path gain inside the scatterer.

    Fig.7 shows the simulation result when there is no human motion, i.e., in a static condition. It can be seen that the path gain varies from -40dB to -150dB. Most parts of the office go through a 100dB path loss, while the path gain around the transmitter is roughly -50dB. Furthermore, the path gain distributions under the human motion effects are presented in Figs8,9,10, and 11, each corresponding to the simulated walking trails in Fig.5. As shown in Fig.8, there

    Fig.7 Path gain prediction without human motion

    Fig.8 Path gain prediction with one moving body

    Fig.9 Path gain prediction with three moving bodies

    Fig.10 Path gain prediction with five moving bodies

    Fig.11 Path gain prediction with ten moving bodies

    is just a little affection to the path loss when there is only one moving person. However, the path loss of the bottom right corner of the inner room degrades to 120dB more or less if there are three moving persons, which can be seen from Fig.9. It is mainly caused by the moving person in the inner room and the deep path loss area becomes larger as the number of moving persons increases in the inner room. Moreover, it is worth pointing that, in Fig.10 and Fig.11, a triangle area is formed by the three bodies around the transmitter and it increases the path gains inside the area.

    4 Conclusions

    In this work, it has investigated the human motion effects on the 60GHz indoor office propagation by adopting a modified random walk model which takes account of the movement tendency. Based on the modified random walk model and the 2D ray tracing algorithm, path gain distributions are simulated under the assumptions of different number of moving bodies. The simulation results and analysis show that the movement of human bodies results in multipath disturbances and causes deep path losses in some areas. It is one of the main factors that can significantly degrade the transmission quality in a realistic indoor environment and it may frequently occur because of people walking around from time to time.

    [ 1] Park C, Rappaport T S. Short-range wireless communications for next-generation networks: UWB, 60GHz millimeter-wave WPAN, and ZigBee. IEEE Wireless Commun. Mag, 2007, 14(4): 70-78

    [ 2] Cassioli D. 60GHz UWB channel measurement and model. In: Proceedings of the IEEE International Conference on Ultra-Wideband (ICUWB), Syracuse, NY, 2012. 145-149

    [ 3] Moraitis N, Constantinou P. Indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Trans Antennas Propag, 2004, 52(12): 3180-3189

    [ 4] Peter W K M, Keusgen W, Felbecker R. Measurement and ray-tracing simulation of the 60 GHz indoor broadband channel: model accuracy and parameterization. In: Proceedings of the 2nd European Conference on Antennas and Propagation, Edinburgh, UK, 2007. 1-8

    [ 5] Rama R T, Murugesan D, Tiwari N, et al. 60 GHz radio wave propagation studies in an indoor office environment. In: Proceedings of the IEEE International Conference on Communication Systems (ICCS), Singapore, 2012. 181-185

    [ 6] Khafaji A, Saadane R, Abbadi J E, et al. Ray tracing technique based 60 GHz band propagation modeling and influence of people shadowing. International Journal of Electrical, Computer, and Systems Engineering. 2008, 2(2): 102-108

    [ 7] Kouyoumjian R G, Pathak P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE. 1974, 62(11): 1448-1461

    [ 8] Wang Y, Lu W J, Zhu H B. An empirical path-loss model for wireless channels in indoor short-range office environment. International Journal of Antennas and Propagation. 2012, 123(1): 1-12

    [ 9] Pugliese J P, Hammoudeh A, Al-Nuaimi M O. Reflection and transmission characteristics of building materials at 62 GHz. In: Proceedings of the IEE Colloquium on Radio Communications at Microwave and Millimeter Wave Frequencies, London, UK, 1996. 6/1-6/6

    [10] Sato K, Kozima H, Masuzawa H, et al. Measurements of reflection characteristics and refractive indices of interior construction materials in millimeter-wave bands. In: Proceedings of the 45th IEEE Vehicular Technology Conference, Chicago, USA, 1995. 449-453

    [11] Sato K, Manabe T, Ihara T, et al. Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band. In: Proceedings of the 7th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Taipei, China, 1996. 14-18

    [12] Islam, Jakirul M. Investigation of the effect of human motion on indoor radio signal propagation. In: Proceedings of the 2nd International Conference on Power and VLSI Engineering, Kuala Lumpur, Malaysia, 2013. 31-35

    Zhao Junhui, received his Ph.D. degree in National Mobile Communications Research Laboratory of Southeast University in 2004. Now he is a professor and Ph.D. supervisor at School of Electronic and Information Engineering of Beijing Jiaotong University. His main research interests include wireless location, channel modeling, cooperative communication and cognitive radio.

    10.3772/j.issn.1006-6748.2015.04.011

    ①Supported by the National Natural Science Foundation of China (61172073), Program for New Century Excellent Talents of the Ministry of Education (NCET-12-0766), the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2012D19), and the Fundamental Research Funds for the Central Universities (2013JBZ001).

    ②To whom correspondence should be addressed. E-mail: junhuizhao@bjtu.edu.cn Received on June 25, 2014***, Liu Xu*

    猜你喜歡
    趙軍
    “章節(jié)起始課”的教學(xué)觀察與比較
    Effect of void size and Mg contents on plastic deformation behaviors of Al–Mg alloy with pre-existing void: Molecular dynamics study
    俺們村的“貼心人”
    種樹協(xié)議(原創(chuàng))
    隔離的松風(fēng)
    金秋(2019年14期)2019-10-23 02:11:34
    落魄富豪殺子:自己生的垃圾能“退貨”嗎
    抓住整體巧妙代入
    七分審題三分做
    趙軍 藏石欣賞
    寶藏(2017年3期)2017-05-09 03:21:45
    七彩夜明珠
    性高湖久久久久久久久免费观看| 美女福利国产在线| 在线 av 中文字幕| 老女人水多毛片| 国产伦理片在线播放av一区| 永久免费av网站大全| 亚洲欧美成人综合另类久久久| 久久午夜综合久久蜜桃| 国产日韩欧美视频二区| 亚洲精华国产精华液的使用体验| 交换朋友夫妻互换小说| 一级片'在线观看视频| 精品久久久精品久久久| videos熟女内射| 亚洲中文av在线| 免费人妻精品一区二区三区视频| 青春草亚洲视频在线观看| 亚洲一区中文字幕在线| 亚洲国产欧美日韩在线播放| 日韩中文字幕欧美一区二区 | 亚洲欧美一区二区三区黑人 | 免费观看无遮挡的男女| 国产综合精华液| 精品久久久精品久久久| 激情视频va一区二区三区| 中文乱码字字幕精品一区二区三区| 欧美日韩精品网址| 少妇人妻精品综合一区二区| 18禁观看日本| 精品国产一区二区三区四区第35| 国产精品久久久av美女十八| 亚洲视频免费观看视频| 日本黄色日本黄色录像| 亚洲欧美精品自产自拍| 大香蕉久久成人网| 成人国语在线视频| 国产成人av激情在线播放| 热99国产精品久久久久久7| 天堂俺去俺来也www色官网| 亚洲欧美色中文字幕在线| 黄色配什么色好看| 国产精品 国内视频| 免费高清在线观看视频在线观看| 精品福利永久在线观看| 久久精品国产自在天天线| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩亚洲高清精品| 国产精品蜜桃在线观看| 韩国高清视频一区二区三区| 精品少妇一区二区三区视频日本电影 | 女性生殖器流出的白浆| 久久久国产精品麻豆| 熟女电影av网| 母亲3免费完整高清在线观看 | 少妇猛男粗大的猛烈进出视频| 看免费av毛片| 大话2 男鬼变身卡| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区黑人 | 国产精品熟女久久久久浪| 亚洲国产精品成人久久小说| 亚洲av欧美aⅴ国产| 99精国产麻豆久久婷婷| 国产精品av久久久久免费| 欧美xxⅹ黑人| 欧美日韩成人在线一区二区| 日韩伦理黄色片| 色婷婷av一区二区三区视频| 最近最新中文字幕免费大全7| 熟女少妇亚洲综合色aaa.| 久久午夜综合久久蜜桃| 久久 成人 亚洲| 老司机亚洲免费影院| 97精品久久久久久久久久精品| 国产乱来视频区| 在线亚洲精品国产二区图片欧美| h视频一区二区三区| 少妇被粗大的猛进出69影院| 国产精品 国内视频| 在线观看三级黄色| 曰老女人黄片| 午夜免费观看性视频| 欧美xxⅹ黑人| 少妇的丰满在线观看| 91在线精品国自产拍蜜月| 一区二区三区激情视频| 亚洲男人天堂网一区| 日韩人妻精品一区2区三区| 少妇的丰满在线观看| 好男人视频免费观看在线| 欧美日韩亚洲高清精品| 色94色欧美一区二区| 国产精品一国产av| 成年女人毛片免费观看观看9 | 久久久久精品性色| 王馨瑶露胸无遮挡在线观看| 精品久久久精品久久久| 最近手机中文字幕大全| 老司机亚洲免费影院| 欧美日韩精品网址| 韩国高清视频一区二区三区| 国产亚洲一区二区精品| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区三区在线| 精品一区二区三卡| 最近最新中文字幕大全免费视频 | 久久这里只有精品19| av国产久精品久网站免费入址| 高清在线视频一区二区三区| 狠狠婷婷综合久久久久久88av| 免费不卡的大黄色大毛片视频在线观看| 国产精品熟女久久久久浪| 在线观看免费视频网站a站| 日韩av不卡免费在线播放| 久久午夜综合久久蜜桃| 国产乱人偷精品视频| 在线天堂最新版资源| 少妇人妻久久综合中文| a 毛片基地| 午夜免费观看性视频| 丝袜人妻中文字幕| 啦啦啦中文免费视频观看日本| 免费黄网站久久成人精品| 亚洲人成77777在线视频| 亚洲成国产人片在线观看| 中文乱码字字幕精品一区二区三区| av视频免费观看在线观看| 只有这里有精品99| 咕卡用的链子| h视频一区二区三区| 欧美日韩成人在线一区二区| 中文字幕av电影在线播放| 久久精品国产鲁丝片午夜精品| av.在线天堂| 色哟哟·www| 日韩免费高清中文字幕av| 亚洲色图综合在线观看| 国产免费现黄频在线看| 国产福利在线免费观看视频| 又大又黄又爽视频免费| 色视频在线一区二区三区| 在线 av 中文字幕| 一区二区三区激情视频| 天天躁夜夜躁狠狠躁躁| 久久久精品免费免费高清| 久久狼人影院| 午夜精品国产一区二区电影| 秋霞在线观看毛片| 97在线人人人人妻| 国产成人午夜福利电影在线观看| 叶爱在线成人免费视频播放| 青草久久国产| 日韩中文字幕视频在线看片| 91在线精品国自产拍蜜月| 亚洲av免费高清在线观看| 久久久久久久国产电影| 秋霞伦理黄片| 国产白丝娇喘喷水9色精品| 亚洲人成电影观看| 国产成人精品婷婷| 天天躁日日躁夜夜躁夜夜| 啦啦啦啦在线视频资源| 国产成人午夜福利电影在线观看| 国产有黄有色有爽视频| 九草在线视频观看| 久久久久久久亚洲中文字幕| 岛国毛片在线播放| 伊人亚洲综合成人网| 波多野结衣一区麻豆| 久久久久人妻精品一区果冻| 啦啦啦视频在线资源免费观看| 最近的中文字幕免费完整| 女性被躁到高潮视频| 婷婷成人精品国产| 高清在线视频一区二区三区| 中文字幕人妻丝袜一区二区 | a级片在线免费高清观看视频| 欧美日韩一区二区视频在线观看视频在线| 制服诱惑二区| 男女国产视频网站| 日本欧美国产在线视频| 精品99又大又爽又粗少妇毛片| 久久av网站| 电影成人av| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 中文字幕人妻丝袜制服| 青青草视频在线视频观看| 日日啪夜夜爽| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 久久毛片免费看一区二区三区| 国产欧美日韩综合在线一区二区| 水蜜桃什么品种好| 国产高清不卡午夜福利| 精品少妇久久久久久888优播| 女人高潮潮喷娇喘18禁视频| 91国产中文字幕| 一区二区三区乱码不卡18| 国产成人午夜福利电影在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲三区欧美一区| 男女下面插进去视频免费观看| 校园人妻丝袜中文字幕| 久久婷婷青草| 日韩精品有码人妻一区| 亚洲精品日本国产第一区| 伦精品一区二区三区| 国产一区二区三区av在线| 电影成人av| 国产有黄有色有爽视频| 亚洲精品久久久久久婷婷小说| 可以免费在线观看a视频的电影网站 | 国产午夜精品一二区理论片| 肉色欧美久久久久久久蜜桃| 另类精品久久| 国产成人精品一,二区| 欧美老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 女人精品久久久久毛片| 精品第一国产精品| 下体分泌物呈黄色| videos熟女内射| 女人久久www免费人成看片| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 亚洲一区中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲经典国产精华液单| 一区在线观看完整版| 人人妻人人添人人爽欧美一区卜| 久久久久国产精品人妻一区二区| 在线观看免费视频网站a站| 国产福利在线免费观看视频| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 成人国产麻豆网| 国产精品免费视频内射| 国产精品二区激情视频| 交换朋友夫妻互换小说| 成年女人在线观看亚洲视频| 在线天堂最新版资源| 午夜久久久在线观看| 一级a爱视频在线免费观看| 亚洲精华国产精华液的使用体验| 欧美精品一区二区免费开放| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品古装| 亚洲国产日韩一区二区| 欧美日韩一级在线毛片| 日韩成人av中文字幕在线观看| 女的被弄到高潮叫床怎么办| 亚洲在久久综合| 一级片免费观看大全| 久久久精品94久久精品| av卡一久久| 美女视频免费永久观看网站| 赤兔流量卡办理| 亚洲激情五月婷婷啪啪| 国产精品一区二区在线不卡| 日韩中文字幕欧美一区二区 | 久久午夜综合久久蜜桃| 婷婷色av中文字幕| 看免费成人av毛片| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产综合久久久| av在线老鸭窝| 午夜福利网站1000一区二区三区| 亚洲精品国产色婷婷电影| 婷婷成人精品国产| 色网站视频免费| 国产一区亚洲一区在线观看| 午夜精品国产一区二区电影| 国产 一区精品| a 毛片基地| 大陆偷拍与自拍| 天堂8中文在线网| 日韩精品免费视频一区二区三区| 亚洲精品,欧美精品| 久久 成人 亚洲| 国产一区亚洲一区在线观看| 久久午夜综合久久蜜桃| av不卡在线播放| 久久久精品免费免费高清| 大香蕉久久成人网| 日日爽夜夜爽网站| 高清在线视频一区二区三区| 日韩人妻精品一区2区三区| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 国产免费现黄频在线看| 波多野结衣一区麻豆| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 观看美女的网站| 亚洲美女搞黄在线观看| 国产精品.久久久| 久久精品亚洲av国产电影网| 精品一区二区免费观看| 国产一区二区 视频在线| 亚洲欧美清纯卡通| 欧美成人精品欧美一级黄| 天天影视国产精品| 久久久欧美国产精品| 伦理电影大哥的女人| 1024视频免费在线观看| 观看av在线不卡| 亚洲精品乱久久久久久| 高清av免费在线| 久久久精品94久久精品| 亚洲色图综合在线观看| 免费在线观看视频国产中文字幕亚洲 | 高清在线视频一区二区三区| kizo精华| 国产熟女欧美一区二区| 如日韩欧美国产精品一区二区三区| xxx大片免费视频| av在线播放精品| 亚洲欧美精品综合一区二区三区 | 亚洲三级黄色毛片| 九草在线视频观看| 1024视频免费在线观看| 国产1区2区3区精品| 考比视频在线观看| www.精华液| 亚洲欧美色中文字幕在线| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 视频区图区小说| 蜜桃国产av成人99| 男人操女人黄网站| 婷婷成人精品国产| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 亚洲色图 男人天堂 中文字幕| 国产成人aa在线观看| 黄频高清免费视频| 热99国产精品久久久久久7| 黑丝袜美女国产一区| 91在线精品国自产拍蜜月| 欧美黄色片欧美黄色片| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 国产精品免费大片| 成年女人在线观看亚洲视频| 日本猛色少妇xxxxx猛交久久| 国产又爽黄色视频| 中文字幕色久视频| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| av在线app专区| 国产欧美日韩综合在线一区二区| 成年av动漫网址| 日韩中字成人| 亚洲欧美一区二区三区国产| 久久久久国产网址| videosex国产| 色网站视频免费| 一级毛片电影观看| 国产亚洲av片在线观看秒播厂| 美女主播在线视频| 亚洲三区欧美一区| 人成视频在线观看免费观看| 欧美日韩国产mv在线观看视频| 捣出白浆h1v1| 国产精品一区二区在线不卡| 国产成人精品一,二区| 精品一区二区三区四区五区乱码 | 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲 | 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 精品一区在线观看国产| 国产xxxxx性猛交| 青草久久国产| 在线观看免费高清a一片| 中文字幕制服av| 国产av码专区亚洲av| 男女国产视频网站| 中文字幕亚洲精品专区| 肉色欧美久久久久久久蜜桃| 在线观看国产h片| 女人高潮潮喷娇喘18禁视频| 亚洲精品日韩在线中文字幕| av国产久精品久网站免费入址| 国产午夜精品一二区理论片| 人人妻人人澡人人看| 777久久人妻少妇嫩草av网站| 五月开心婷婷网| 色哟哟·www| 男人舔女人的私密视频| 视频在线观看一区二区三区| 美女福利国产在线| 老汉色av国产亚洲站长工具| 国产日韩一区二区三区精品不卡| 精品国产一区二区三区四区第35| av福利片在线| 欧美 日韩 精品 国产| 99香蕉大伊视频| 欧美 日韩 精品 国产| 欧美bdsm另类| 亚洲精品一区蜜桃| 少妇的丰满在线观看| 国产又爽黄色视频| 国产精品 欧美亚洲| 久久毛片免费看一区二区三区| 91久久精品国产一区二区三区| 赤兔流量卡办理| av天堂久久9| 深夜精品福利| 国产1区2区3区精品| 国产白丝娇喘喷水9色精品| 丝袜美足系列| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 纵有疾风起免费观看全集完整版| 亚洲五月色婷婷综合| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 黄片无遮挡物在线观看| 三上悠亚av全集在线观看| 看非洲黑人一级黄片| 女的被弄到高潮叫床怎么办| 亚洲综合色惰| 午夜影院在线不卡| 丰满乱子伦码专区| 18禁国产床啪视频网站| 国产片内射在线| 亚洲欧美成人精品一区二区| 亚洲 欧美一区二区三区| 国产在线免费精品| 亚洲欧美清纯卡通| 久久久亚洲精品成人影院| 久久人人爽人人片av| 1024视频免费在线观看| 国产成人欧美| 久久这里只有精品19| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 久热这里只有精品99| 成人18禁高潮啪啪吃奶动态图| 91精品三级在线观看| 一二三四中文在线观看免费高清| 欧美日韩综合久久久久久| 99久久精品国产国产毛片| 永久免费av网站大全| 99热全是精品| 最新中文字幕久久久久| 国产日韩欧美亚洲二区| www.精华液| 免费在线观看完整版高清| 久久97久久精品| 久久久精品94久久精品| a级毛片在线看网站| 日日爽夜夜爽网站| 久久鲁丝午夜福利片| 国产视频首页在线观看| 国产av一区二区精品久久| 大码成人一级视频| 在线观看一区二区三区激情| 成人国语在线视频| 国产野战对白在线观看| av免费在线看不卡| 午夜福利乱码中文字幕| 色视频在线一区二区三区| 久久女婷五月综合色啪小说| 高清欧美精品videossex| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 91精品三级在线观看| 美女xxoo啪啪120秒动态图| 久久久精品区二区三区| 亚洲欧美色中文字幕在线| 美女主播在线视频| 亚洲精品在线美女| 免费高清在线观看视频在线观看| 欧美 亚洲 国产 日韩一| 国产在线视频一区二区| 国产一区二区 视频在线| 国产精品一区二区在线不卡| 国产日韩欧美亚洲二区| 日本色播在线视频| 丝袜脚勾引网站| 你懂的网址亚洲精品在线观看| 国精品久久久久久国模美| 午夜福利一区二区在线看| 国产一区亚洲一区在线观看| 自线自在国产av| 婷婷色麻豆天堂久久| 久久国内精品自在自线图片| 国产高清不卡午夜福利| 91精品国产国语对白视频| 99国产精品免费福利视频| 国产成人av激情在线播放| 久热久热在线精品观看| 热99久久久久精品小说推荐| 欧美国产精品一级二级三级| 精品一区二区三卡| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 最黄视频免费看| 人妻系列 视频| 日韩一本色道免费dvd| 中文字幕精品免费在线观看视频| 美女高潮到喷水免费观看| 亚洲av电影在线观看一区二区三区| 在线观看人妻少妇| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 91国产中文字幕| 777久久人妻少妇嫩草av网站| 欧美激情高清一区二区三区 | 国产综合精华液| 伦精品一区二区三区| 9色porny在线观看| 18禁国产床啪视频网站| 日本猛色少妇xxxxx猛交久久| 国产精品麻豆人妻色哟哟久久| 精品一区二区三区四区五区乱码 | 国产精品成人在线| 纯流量卡能插随身wifi吗| 久久久久国产一级毛片高清牌| 尾随美女入室| 99久久精品国产国产毛片| 在线观看免费日韩欧美大片| 日本91视频免费播放| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| 天堂俺去俺来也www色官网| 桃花免费在线播放| 国产毛片在线视频| 好男人视频免费观看在线| 麻豆av在线久日| av线在线观看网站| 精品一区在线观看国产| 黑丝袜美女国产一区| 亚洲精品第二区| 少妇人妻久久综合中文| 宅男免费午夜| 亚洲精品国产av成人精品| av在线观看视频网站免费| 精品亚洲成a人片在线观看| 国产高清国产精品国产三级| 欧美日韩综合久久久久久| 麻豆精品久久久久久蜜桃| 美女国产视频在线观看| 午夜福利,免费看| 国产精品久久久久成人av| 国产 一区精品| 亚洲国产看品久久| 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀 | 亚洲 欧美一区二区三区| 国产精品香港三级国产av潘金莲 | 久久国产精品男人的天堂亚洲| 可以免费在线观看a视频的电影网站 | 欧美 亚洲 国产 日韩一| 永久免费av网站大全| 亚洲欧美精品综合一区二区三区 | 国产成人av激情在线播放| 九草在线视频观看| videossex国产| 国产免费福利视频在线观看| 国产成人aa在线观看| 在线观看免费日韩欧美大片| 久热久热在线精品观看| 亚洲国产av新网站| 一级爰片在线观看| 久久久精品94久久精品| 高清视频免费观看一区二区| 在线观看免费高清a一片| 日本免费在线观看一区| 亚洲国产精品成人久久小说| 婷婷色麻豆天堂久久| 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产看品久久| 国产成人a∨麻豆精品| 国产极品天堂在线| 免费黄频网站在线观看国产| 久久99热这里只频精品6学生| 亚洲精品aⅴ在线观看| 久久精品国产a三级三级三级| 精品第一国产精品| 高清黄色对白视频在线免费看| 狠狠精品人妻久久久久久综合| 男女高潮啪啪啪动态图| 你懂的网址亚洲精品在线观看| 亚洲国产欧美日韩在线播放| 97在线视频观看| 国产熟女欧美一区二区| 国产成人欧美| 欧美另类一区| 中文字幕人妻丝袜制服| 国产欧美日韩一区二区三区在线| 国产片内射在线| 免费女性裸体啪啪无遮挡网站| 在线亚洲精品国产二区图片欧美| 91久久精品国产一区二区三区| 免费观看在线日韩| 亚洲精品国产av蜜桃| 国产人伦9x9x在线观看 | 丰满饥渴人妻一区二区三| 日韩中文字幕视频在线看片| 女性生殖器流出的白浆| 青春草国产在线视频| 一边亲一边摸免费视频| 国产av精品麻豆|