• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fault diagnosis method of reciprocating compressor based on sensitive feature evaluation and artificial neural network①

    2015-04-17 07:17:11XingChenghong興成宏XuFengtian
    High Technology Letters 2015年4期

    Xing Chenghong (興成宏), Xu Fengtian

    (*Diagnosis and Self-Recovery Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, P.R.China)(**PetroChina Beijing Gas Pipeline Co., Ltd., Beijing 100101, P.R.China)(***PetroChina Fushun Petrochemical Company Detergent Chemical Plant, Fushun 113005, P.R.China)

    ?

    A fault diagnosis method of reciprocating compressor based on sensitive feature evaluation and artificial neural network①

    Xing Chenghong (興成宏)*, Xu Fengtian②

    (*Diagnosis and Self-Recovery Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, P.R.China)(**PetroChina Beijing Gas Pipeline Co., Ltd., Beijing 100101, P.R.China)(***PetroChina Fushun Petrochemical Company Detergent Chemical Plant, Fushun 113005, P.R.China)

    A method combining information entropy and radial basis function network is proposed for fault automatic diagnosis of reciprocating compressors. Aiming at the current situation that the accuracy rate of reciprocating compressor fault diagnosis which depends on manual work in engineering is very low, we apply information entropy evaluation to select the sensitive features and make clear the corresponding relationship of characteristic parameters and failures. This method could reduce the feature dimension. Then, a complete fault diagnosis architecture has been built combining with radial basis function network which has the fast and efficient characteristics. According to the test results using experimental and engineering data, it is observed that the proposed fault diagnosis method improves the accuracy of fault automatic diagnosis effectively and it could improve the practicability of the monitoring system.

    information entropy, radial basis function network, fault automatic diagnosis, reciprocating compressor, sensitive feature

    0 Introduction

    Reciprocating compressors are widely used in process industries of oil refining and chemical, which are the core equipments of process plant. Most of the operation media of reciprocating compressors are combustible and explosive vapors, such as hydrogen, natural gas, methane gas and ethylene gas. In case of serious faults, dangerous gas is liable to leak, causing serious accidents such as fire even explosion[1]. Currently, part of domestic reciprocating compressors have installed the online monitoring system, which makes real-time monitoring of operation status possible. With the development of computer processing in intelligent classification technology, fault early-warning and automatic diagnosis have been an inevitable trend. But reciprocating compressor has multiple vibration sources, complex structures and poor working conditions. These make signal acquisition, condition monitoring and fault automatic diagnosis very difficult.

    1 Related work

    In recent years, many scholars have always concerned about fault diagnosis of reciprocating compressors. Feng, et al. applies support vector machines in fault classification of reciprocating compressor[2]. Ma, et al. used acoustic emission technology on reciprocating compressors for early-warning of piston rods fracture[3]. Ahmed, et al. uses neural networks, support vector machines and principle component analysis in reciprocating compressors fault diagnosis[4,5]. Qu, et al. proposes a fault diagnosis model based on multi-wavelet packet and neighborhood rough set, which enables automatic recognition of the different status of the device[6].

    However, these monitoring and diagnosis methods are seldom used in practical engineering. There are three main aspects as follows:

    ? Reciprocating compressor’s practical working situation is complicated and the utility of fault diagnosis method in lab remains to be tested.

    ? For single fault, laboratory extracts a smaller number of features. But in the actual diagnosis of typical faults, there are dozens of or even hundreds of extracted features. Diagnosis for real-time processing is difficult.

    ? Part of the diagnosis methods slip from the target for fault early warning does not blended into online monitoring system.

    Therefore, the capability of fault early-warning and automatic diagnosis in the online monitoring system is weak at present.

    This paper applies feature selection technology in machine learning to the field of diagnosis for reciprocating compressor and extracts various kinds of fault features basing on online monitoring data, using information entropy technology to complete feature sensitivity analysis. The method achieves fault sensitive features to establish new alarm parameters.

    Information entropy is the calculated information content on the basis of original data, which has strong objectivity as a measure of system’s uncertainty[7]. For the moment, information entropy is mainly applied to the aspects of feature analysis and selection in fault diagnosis. Xia, et al. uses it for rolling bearing friction analysis[8], Cabal-Yepez, et al. uses it in induction motors fault identification[9,10], Ai, et al. uses it in crack-rubbing coupled fault diagnosis[11].

    There are few reports about the application of information entropy for fault diagnosis of reciprocating compressor.

    On the basis of extraction of fault sensitive features by using information entropy, a new fault early-warning and diagnosis architecture combining fault-sensitive features and artificial neural network has been constructed and applied to practical fault diagnosis. Experimental and practical data have proved that the method in this paper obtains a higher diagnosis accuracy and timeliness of early warning compared to the method without feature selection.

    2 Sensitive feature evaluation and diagnosis

    2.1 Sensitive feature evaluation based on information entropy

    Feature selection in machine learning can be defined as selecting a subset which has the optimal result of evaluation criteria from a set of features[12]. It is an algorithm that selects N features from given M features by a learning algorithm L to make a certain evaluation criterion J=J(L,S) optimal.

    Information entropy evaluation criterion can quantify the uncertainty between features and fault mainly by using information entropy to determine the classification information that features contain. It is a non-parametric and nonlinear evaluation criterion. Among the methods of information entropy evaluation criterion, information gain and mutual information are widely applied. For illustration, the definition of entropy and conditional entropy is given first.

    In information theory and probability and statistics, entropy is a measure of the uncertainty of a random variable. It sets X as a discrete random variable, if its probability distribution is P(X=xi)=pi, i=1,2,…,n, the entropy of the random variable X can be defined as

    (1)

    if pi=0, then 0log2(0)=0. By definition, X depends on the entropy distribution and has nothing to do with the value of X, so the entropy of X can be denoted as H(p). The greater the entropy, the greater the uncertainty of a random variable. When there are only two random variable values as 0 or 1, the distribution of X is H(X=1)=p and H(X=0)=1-p, 0≤p≤1, and the entropy is

    H(p)=-plog2p-(1-p)log2(1-p)

    (2)

    At this point, the curve of the entropy with probability is shown in Fig.1. It could be known from Fig.1 that when p=0 or p=1, H(p)=0. That means the random variable has no uncertainty.

    Fig.1 The relationship between entropy and probability

    (3)

    In Eq.(3), P(xi) is the priorprobability that the value of feature X is xi, and P(xi|yj) is the posterior probability that the value of feature X is xiin the given value yiof feature Y. Therefore, information gain is

    IG(X|Y)=H(X)-H(X|Y)

    (4)

    According to the definition of information gain, if IG(X|Y)>IG(Z|Y), the correlation coefficient of feature Y and feature X is higher than that of feature Z and feature X. And IG(X|Y) can be normalized to

    (5)

    SU(X,Y) is called Symmetric Uncertainty, whose value is in [0, 1]. SU(X,Y)=1 when feature X and Y are completely dependent, and SU(X,Y)=0, when they are completely independent.

    There have been symmetric uncertainty SU(X,Y) which can calculate the correlation coefficient of two features, also symmetric uncertainty SU(X,C) can be oblained which can calculate the correlation coefficient of one feature and fault classes with fault classes C to take the place of feature Y.

    A relatively simple and straight forward calculation method of symmetric uncertainty is the histogram method[13]. Specific steps are as follows:

    Step 1 Given n values x1,x2,…,xnof feature X, the value range of X is divided into n-1 disjoint intervals (xi, xi+1](i=1,…,n-1). Supposing A(xi) is a function that counts the number of sample data of feature X in the interval (xi, xi+1], probability function P(xi)=A(xi)/m would be got approximately in which m is the total number of sample data and information entropy of feature X namely:

    (6)

    Step 2 According to the fault classes, the sample data of feature X is classified. If A(cj) is the number of the sample data under fault class cj, and P(cj)=A(cj)/m is approximately probability function of fault class cj, then information entropy of fault class cjis calculated by

    (7)

    (8)

    Step 4 Finally, it turns to calculate symmetry uncertainty:

    (9)

    After Step 4, calculating the next feature, then repeating computation steps of “1~4”. After all the features of symmetry are calculated, the uncertainty coefficients are normalized. It needs to set a threshold for the coefficients normalized. Then the sensitive features are selected whose coefficient is greater than the threshold for different faults. The provisions of this paper is that for a single fault, the feature whose normalized symmetrical uncertainty coefficient is greater than 0.6 will be selected as the sensitive feature of the fault.

    2.2 Fault diagnosis of reciprocating compressor

    Artificial neural network as an intelligent classifier has been widely used in fault diagnosis of reciprocating compressor. Radial basis function (radial basis, function, RBF) neural network is a typical local three layer feed forward artificial neural network with good performance. It has good training speed and nonlinear ability which can approximate a nonlinear function with any precision globally. In the approximation ability, classification ability, convergence and learning speed etc, the RBF is superior to BP network. This enables RBF to obtain widespread application in many fields[14].

    In this paper, an architecture is constructed combining with sensitive fault feature selection and artificial neural network for fault warning and diagnosis, as shown in Fig.2.

    In Fig.2, based on the data of online monitoring system, the diagnostic parameters in time domain and frequency domain are calculated as the basis for the sensitive feature extraction. Through automatic learning a lot of data, a standard fault sensitive parameters library was built. The sensitive characteristics of the standard library can be used to improve the alarm parameters in the on-line monitoring system. Because the sensitive characteristics of every kind of fault are different, different neural network classifiers are set for different fault. By the learning of known faults history data, the neural network will be completed training. Then the trained neural network classifier can finish the fault automatic diagnosis. The architecture can be also improved by new type of faults, avoiding retraining of the neural network which has been trained.

    3 Experimental investigation

    To verify the effectiveness and practicability of the information entropy evaluation method applied in fault diagnosis of reciprocating compressors, two kinds of faults: fracture of piston rod and looseness of the piston rod nut, are used as validation examples. Both of the faults are difficult to be diagnosed in practice. The method will be verified based on data of fault simulation tests on a reciprocating compressor platform. The information of it is shown in Table 1 and the structure is shown in Fig.3.

    Fig.2 Architecture of early-warning and fault diagnosis based on fault sensitive feature evaluation and artificial neural network

    Based on the online monitoring system, 58 features have been extracted from time domain, frequency domain and time-frequency domain, including displacement peak-to-peak value, acceleration peak value, velocity RMS and so on. Table 2 and Table 3 show the normalized values of parts of features in different time of the failures.

    Table1 The experimental compressor information

    Fig.3 Structure of the reciprocating compressor

    ClassNormalFaulttimetime1time2time3time4time5time6time1time2time3time4time5time6Displacementpeak-to-peak0.170.110.210.180.230.250.220.270.320.330.360.32Accelerationpeak0.080.050.110.100.130.150.340.420.380.410.510.47RMS0.200.270.320.250.220.330.660.820.840.720.810.79

    Table 3 The value of parts of features for the looseness fault of piston rod nut

    It is easy to see that there are varied differences between normal and fault of a certain feature for each kind of fault. Therefore, the information entropy evaluation method can be used to calculate and sort the sensitivity of different features. After normalized, the sensitivity coefficients of each feature of four groups of fault data are shown in Fig.4 and Fig.5. In Fig.4, it

    Fig.4 Results of sensitive feature evaluation for the fracture failure of piston rod

    FaultNumberSensitivefeatureThefractureofpistonrod14Displacementwaveenergy15Displacementchangeindex53Crankcasechangeindex57CrankcaseRMSTheloosenessofpistonrodnut1Displacementpeak-to-peak14Displacementwaveenergy17Displacementvibrationfrequency

    is the result of sensitive feature evaluation for the fracture failure of piston rods. And in Fig.5, it is for the looseness fault. The sensitive features for each fault are shown in Table 4.

    After the sensitive features are obtained, the sample data corresponding to the sensitive features will be used to train the artificial neural network as an intelligent classifier respectively for each kind of fault. Then one typical fault case for the fracture failure of piston rod is taken and one typical fault case for looseness fault to test the independent intelligent classifier. The results are shown in Fig.6 and Fig.7.

    Fig.6 Output value of artificial neural network for the fracture failure of piston rod

    Fig.7 Output value of artificial neural network for the looseness fault of piston rod nut

    Fig.6 shows the output value of artificial neural network for the fracture failure of piston rod and it is easy to figure out that the trained classifier can do fault diagnosis. There is obviously the fault symptom in the early fault period. Similarly, Fig.7 shows the output value of artificial neural network for the looseness fault. And it is also easy to figure out that the trained classifier can do fault diagnosis, there is obviously the fault symptom in the early fault period.

    After evaluation, the fault features not only make clear the relationship between the fault type and fault feature, but also improve the diagnosis accuracy. In order to illustrate it, this paper constructs an architecture of artificial neural network fault diagnosis without sensitive feature selection and just provides one neural network system for all kinds of fault. That is, the fault features for diagnosis are same for every fault. Before the early-warning and diagnosis of test data, it is required the use of a known fault data to train the neural network. One drawback of this layout is a new category of failure which will need to retrain the neural network.

    Comparing and analyzing these experimental data, the test results of a typical fault case of the fracture failure for piston rod and a typical fault case for looseness fault are shown respectively in Fig.8 and Fig.9.

    Fig.8 Output value of artificial neural network without sensitive feature selection for the fracture failure of piston rod

    Fig.9 Output value of artificial neural network without sensitive feature selection for the looseness fault of piston rod

    It shows the output results of artificial neural network of the fracture failure of piston rod and the looseness fault. It is easy to figure out that the trained classifier reduces the accuracy of fault diagnosis compared with the above and there is obviously no fault symptom in the early fault period.

    4 Verification

    In order to exam the practical value in engineering of the method proposed in this paper further, the actual fault case data from a domestic enterprise remote monitoring and diagnosis center of reciprocating compressor were carried to be analyzed. According to the faults including fracture of the piston rod failure, supporting ring wear failure and scuffing failure, 20 groups of the faults data were selected as training data; the other 100 groups fault were selected as test data.

    To comprehensively inspect the practicability and superiority of the method presented in this paper for fault diagnosis, the diagnosis structure of this paper was compared with that based on the sensitive feature selection and BP artificial neural network in addition to the structure that based on radial basis function artificial neural network only.

    In Table 5, it is clear that the accuracy rate of RBF with sensitive features is higher than those of RBF only and BP with sensitive features.

    After sensitive features selection through information entropy evaluation, the dimension of the feature set was greatly reduced from 58 to 4 or 3. Meanwhile, the computational complexity is significantly reduced and the fault diagnosis accuracy is greatly improved. More important, it is clearly to grasp the sensitive features for the compressor operators in application of online monitoring and diagnosis system.

    Table 5 The validation results of actual faults data

    5 Conclusions

    According to the problems that the sensitivity of alarm parameters is very low and it is difficult to take automatic diagnosis in realistic, this paper proposes a new method that applies the information entropy evaluation to select the sensitive features of different faults based on the data in online monitory system. It makes clear the relationship of fault and features, reduces the dimension of data. The sensitive features can be used to improve the alarming system, increase the pertinence and validity of alarming parameters.

    Based on the selection of sensitive features, a new diagnosis architecture combining sensitive features and artificial neural network is built which has been compared with other architectures by different fault cases data. The diagnosis results obtain test data from faults simulation and actual faults, the diagnosis architecture proposed in this paper improves the accuracy of fault diagnosis significantly.

    The study of this paper is closely related to the requirements of realistic fault diagnosis of reciprocating compressor. The method has good application value. The next step will be integrating the diagnosis architecture into the online monitoring system to improve the training and studying through mass of data, and increasing the practicability and automatic diagnosis accuracy of the monitoring system.

    [ 1] Yu L J. Review on fault diagnosis technology for reciprocation compressors. Fluid Machinery, 2014,41(1): 36-37

    [ 2] Feng K, Jiang Z N, He W, et al. A recognition and novelty detection approach based on Curvelet transform, nonlinear PCA and SVM with application to indicator diagram diagnosis, Expert Systems with Applications, 2011, 38:12721-12729

    [ 3] Ma B, Gao J J, Jiang Z N. Research on the piston rod fracture early warning technique of reciprocating compressor. Journal of Mechanical Strength, 2008, 30(3) : 445- 449

    [ 4] M Ahmed, F Gu, A D Ball. Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations. Journal of Physics: Conference Series, 2012. 364, p. 012133

    [ 5] Ahmed M, Abdusslam S, Baqqar M, et al. Fault Classification of Reciprocating Compressor Based on Neural Networks and Support Vector Machines. In: Proceedings of the 17th International Conference on Automation & Computing, Huddersfield, UK, 2011. 213-218

    [ 6] Qu J X, Zhang Z S, He Z J. Fault diagnosis model based on multi- wavelet packet and rough neighborhood sets. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1): 137-140

    [ 7] Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502

    [ 8] Xia X T, Chen L, Meng F N. Information Entropy of Rolling Bearing Friction Torque as Data Series. Applied Mechanics and Materials, 2010, 44- 47:1115-1119

    [ 9] Cabal-Yepeza E, Romero-Troncosoa R J, Garcia-Pereza A, et al. Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors. Electric Power Systems Research, 2012, 89: 64-69

    [10] Romero-Troncoso R J, Saucedo-Gallaga R, Cabal-Yepez E, et al. FPGA-Based Online Detection of Multiple Combined Faults in Induction Motors Through Information Entropy and Fuzzy Inference. IEEE Transactions on Industrial Electronics, 2011,58(11):5263-5270

    [11] Ai Y T, Fu Q, Tian J, et al. Diagnosis method for crack-rubbing coupled fault in rotor system based on integration of information entropy distance. Journal of Aerospace Power, 2013,28(10): 2161-2166

    [12] Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502

    [13] Liu H W. A study on feature selection algorithms using information entropy: [Ph.D dissertation]. Jilin: Jilin University, 2010. 17-20

    [14] Leng J F, Jin S X, Wu Z Q. Fault diagnosis for gearbox based on RBF neural network. Journal of Mechanical Strength, 2010, 32(1): 017-020

    Xing Chenghong, born in 1972, is studying for his Ph.D degrees in Diagnosis and Self-recovery Engineering Research Center of Beijing University of Chemical Technology. His research interests in mechanical fault diagnosis and expert system.

    10.3772/j.issn.1006-6748.2015.04.007

    ①Supported by the National Basic Research Program of China (973 Program) under Grant (No. 2012CB026000), and the National High Technology Research and Development Program of China (No. 2014AA041806).

    ②To whom correspondence should be addressed. E-mail: 2012210152@grad.buct.edu.cn Received on July 7, 2014*, Yao Ziyun**, Li Haifeng***, Zhang Jinjie*

    久久久久久久久大av| 亚洲av美国av| 中文字幕高清在线视频| 日韩大尺度精品在线看网址| 九色国产91popny在线| 天堂网av新在线| 韩国av一区二区三区四区| 久久久久国产精品人妻aⅴ院| 日韩国内少妇激情av| 欧美高清成人免费视频www| 成人永久免费在线观看视频| 午夜日韩欧美国产| 91九色精品人成在线观看| 欧美日韩精品网址| 亚洲av二区三区四区| 亚洲成人久久性| 久久欧美精品欧美久久欧美| 久久精品国产自在天天线| 久久精品国产自在天天线| 少妇的逼好多水| 香蕉丝袜av| 91久久精品国产一区二区成人 | 久久久久久久午夜电影| 久久久久久大精品| 免费人成视频x8x8入口观看| 国产精品久久视频播放| 国产精华一区二区三区| av女优亚洲男人天堂| 在线观看免费午夜福利视频| 色视频www国产| 国产久久久一区二区三区| 国产精品一区二区免费欧美| 精品国内亚洲2022精品成人| xxx96com| 老鸭窝网址在线观看| 亚洲成人久久爱视频| 精品人妻一区二区三区麻豆 | 在线播放无遮挡| 国产一区二区三区视频了| 午夜福利欧美成人| 九九热线精品视视频播放| 黄片大片在线免费观看| 少妇的丰满在线观看| 国产av麻豆久久久久久久| 亚洲人成网站在线播放欧美日韩| 欧美+亚洲+日韩+国产| 99久久精品热视频| 噜噜噜噜噜久久久久久91| 高清毛片免费观看视频网站| 蜜桃久久精品国产亚洲av| 一级毛片高清免费大全| 午夜福利在线观看免费完整高清在 | 97超视频在线观看视频| av在线天堂中文字幕| 久久6这里有精品| 国产精品久久久久久人妻精品电影| 亚洲av免费高清在线观看| 色综合欧美亚洲国产小说| 看黄色毛片网站| 欧美日韩黄片免| 午夜免费观看网址| or卡值多少钱| 欧美在线一区亚洲| 国产美女午夜福利| 国产精品久久电影中文字幕| 亚洲一区二区三区不卡视频| 亚洲 国产 在线| 88av欧美| 一个人免费在线观看电影| 1024手机看黄色片| xxxwww97欧美| 可以在线观看的亚洲视频| 香蕉丝袜av| 欧美黑人巨大hd| 99久久精品国产亚洲精品| 日日夜夜操网爽| 亚洲 欧美 日韩 在线 免费| 久久久久亚洲av毛片大全| 99在线人妻在线中文字幕| 国产国拍精品亚洲av在线观看 | 老司机午夜福利在线观看视频| 欧美一级a爱片免费观看看| 女同久久另类99精品国产91| 精品人妻1区二区| 2021天堂中文幕一二区在线观| 97人妻精品一区二区三区麻豆| 国产私拍福利视频在线观看| 中亚洲国语对白在线视频| 首页视频小说图片口味搜索| 人妻丰满熟妇av一区二区三区| 欧美日韩精品网址| 色噜噜av男人的天堂激情| 12—13女人毛片做爰片一| 一进一出好大好爽视频| 香蕉丝袜av| 超碰av人人做人人爽久久 | 国产aⅴ精品一区二区三区波| 尤物成人国产欧美一区二区三区| 亚洲在线自拍视频| 精品福利观看| 亚洲美女黄片视频| 天堂√8在线中文| 啪啪无遮挡十八禁网站| 99精品久久久久人妻精品| 免费看日本二区| 亚洲不卡免费看| 国内精品久久久久精免费| 国产成人啪精品午夜网站| 欧美乱妇无乱码| 国产国拍精品亚洲av在线观看 | 亚洲国产色片| 很黄的视频免费| 又爽又黄无遮挡网站| 成人一区二区视频在线观看| 精品福利观看| 久久精品人妻少妇| 91麻豆精品激情在线观看国产| 国产一区二区亚洲精品在线观看| 日韩欧美免费精品| 国产麻豆成人av免费视频| 国产色爽女视频免费观看| 国产探花极品一区二区| 99视频精品全部免费 在线| 一区二区三区高清视频在线| 色噜噜av男人的天堂激情| 国产精品日韩av在线免费观看| 中亚洲国语对白在线视频| 成年女人毛片免费观看观看9| 国产精品电影一区二区三区| 欧美激情久久久久久爽电影| 亚洲 欧美 日韩 在线 免费| 日本 av在线| 欧美一区二区亚洲| 久久午夜亚洲精品久久| 国产v大片淫在线免费观看| 亚洲成av人片在线播放无| 日韩人妻高清精品专区| 99热只有精品国产| 在线免费观看不下载黄p国产 | 怎么达到女性高潮| 无遮挡黄片免费观看| 成人午夜高清在线视频| 国产精品电影一区二区三区| 日本 av在线| 国产精品嫩草影院av在线观看 | 别揉我奶头~嗯~啊~动态视频| 18+在线观看网站| 啦啦啦免费观看视频1| 18美女黄网站色大片免费观看| 亚洲欧美日韩高清在线视频| 精华霜和精华液先用哪个| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频| 人人妻,人人澡人人爽秒播| 狠狠狠狠99中文字幕| 国产在视频线在精品| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 精品一区二区三区av网在线观看| 3wmmmm亚洲av在线观看| 最近在线观看免费完整版| 18+在线观看网站| 午夜a级毛片| 亚洲欧美日韩高清专用| 日韩精品中文字幕看吧| 亚洲精品美女久久久久99蜜臀| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 99精品欧美一区二区三区四区| 美女 人体艺术 gogo| 无限看片的www在线观看| 国产伦精品一区二区三区视频9 | 99视频精品全部免费 在线| 亚洲国产欧美人成| 欧美国产日韩亚洲一区| 国产精品影院久久| 久久亚洲真实| 亚洲av中文字字幕乱码综合| 国产精品一及| 久久九九热精品免费| 午夜日韩欧美国产| 88av欧美| 首页视频小说图片口味搜索| 每晚都被弄得嗷嗷叫到高潮| 91在线精品国自产拍蜜月 | 久久久精品欧美日韩精品| xxxwww97欧美| 久久精品国产综合久久久| 大型黄色视频在线免费观看| 99国产精品一区二区蜜桃av| 天堂网av新在线| 国产激情欧美一区二区| 美女免费视频网站| 久久久国产成人免费| 国产熟女xx| 国产蜜桃级精品一区二区三区| 国产淫片久久久久久久久 | 国产乱人伦免费视频| 哪里可以看免费的av片| 亚洲人成网站在线播| 精品国产超薄肉色丝袜足j| 亚洲精品粉嫩美女一区| 精品人妻一区二区三区麻豆 | 男女之事视频高清在线观看| 免费一级毛片在线播放高清视频| 欧美午夜高清在线| 97超级碰碰碰精品色视频在线观看| 黄色成人免费大全| 日本免费a在线| 国产精品久久电影中文字幕| 日韩人妻高清精品专区| 毛片女人毛片| 在线十欧美十亚洲十日本专区| 国产私拍福利视频在线观看| 欧美另类亚洲清纯唯美| 欧美一区二区亚洲| 99热这里只有是精品50| 啦啦啦免费观看视频1| 麻豆国产av国片精品| 日韩国内少妇激情av| 亚洲,欧美精品.| 一级黄片播放器| 一个人看的www免费观看视频| 19禁男女啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 日本五十路高清| 一边摸一边抽搐一进一小说| 9191精品国产免费久久| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播| 波多野结衣高清无吗| 中亚洲国语对白在线视频| 欧美高清成人免费视频www| 18禁国产床啪视频网站| 欧美黄色淫秽网站| 久久久久久九九精品二区国产| 丝袜美腿在线中文| 国产午夜精品论理片| www.色视频.com| www.www免费av| 青草久久国产| 国产精品自产拍在线观看55亚洲| 欧美3d第一页| 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 精品免费久久久久久久清纯| 99久久精品国产亚洲精品| 九色国产91popny在线| 手机成人av网站| 美女大奶头视频| 免费人成视频x8x8入口观看| 国产中年淑女户外野战色| 18+在线观看网站| 女同久久另类99精品国产91| 欧美日本亚洲视频在线播放| 欧美一区二区亚洲| 欧美乱妇无乱码| 天堂网av新在线| 成人av一区二区三区在线看| 国产三级黄色录像| 国产日本99.免费观看| 中文字幕av在线有码专区| 97碰自拍视频| 观看美女的网站| 亚洲avbb在线观看| av福利片在线观看| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 在线国产一区二区在线| 2021天堂中文幕一二区在线观| 一夜夜www| 精品久久久久久久久久久久久| 免费在线观看影片大全网站| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 黄色成人免费大全| 国产精品一区二区三区四区久久| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 神马国产精品三级电影在线观看| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线观看免费| 一区福利在线观看| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 女同久久另类99精品国产91| 国产一区二区三区视频了| 亚洲18禁久久av| 亚洲人成伊人成综合网2020| 成人精品一区二区免费| 国产爱豆传媒在线观看| 免费观看人在逋| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 亚洲国产欧洲综合997久久,| 少妇人妻精品综合一区二区 | 欧美又色又爽又黄视频| 国产精品精品国产色婷婷| 老司机午夜十八禁免费视频| 欧美绝顶高潮抽搐喷水| 亚洲片人在线观看| 免费看十八禁软件| 老司机福利观看| 99久久九九国产精品国产免费| av欧美777| 日本一二三区视频观看| 精品人妻一区二区三区麻豆 | bbb黄色大片| 国产aⅴ精品一区二区三区波| 亚洲精品在线美女| 久久精品影院6| 好男人在线观看高清免费视频| 波多野结衣巨乳人妻| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放| 级片在线观看| 国产在视频线在精品| 国产黄片美女视频| 黄色女人牲交| 精品一区二区三区视频在线 | av女优亚洲男人天堂| 亚洲专区国产一区二区| 天天躁日日操中文字幕| 亚洲av五月六月丁香网| 免费高清视频大片| 欧美中文日本在线观看视频| 非洲黑人性xxxx精品又粗又长| 极品教师在线免费播放| 久久天躁狠狠躁夜夜2o2o| 真实男女啪啪啪动态图| 悠悠久久av| a级毛片a级免费在线| 国产v大片淫在线免费观看| 亚洲色图av天堂| 国产精品影院久久| 国产伦人伦偷精品视频| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 听说在线观看完整版免费高清| 日本在线视频免费播放| 国产一区二区三区视频了| 久久久久久久午夜电影| 国产69精品久久久久777片| 内射极品少妇av片p| 亚洲美女视频黄频| 亚洲五月婷婷丁香| 午夜日韩欧美国产| 国产精品av视频在线免费观看| 国产亚洲精品久久久com| 在线播放无遮挡| 日韩欧美一区二区三区在线观看| 99精品久久久久人妻精品| 久久精品亚洲精品国产色婷小说| 人人妻人人澡欧美一区二区| av视频在线观看入口| 天堂网av新在线| 99久久精品热视频| 国产av一区在线观看免费| 亚洲国产精品999在线| 在线免费观看不下载黄p国产 | 国产欧美日韩精品一区二区| 成年女人永久免费观看视频| 亚洲中文日韩欧美视频| 国产精品精品国产色婷婷| 黑人欧美特级aaaaaa片| www.色视频.com| 校园春色视频在线观看| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 国产私拍福利视频在线观看| 亚洲在线观看片| 丰满人妻一区二区三区视频av | 午夜免费成人在线视频| 性欧美人与动物交配| 亚洲 欧美 日韩 在线 免费| 欧美色视频一区免费| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 国产亚洲精品综合一区在线观看| 国产精品久久久久久精品电影| av黄色大香蕉| 亚洲国产欧洲综合997久久,| 国产伦精品一区二区三区四那| 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 久久久精品欧美日韩精品| 韩国av一区二区三区四区| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 制服丝袜大香蕉在线| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 一区二区三区激情视频| 男插女下体视频免费在线播放| 国产午夜福利久久久久久| 真人一进一出gif抽搐免费| 一区二区三区高清视频在线| 老司机午夜十八禁免费视频| 97人妻精品一区二区三区麻豆| 特大巨黑吊av在线直播| 色综合亚洲欧美另类图片| 久久国产精品人妻蜜桃| 女生性感内裤真人,穿戴方法视频| 小蜜桃在线观看免费完整版高清| 少妇裸体淫交视频免费看高清| 欧美精品啪啪一区二区三区| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 97超级碰碰碰精品色视频在线观看| 国产午夜精品久久久久久一区二区三区 | aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美 | netflix在线观看网站| 极品教师在线免费播放| 激情在线观看视频在线高清| 一本久久中文字幕| 久久久久久九九精品二区国产| 99热6这里只有精品| 亚洲精品在线美女| 99国产综合亚洲精品| 怎么达到女性高潮| 香蕉av资源在线| 精品99又大又爽又粗少妇毛片 | 久久国产乱子伦精品免费另类| 婷婷丁香在线五月| 91麻豆精品激情在线观看国产| 高潮久久久久久久久久久不卡| 19禁男女啪啪无遮挡网站| 9191精品国产免费久久| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 国产真实乱freesex| 午夜免费成人在线视频| 精品99又大又爽又粗少妇毛片 | 中文字幕人成人乱码亚洲影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品91无色码中文字幕| 亚洲av二区三区四区| 亚洲五月天丁香| 国产精品久久久久久久电影 | 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 看片在线看免费视频| 免费观看人在逋| 一个人看的www免费观看视频| 桃红色精品国产亚洲av| 大型黄色视频在线免费观看| 婷婷丁香在线五月| 亚洲,欧美精品.| 搡女人真爽免费视频火全软件 | 欧美中文综合在线视频| 美女高潮喷水抽搐中文字幕| 国产亚洲精品综合一区在线观看| 久久久久久久精品吃奶| 动漫黄色视频在线观看| 美女 人体艺术 gogo| av国产免费在线观看| 高清在线国产一区| 亚洲内射少妇av| 国产亚洲精品一区二区www| 国产伦人伦偷精品视频| 国产亚洲精品久久久久久毛片| 精品熟女少妇八av免费久了| 97人妻精品一区二区三区麻豆| 国内久久婷婷六月综合欲色啪| 亚洲精品美女久久久久99蜜臀| 小蜜桃在线观看免费完整版高清| 成人午夜高清在线视频| 国产一级毛片七仙女欲春2| 少妇人妻精品综合一区二区 | 91麻豆精品激情在线观看国产| 可以在线观看毛片的网站| 成年女人永久免费观看视频| 久久久久国产精品人妻aⅴ院| 99riav亚洲国产免费| 在线观看av片永久免费下载| 国产成人欧美在线观看| 国产私拍福利视频在线观看| 色综合婷婷激情| 女人十人毛片免费观看3o分钟| 欧美三级亚洲精品| 桃色一区二区三区在线观看| 精品国产美女av久久久久小说| 国产av麻豆久久久久久久| 制服丝袜大香蕉在线| 在线观看免费视频日本深夜| 午夜激情欧美在线| 国产精品av视频在线免费观看| 国产探花在线观看一区二区| 观看美女的网站| 国产亚洲精品久久久久久毛片| 国产麻豆成人av免费视频| 国产真人三级小视频在线观看| 最新美女视频免费是黄的| 国产一区二区激情短视频| 在线十欧美十亚洲十日本专区| 日本一二三区视频观看| 日本与韩国留学比较| svipshipincom国产片| 亚洲精品粉嫩美女一区| 国产精品一区二区三区四区免费观看 | 国产亚洲精品av在线| 男女视频在线观看网站免费| 老熟妇仑乱视频hdxx| 特大巨黑吊av在线直播| 十八禁网站免费在线| 欧美乱码精品一区二区三区| 午夜福利在线观看吧| 久久精品人妻少妇| 国产久久久一区二区三区| 九色成人免费人妻av| 99国产精品一区二区三区| 高清毛片免费观看视频网站| 国产男靠女视频免费网站| 国产av一区在线观看免费| 国产成人福利小说| 又黄又爽又免费观看的视频| 毛片女人毛片| 国产成人系列免费观看| 国产高清videossex| 美女黄网站色视频| 中文字幕久久专区| 我要搜黄色片| 久久精品91蜜桃| 最近在线观看免费完整版| 亚洲专区中文字幕在线| 久久草成人影院| 亚洲国产欧洲综合997久久,| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区精品| 久久精品国产自在天天线| 精品国内亚洲2022精品成人| 欧美成人性av电影在线观看| 我的老师免费观看完整版| 99久国产av精品| 天堂√8在线中文| www日本在线高清视频| 国产淫片久久久久久久久 | 深夜精品福利| 免费看光身美女| 久9热在线精品视频| 国产不卡一卡二| 成人一区二区视频在线观看| 国产精品久久久久久人妻精品电影| av在线蜜桃| 人妻久久中文字幕网| 国产成人福利小说| 婷婷精品国产亚洲av| 很黄的视频免费| 午夜免费观看网址| 久久精品亚洲精品国产色婷小说| 男人和女人高潮做爰伦理| 亚洲美女黄片视频| 国内精品久久久久精免费| 亚洲av熟女| 大型黄色视频在线免费观看| 99久久成人亚洲精品观看| 精品久久久久久久毛片微露脸| 一级黄色大片毛片| 最新在线观看一区二区三区| 亚洲av美国av| 成人高潮视频无遮挡免费网站| 1024手机看黄色片| 精品国产三级普通话版| 亚洲午夜理论影院| 免费观看的影片在线观看| 97人妻精品一区二区三区麻豆| 免费在线观看日本一区| 亚洲黑人精品在线| 大型黄色视频在线免费观看| 国产在视频线在精品| 免费观看人在逋| 亚洲成人久久性| 99久国产av精品| 久久久久久国产a免费观看| 在线a可以看的网站| 国产日本99.免费观看| 国产成年人精品一区二区| 欧美激情久久久久久爽电影| 午夜激情欧美在线| 亚洲,欧美精品.| 成人高潮视频无遮挡免费网站| 18禁黄网站禁片午夜丰满| 久久精品国产清高在天天线| 日韩国内少妇激情av| 操出白浆在线播放| 香蕉av资源在线| 伊人久久精品亚洲午夜| 国产精品美女特级片免费视频播放器| 九九久久精品国产亚洲av麻豆| 好看av亚洲va欧美ⅴa在| 麻豆国产av国片精品| 99久久精品热视频| 国产成+人综合+亚洲专区| 在线观看日韩欧美| 久久婷婷人人爽人人干人人爱| 99久久99久久久精品蜜桃| 亚洲av免费高清在线观看| 国产高清激情床上av| 久久精品国产综合久久久| 亚洲欧美日韩高清专用| 国产主播在线观看一区二区| 在线播放无遮挡| 最近在线观看免费完整版| www.色视频.com| 99国产精品一区二区三区| 三级毛片av免费|