• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fault diagnosis method of reciprocating compressor based on sensitive feature evaluation and artificial neural network①

    2015-04-17 07:17:11XingChenghong興成宏XuFengtian
    High Technology Letters 2015年4期

    Xing Chenghong (興成宏), Xu Fengtian

    (*Diagnosis and Self-Recovery Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, P.R.China)(**PetroChina Beijing Gas Pipeline Co., Ltd., Beijing 100101, P.R.China)(***PetroChina Fushun Petrochemical Company Detergent Chemical Plant, Fushun 113005, P.R.China)

    ?

    A fault diagnosis method of reciprocating compressor based on sensitive feature evaluation and artificial neural network①

    Xing Chenghong (興成宏)*, Xu Fengtian②

    (*Diagnosis and Self-Recovery Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, P.R.China)(**PetroChina Beijing Gas Pipeline Co., Ltd., Beijing 100101, P.R.China)(***PetroChina Fushun Petrochemical Company Detergent Chemical Plant, Fushun 113005, P.R.China)

    A method combining information entropy and radial basis function network is proposed for fault automatic diagnosis of reciprocating compressors. Aiming at the current situation that the accuracy rate of reciprocating compressor fault diagnosis which depends on manual work in engineering is very low, we apply information entropy evaluation to select the sensitive features and make clear the corresponding relationship of characteristic parameters and failures. This method could reduce the feature dimension. Then, a complete fault diagnosis architecture has been built combining with radial basis function network which has the fast and efficient characteristics. According to the test results using experimental and engineering data, it is observed that the proposed fault diagnosis method improves the accuracy of fault automatic diagnosis effectively and it could improve the practicability of the monitoring system.

    information entropy, radial basis function network, fault automatic diagnosis, reciprocating compressor, sensitive feature

    0 Introduction

    Reciprocating compressors are widely used in process industries of oil refining and chemical, which are the core equipments of process plant. Most of the operation media of reciprocating compressors are combustible and explosive vapors, such as hydrogen, natural gas, methane gas and ethylene gas. In case of serious faults, dangerous gas is liable to leak, causing serious accidents such as fire even explosion[1]. Currently, part of domestic reciprocating compressors have installed the online monitoring system, which makes real-time monitoring of operation status possible. With the development of computer processing in intelligent classification technology, fault early-warning and automatic diagnosis have been an inevitable trend. But reciprocating compressor has multiple vibration sources, complex structures and poor working conditions. These make signal acquisition, condition monitoring and fault automatic diagnosis very difficult.

    1 Related work

    In recent years, many scholars have always concerned about fault diagnosis of reciprocating compressors. Feng, et al. applies support vector machines in fault classification of reciprocating compressor[2]. Ma, et al. used acoustic emission technology on reciprocating compressors for early-warning of piston rods fracture[3]. Ahmed, et al. uses neural networks, support vector machines and principle component analysis in reciprocating compressors fault diagnosis[4,5]. Qu, et al. proposes a fault diagnosis model based on multi-wavelet packet and neighborhood rough set, which enables automatic recognition of the different status of the device[6].

    However, these monitoring and diagnosis methods are seldom used in practical engineering. There are three main aspects as follows:

    ? Reciprocating compressor’s practical working situation is complicated and the utility of fault diagnosis method in lab remains to be tested.

    ? For single fault, laboratory extracts a smaller number of features. But in the actual diagnosis of typical faults, there are dozens of or even hundreds of extracted features. Diagnosis for real-time processing is difficult.

    ? Part of the diagnosis methods slip from the target for fault early warning does not blended into online monitoring system.

    Therefore, the capability of fault early-warning and automatic diagnosis in the online monitoring system is weak at present.

    This paper applies feature selection technology in machine learning to the field of diagnosis for reciprocating compressor and extracts various kinds of fault features basing on online monitoring data, using information entropy technology to complete feature sensitivity analysis. The method achieves fault sensitive features to establish new alarm parameters.

    Information entropy is the calculated information content on the basis of original data, which has strong objectivity as a measure of system’s uncertainty[7]. For the moment, information entropy is mainly applied to the aspects of feature analysis and selection in fault diagnosis. Xia, et al. uses it for rolling bearing friction analysis[8], Cabal-Yepez, et al. uses it in induction motors fault identification[9,10], Ai, et al. uses it in crack-rubbing coupled fault diagnosis[11].

    There are few reports about the application of information entropy for fault diagnosis of reciprocating compressor.

    On the basis of extraction of fault sensitive features by using information entropy, a new fault early-warning and diagnosis architecture combining fault-sensitive features and artificial neural network has been constructed and applied to practical fault diagnosis. Experimental and practical data have proved that the method in this paper obtains a higher diagnosis accuracy and timeliness of early warning compared to the method without feature selection.

    2 Sensitive feature evaluation and diagnosis

    2.1 Sensitive feature evaluation based on information entropy

    Feature selection in machine learning can be defined as selecting a subset which has the optimal result of evaluation criteria from a set of features[12]. It is an algorithm that selects N features from given M features by a learning algorithm L to make a certain evaluation criterion J=J(L,S) optimal.

    Information entropy evaluation criterion can quantify the uncertainty between features and fault mainly by using information entropy to determine the classification information that features contain. It is a non-parametric and nonlinear evaluation criterion. Among the methods of information entropy evaluation criterion, information gain and mutual information are widely applied. For illustration, the definition of entropy and conditional entropy is given first.

    In information theory and probability and statistics, entropy is a measure of the uncertainty of a random variable. It sets X as a discrete random variable, if its probability distribution is P(X=xi)=pi, i=1,2,…,n, the entropy of the random variable X can be defined as

    (1)

    if pi=0, then 0log2(0)=0. By definition, X depends on the entropy distribution and has nothing to do with the value of X, so the entropy of X can be denoted as H(p). The greater the entropy, the greater the uncertainty of a random variable. When there are only two random variable values as 0 or 1, the distribution of X is H(X=1)=p and H(X=0)=1-p, 0≤p≤1, and the entropy is

    H(p)=-plog2p-(1-p)log2(1-p)

    (2)

    At this point, the curve of the entropy with probability is shown in Fig.1. It could be known from Fig.1 that when p=0 or p=1, H(p)=0. That means the random variable has no uncertainty.

    Fig.1 The relationship between entropy and probability

    (3)

    In Eq.(3), P(xi) is the priorprobability that the value of feature X is xi, and P(xi|yj) is the posterior probability that the value of feature X is xiin the given value yiof feature Y. Therefore, information gain is

    IG(X|Y)=H(X)-H(X|Y)

    (4)

    According to the definition of information gain, if IG(X|Y)>IG(Z|Y), the correlation coefficient of feature Y and feature X is higher than that of feature Z and feature X. And IG(X|Y) can be normalized to

    (5)

    SU(X,Y) is called Symmetric Uncertainty, whose value is in [0, 1]. SU(X,Y)=1 when feature X and Y are completely dependent, and SU(X,Y)=0, when they are completely independent.

    There have been symmetric uncertainty SU(X,Y) which can calculate the correlation coefficient of two features, also symmetric uncertainty SU(X,C) can be oblained which can calculate the correlation coefficient of one feature and fault classes with fault classes C to take the place of feature Y.

    A relatively simple and straight forward calculation method of symmetric uncertainty is the histogram method[13]. Specific steps are as follows:

    Step 1 Given n values x1,x2,…,xnof feature X, the value range of X is divided into n-1 disjoint intervals (xi, xi+1](i=1,…,n-1). Supposing A(xi) is a function that counts the number of sample data of feature X in the interval (xi, xi+1], probability function P(xi)=A(xi)/m would be got approximately in which m is the total number of sample data and information entropy of feature X namely:

    (6)

    Step 2 According to the fault classes, the sample data of feature X is classified. If A(cj) is the number of the sample data under fault class cj, and P(cj)=A(cj)/m is approximately probability function of fault class cj, then information entropy of fault class cjis calculated by

    (7)

    (8)

    Step 4 Finally, it turns to calculate symmetry uncertainty:

    (9)

    After Step 4, calculating the next feature, then repeating computation steps of “1~4”. After all the features of symmetry are calculated, the uncertainty coefficients are normalized. It needs to set a threshold for the coefficients normalized. Then the sensitive features are selected whose coefficient is greater than the threshold for different faults. The provisions of this paper is that for a single fault, the feature whose normalized symmetrical uncertainty coefficient is greater than 0.6 will be selected as the sensitive feature of the fault.

    2.2 Fault diagnosis of reciprocating compressor

    Artificial neural network as an intelligent classifier has been widely used in fault diagnosis of reciprocating compressor. Radial basis function (radial basis, function, RBF) neural network is a typical local three layer feed forward artificial neural network with good performance. It has good training speed and nonlinear ability which can approximate a nonlinear function with any precision globally. In the approximation ability, classification ability, convergence and learning speed etc, the RBF is superior to BP network. This enables RBF to obtain widespread application in many fields[14].

    In this paper, an architecture is constructed combining with sensitive fault feature selection and artificial neural network for fault warning and diagnosis, as shown in Fig.2.

    In Fig.2, based on the data of online monitoring system, the diagnostic parameters in time domain and frequency domain are calculated as the basis for the sensitive feature extraction. Through automatic learning a lot of data, a standard fault sensitive parameters library was built. The sensitive characteristics of the standard library can be used to improve the alarm parameters in the on-line monitoring system. Because the sensitive characteristics of every kind of fault are different, different neural network classifiers are set for different fault. By the learning of known faults history data, the neural network will be completed training. Then the trained neural network classifier can finish the fault automatic diagnosis. The architecture can be also improved by new type of faults, avoiding retraining of the neural network which has been trained.

    3 Experimental investigation

    To verify the effectiveness and practicability of the information entropy evaluation method applied in fault diagnosis of reciprocating compressors, two kinds of faults: fracture of piston rod and looseness of the piston rod nut, are used as validation examples. Both of the faults are difficult to be diagnosed in practice. The method will be verified based on data of fault simulation tests on a reciprocating compressor platform. The information of it is shown in Table 1 and the structure is shown in Fig.3.

    Fig.2 Architecture of early-warning and fault diagnosis based on fault sensitive feature evaluation and artificial neural network

    Based on the online monitoring system, 58 features have been extracted from time domain, frequency domain and time-frequency domain, including displacement peak-to-peak value, acceleration peak value, velocity RMS and so on. Table 2 and Table 3 show the normalized values of parts of features in different time of the failures.

    Table1 The experimental compressor information

    Fig.3 Structure of the reciprocating compressor

    ClassNormalFaulttimetime1time2time3time4time5time6time1time2time3time4time5time6Displacementpeak-to-peak0.170.110.210.180.230.250.220.270.320.330.360.32Accelerationpeak0.080.050.110.100.130.150.340.420.380.410.510.47RMS0.200.270.320.250.220.330.660.820.840.720.810.79

    Table 3 The value of parts of features for the looseness fault of piston rod nut

    It is easy to see that there are varied differences between normal and fault of a certain feature for each kind of fault. Therefore, the information entropy evaluation method can be used to calculate and sort the sensitivity of different features. After normalized, the sensitivity coefficients of each feature of four groups of fault data are shown in Fig.4 and Fig.5. In Fig.4, it

    Fig.4 Results of sensitive feature evaluation for the fracture failure of piston rod

    FaultNumberSensitivefeatureThefractureofpistonrod14Displacementwaveenergy15Displacementchangeindex53Crankcasechangeindex57CrankcaseRMSTheloosenessofpistonrodnut1Displacementpeak-to-peak14Displacementwaveenergy17Displacementvibrationfrequency

    is the result of sensitive feature evaluation for the fracture failure of piston rods. And in Fig.5, it is for the looseness fault. The sensitive features for each fault are shown in Table 4.

    After the sensitive features are obtained, the sample data corresponding to the sensitive features will be used to train the artificial neural network as an intelligent classifier respectively for each kind of fault. Then one typical fault case for the fracture failure of piston rod is taken and one typical fault case for looseness fault to test the independent intelligent classifier. The results are shown in Fig.6 and Fig.7.

    Fig.6 Output value of artificial neural network for the fracture failure of piston rod

    Fig.7 Output value of artificial neural network for the looseness fault of piston rod nut

    Fig.6 shows the output value of artificial neural network for the fracture failure of piston rod and it is easy to figure out that the trained classifier can do fault diagnosis. There is obviously the fault symptom in the early fault period. Similarly, Fig.7 shows the output value of artificial neural network for the looseness fault. And it is also easy to figure out that the trained classifier can do fault diagnosis, there is obviously the fault symptom in the early fault period.

    After evaluation, the fault features not only make clear the relationship between the fault type and fault feature, but also improve the diagnosis accuracy. In order to illustrate it, this paper constructs an architecture of artificial neural network fault diagnosis without sensitive feature selection and just provides one neural network system for all kinds of fault. That is, the fault features for diagnosis are same for every fault. Before the early-warning and diagnosis of test data, it is required the use of a known fault data to train the neural network. One drawback of this layout is a new category of failure which will need to retrain the neural network.

    Comparing and analyzing these experimental data, the test results of a typical fault case of the fracture failure for piston rod and a typical fault case for looseness fault are shown respectively in Fig.8 and Fig.9.

    Fig.8 Output value of artificial neural network without sensitive feature selection for the fracture failure of piston rod

    Fig.9 Output value of artificial neural network without sensitive feature selection for the looseness fault of piston rod

    It shows the output results of artificial neural network of the fracture failure of piston rod and the looseness fault. It is easy to figure out that the trained classifier reduces the accuracy of fault diagnosis compared with the above and there is obviously no fault symptom in the early fault period.

    4 Verification

    In order to exam the practical value in engineering of the method proposed in this paper further, the actual fault case data from a domestic enterprise remote monitoring and diagnosis center of reciprocating compressor were carried to be analyzed. According to the faults including fracture of the piston rod failure, supporting ring wear failure and scuffing failure, 20 groups of the faults data were selected as training data; the other 100 groups fault were selected as test data.

    To comprehensively inspect the practicability and superiority of the method presented in this paper for fault diagnosis, the diagnosis structure of this paper was compared with that based on the sensitive feature selection and BP artificial neural network in addition to the structure that based on radial basis function artificial neural network only.

    In Table 5, it is clear that the accuracy rate of RBF with sensitive features is higher than those of RBF only and BP with sensitive features.

    After sensitive features selection through information entropy evaluation, the dimension of the feature set was greatly reduced from 58 to 4 or 3. Meanwhile, the computational complexity is significantly reduced and the fault diagnosis accuracy is greatly improved. More important, it is clearly to grasp the sensitive features for the compressor operators in application of online monitoring and diagnosis system.

    Table 5 The validation results of actual faults data

    5 Conclusions

    According to the problems that the sensitivity of alarm parameters is very low and it is difficult to take automatic diagnosis in realistic, this paper proposes a new method that applies the information entropy evaluation to select the sensitive features of different faults based on the data in online monitory system. It makes clear the relationship of fault and features, reduces the dimension of data. The sensitive features can be used to improve the alarming system, increase the pertinence and validity of alarming parameters.

    Based on the selection of sensitive features, a new diagnosis architecture combining sensitive features and artificial neural network is built which has been compared with other architectures by different fault cases data. The diagnosis results obtain test data from faults simulation and actual faults, the diagnosis architecture proposed in this paper improves the accuracy of fault diagnosis significantly.

    The study of this paper is closely related to the requirements of realistic fault diagnosis of reciprocating compressor. The method has good application value. The next step will be integrating the diagnosis architecture into the online monitoring system to improve the training and studying through mass of data, and increasing the practicability and automatic diagnosis accuracy of the monitoring system.

    [ 1] Yu L J. Review on fault diagnosis technology for reciprocation compressors. Fluid Machinery, 2014,41(1): 36-37

    [ 2] Feng K, Jiang Z N, He W, et al. A recognition and novelty detection approach based on Curvelet transform, nonlinear PCA and SVM with application to indicator diagram diagnosis, Expert Systems with Applications, 2011, 38:12721-12729

    [ 3] Ma B, Gao J J, Jiang Z N. Research on the piston rod fracture early warning technique of reciprocating compressor. Journal of Mechanical Strength, 2008, 30(3) : 445- 449

    [ 4] M Ahmed, F Gu, A D Ball. Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations. Journal of Physics: Conference Series, 2012. 364, p. 012133

    [ 5] Ahmed M, Abdusslam S, Baqqar M, et al. Fault Classification of Reciprocating Compressor Based on Neural Networks and Support Vector Machines. In: Proceedings of the 17th International Conference on Automation & Computing, Huddersfield, UK, 2011. 213-218

    [ 6] Qu J X, Zhang Z S, He Z J. Fault diagnosis model based on multi- wavelet packet and rough neighborhood sets. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1): 137-140

    [ 7] Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502

    [ 8] Xia X T, Chen L, Meng F N. Information Entropy of Rolling Bearing Friction Torque as Data Series. Applied Mechanics and Materials, 2010, 44- 47:1115-1119

    [ 9] Cabal-Yepeza E, Romero-Troncosoa R J, Garcia-Pereza A, et al. Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors. Electric Power Systems Research, 2012, 89: 64-69

    [10] Romero-Troncoso R J, Saucedo-Gallaga R, Cabal-Yepez E, et al. FPGA-Based Online Detection of Multiple Combined Faults in Induction Motors Through Information Entropy and Fuzzy Inference. IEEE Transactions on Industrial Electronics, 2011,58(11):5263-5270

    [11] Ai Y T, Fu Q, Tian J, et al. Diagnosis method for crack-rubbing coupled fault in rotor system based on integration of information entropy distance. Journal of Aerospace Power, 2013,28(10): 2161-2166

    [12] Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502

    [13] Liu H W. A study on feature selection algorithms using information entropy: [Ph.D dissertation]. Jilin: Jilin University, 2010. 17-20

    [14] Leng J F, Jin S X, Wu Z Q. Fault diagnosis for gearbox based on RBF neural network. Journal of Mechanical Strength, 2010, 32(1): 017-020

    Xing Chenghong, born in 1972, is studying for his Ph.D degrees in Diagnosis and Self-recovery Engineering Research Center of Beijing University of Chemical Technology. His research interests in mechanical fault diagnosis and expert system.

    10.3772/j.issn.1006-6748.2015.04.007

    ①Supported by the National Basic Research Program of China (973 Program) under Grant (No. 2012CB026000), and the National High Technology Research and Development Program of China (No. 2014AA041806).

    ②To whom correspondence should be addressed. E-mail: 2012210152@grad.buct.edu.cn Received on July 7, 2014*, Yao Ziyun**, Li Haifeng***, Zhang Jinjie*

    亚洲欧美日韩卡通动漫| 欧美xxxx性猛交bbbb| 91麻豆av在线| 国产午夜精品论理片| 亚洲 欧美 日韩 在线 免费| 他把我摸到了高潮在线观看| 一夜夜www| 久久久色成人| 久久久久精品国产欧美久久久| 老司机深夜福利视频在线观看| 中文字幕av成人在线电影| 日本精品一区二区三区蜜桃| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 国产精品久久久久久久电影| 高清日韩中文字幕在线| 亚洲最大成人手机在线| 精品国内亚洲2022精品成人| 国产视频一区二区在线看| 成人三级黄色视频| 在线观看美女被高潮喷水网站 | 看十八女毛片水多多多| 精品久久久久久久久亚洲 | 国内精品久久久久久久电影| 日日摸夜夜添夜夜添av毛片 | 久久久久久国产a免费观看| 久久九九热精品免费| 日韩欧美国产在线观看| 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 美女cb高潮喷水在线观看| 日韩欧美在线二视频| 国内精品一区二区在线观看| 热99在线观看视频| 欧美在线一区亚洲| 黄色丝袜av网址大全| 亚洲国产精品合色在线| 3wmmmm亚洲av在线观看| 免费人成视频x8x8入口观看| 精品人妻一区二区三区麻豆 | 欧美国产日韩亚洲一区| 午夜两性在线视频| 一二三四社区在线视频社区8| 国产精华一区二区三区| 精品国内亚洲2022精品成人| 97碰自拍视频| 国产伦人伦偷精品视频| 一级av片app| 国产午夜精品论理片| 午夜影院日韩av| 我要看日韩黄色一级片| 欧美成人免费av一区二区三区| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 午夜老司机福利剧场| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av中文乱码字幕在线| 有码 亚洲区| 最近在线观看免费完整版| 天堂网av新在线| 国产视频一区二区在线看| 亚洲美女视频黄频| 精品久久久久久久末码| 久久精品国产亚洲av天美| 国产精品98久久久久久宅男小说| 国产精品久久久久久精品电影| 久久久久国内视频| 亚洲三级黄色毛片| 欧美日本亚洲视频在线播放| 嫩草影院入口| 国产色婷婷99| 亚洲乱码一区二区免费版| 俄罗斯特黄特色一大片| 精品99又大又爽又粗少妇毛片 | 国产精品精品国产色婷婷| 亚洲欧美激情综合另类| 国产精品一区二区三区四区免费观看 | 成年免费大片在线观看| 久久久久免费精品人妻一区二区| 五月伊人婷婷丁香| 18禁裸乳无遮挡免费网站照片| av黄色大香蕉| 在线观看免费视频日本深夜| 久久精品久久久久久噜噜老黄 | 午夜精品久久久久久毛片777| 久久久久久久亚洲中文字幕 | 欧美丝袜亚洲另类 | 成人特级黄色片久久久久久久| 精品久久久久久久久亚洲 | 高清在线国产一区| 国产午夜福利久久久久久| 日本精品一区二区三区蜜桃| 国产麻豆成人av免费视频| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 18禁在线播放成人免费| 别揉我奶头 嗯啊视频| 变态另类成人亚洲欧美熟女| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 日韩大尺度精品在线看网址| av中文乱码字幕在线| 51午夜福利影视在线观看| 精品日产1卡2卡| 国产黄片美女视频| 一二三四社区在线视频社区8| 国产精品美女特级片免费视频播放器| 成人永久免费在线观看视频| 久久精品国产亚洲av香蕉五月| 日韩高清综合在线| 看片在线看免费视频| 婷婷精品国产亚洲av在线| 欧美性感艳星| 黄色丝袜av网址大全| 永久网站在线| 少妇裸体淫交视频免费看高清| 亚洲第一欧美日韩一区二区三区| 婷婷亚洲欧美| 久久人人爽人人爽人人片va | 国产午夜福利久久久久久| 色哟哟·www| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 男女做爰动态图高潮gif福利片| 日韩欧美精品免费久久 | 深爱激情五月婷婷| 精品99又大又爽又粗少妇毛片 | 亚洲精品色激情综合| 久9热在线精品视频| 亚洲中文日韩欧美视频| 久久精品夜夜夜夜夜久久蜜豆| 久久天躁狠狠躁夜夜2o2o| 国产在线精品亚洲第一网站| 国产精品影院久久| 国产精品久久视频播放| 少妇的逼水好多| 亚洲美女黄片视频| 中国美女看黄片| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 99国产精品一区二区蜜桃av| 日韩欧美国产在线观看| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 最近最新中文字幕大全电影3| 成人av一区二区三区在线看| 国内毛片毛片毛片毛片毛片| 久久久久精品国产欧美久久久| 悠悠久久av| 美女xxoo啪啪120秒动态图 | 俄罗斯特黄特色一大片| 国产色爽女视频免费观看| 国产乱人视频| 色精品久久人妻99蜜桃| 成人一区二区视频在线观看| 亚洲片人在线观看| 国产中年淑女户外野战色| 国产探花极品一区二区| 一进一出好大好爽视频| 99久久精品国产亚洲精品| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添av毛片 | 色精品久久人妻99蜜桃| 色综合婷婷激情| 中文字幕人成人乱码亚洲影| 午夜精品久久久久久毛片777| 国产精品亚洲美女久久久| 国产精品av视频在线免费观看| 一本一本综合久久| 国内精品一区二区在线观看| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| 亚洲电影在线观看av| 国产精品自产拍在线观看55亚洲| 老女人水多毛片| 亚洲精品在线观看二区| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 搡老岳熟女国产| 午夜免费激情av| 9191精品国产免费久久| 97超视频在线观看视频| 中出人妻视频一区二区| 成人毛片a级毛片在线播放| 国产黄色小视频在线观看| 国产在视频线在精品| 欧美一区二区精品小视频在线| 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 午夜福利欧美成人| 在线免费观看不下载黄p国产 | 久久这里只有精品中国| 日本黄色片子视频| 免费在线观看影片大全网站| 噜噜噜噜噜久久久久久91| 亚洲久久久久久中文字幕| 精品一区二区三区人妻视频| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 18禁黄网站禁片免费观看直播| 一本久久中文字幕| 欧美激情久久久久久爽电影| 黄色视频,在线免费观看| 成熟少妇高潮喷水视频| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看 | 精品一区二区三区视频在线观看免费| a级毛片a级免费在线| 老司机福利观看| 我的老师免费观看完整版| 欧美成人性av电影在线观看| 夜夜躁狠狠躁天天躁| 国产真实伦视频高清在线观看 | 看免费av毛片| 久久人人精品亚洲av| 国产精品爽爽va在线观看网站| 一个人看的www免费观看视频| 变态另类成人亚洲欧美熟女| 自拍偷自拍亚洲精品老妇| 黄色视频,在线免费观看| 51国产日韩欧美| 欧美一级a爱片免费观看看| 亚洲电影在线观看av| 国产伦精品一区二区三区视频9| 久久久精品欧美日韩精品| 亚洲欧美日韩卡通动漫| 中出人妻视频一区二区| 日本熟妇午夜| 亚洲精品在线观看二区| 一个人免费在线观看的高清视频| 简卡轻食公司| 窝窝影院91人妻| 日韩中字成人| 免费在线观看成人毛片| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 国产精品98久久久久久宅男小说| 狠狠狠狠99中文字幕| 怎么达到女性高潮| 久久中文看片网| 欧美丝袜亚洲另类 | 亚洲欧美日韩无卡精品| 狂野欧美白嫩少妇大欣赏| 国产精品98久久久久久宅男小说| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 最新中文字幕久久久久| 久久久久性生活片| 成人毛片a级毛片在线播放| 亚洲精华国产精华精| 欧美日本视频| 亚洲精品色激情综合| 中文字幕免费在线视频6| 好男人电影高清在线观看| 成人无遮挡网站| 欧美日韩国产亚洲二区| 国产高清视频在线观看网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本免费a在线| 免费人成在线观看视频色| 99久久精品热视频| 人妻久久中文字幕网| 国产爱豆传媒在线观看| 欧美色视频一区免费| 亚洲av五月六月丁香网| 午夜亚洲福利在线播放| 久久久久免费精品人妻一区二区| 波多野结衣高清作品| 日本三级黄在线观看| 人人妻人人澡欧美一区二区| 中文字幕精品亚洲无线码一区| 亚洲成人免费电影在线观看| 精品久久久久久久末码| 伦理电影大哥的女人| 噜噜噜噜噜久久久久久91| 午夜精品一区二区三区免费看| 国产伦精品一区二区三区视频9| 色视频www国产| 久久久久久九九精品二区国产| 久久午夜福利片| 老司机深夜福利视频在线观看| 欧美性猛交黑人性爽| 成人美女网站在线观看视频| 草草在线视频免费看| 国产成人欧美在线观看| 国产男靠女视频免费网站| 一本一本综合久久| 国产极品精品免费视频能看的| 成人午夜高清在线视频| 内射极品少妇av片p| 久久久久久大精品| 亚洲中文日韩欧美视频| 色综合站精品国产| 午夜视频国产福利| 国产成人福利小说| 美女被艹到高潮喷水动态| 黄片小视频在线播放| 人妻久久中文字幕网| 国产三级在线视频| 两人在一起打扑克的视频| 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看| 一个人看的www免费观看视频| 日本免费a在线| 18+在线观看网站| 长腿黑丝高跟| 国产色婷婷99| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 夜夜躁狠狠躁天天躁| 国产精品一及| 日本三级黄在线观看| 3wmmmm亚洲av在线观看| 又爽又黄无遮挡网站| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 一进一出抽搐gif免费好疼| 男人的好看免费观看在线视频| 欧美激情久久久久久爽电影| 69av精品久久久久久| 欧美日本视频| 偷拍熟女少妇极品色| 波多野结衣巨乳人妻| 天堂√8在线中文| 日本一本二区三区精品| 亚州av有码| 一本精品99久久精品77| 亚洲av.av天堂| 亚洲美女搞黄在线观看 | 日韩欧美国产一区二区入口| 精品无人区乱码1区二区| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 国产极品精品免费视频能看的| www.www免费av| 一个人看的www免费观看视频| 欧美激情在线99| 亚洲最大成人中文| 色播亚洲综合网| 757午夜福利合集在线观看| 欧美日韩乱码在线| 内射极品少妇av片p| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 99国产综合亚洲精品| netflix在线观看网站| 久久精品综合一区二区三区| 真人做人爱边吃奶动态| 露出奶头的视频| 99久久精品一区二区三区| 波多野结衣高清作品| 久久久精品大字幕| 麻豆国产97在线/欧美| 免费在线观看日本一区| 精品久久国产蜜桃| 免费av观看视频| 一个人免费在线观看的高清视频| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 免费看光身美女| 日本a在线网址| 老司机深夜福利视频在线观看| 欧美日韩乱码在线| 成人国产综合亚洲| 97热精品久久久久久| 亚洲经典国产精华液单 | 两个人的视频大全免费| 国产真实乱freesex| 久久久久久九九精品二区国产| 精品熟女少妇八av免费久了| 神马国产精品三级电影在线观看| 欧美3d第一页| 搡老岳熟女国产| bbb黄色大片| 成人国产一区最新在线观看| 夜夜夜夜夜久久久久| 久久久久亚洲av毛片大全| 久久午夜亚洲精品久久| 老熟妇仑乱视频hdxx| 简卡轻食公司| 亚洲真实伦在线观看| 最新在线观看一区二区三区| 五月伊人婷婷丁香| 亚洲人成网站在线播| 亚洲片人在线观看| 国产 一区 欧美 日韩| 国产精品一及| 国产探花在线观看一区二区| 亚洲av日韩精品久久久久久密| 啦啦啦观看免费观看视频高清| 十八禁网站免费在线| 看免费av毛片| 床上黄色一级片| av专区在线播放| 午夜福利免费观看在线| 内射极品少妇av片p| 两个人视频免费观看高清| 亚洲av五月六月丁香网| 桃红色精品国产亚洲av| 国产爱豆传媒在线观看| 麻豆av噜噜一区二区三区| 无遮挡黄片免费观看| 久久草成人影院| 亚洲成人中文字幕在线播放| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 成人精品一区二区免费| 搡老妇女老女人老熟妇| av天堂中文字幕网| 亚洲最大成人手机在线| 日韩精品青青久久久久久| 国产日本99.免费观看| 国产真实伦视频高清在线观看 | 国产精品99久久久久久久久| 欧美激情在线99| 欧美最新免费一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 久久久国产成人免费| 亚洲av二区三区四区| 美女xxoo啪啪120秒动态图 | 国内少妇人妻偷人精品xxx网站| 久久午夜亚洲精品久久| 国产一区二区三区视频了| 亚洲av免费高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 99久久无色码亚洲精品果冻| 亚洲三级黄色毛片| 99在线人妻在线中文字幕| 午夜久久久久精精品| 久久久成人免费电影| 亚洲avbb在线观看| 18禁黄网站禁片免费观看直播| 91字幕亚洲| а√天堂www在线а√下载| 又爽又黄无遮挡网站| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 桃色一区二区三区在线观看| 国产一级毛片七仙女欲春2| 制服丝袜大香蕉在线| 高潮久久久久久久久久久不卡| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| h日本视频在线播放| 亚洲精品粉嫩美女一区| 直男gayav资源| 亚洲国产精品999在线| 久9热在线精品视频| 国产毛片a区久久久久| 偷拍熟女少妇极品色| 91狼人影院| 成人午夜高清在线视频| 成年女人看的毛片在线观看| 非洲黑人性xxxx精品又粗又长| 搡老岳熟女国产| 尤物成人国产欧美一区二区三区| 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| 日日干狠狠操夜夜爽| 99视频精品全部免费 在线| 国产人妻一区二区三区在| 国产精品影院久久| 精品99又大又爽又粗少妇毛片 | 在线观看一区二区三区| 欧美成狂野欧美在线观看| 国产免费男女视频| 国产av不卡久久| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线观看免费| 日韩av在线大香蕉| 欧美日韩国产亚洲二区| 国产欧美日韩精品亚洲av| 国产又黄又爽又无遮挡在线| 国产不卡一卡二| 亚洲欧美激情综合另类| 欧美+亚洲+日韩+国产| 99精品久久久久人妻精品| ponron亚洲| 一级av片app| 宅男免费午夜| 18+在线观看网站| 色播亚洲综合网| 身体一侧抽搐| 亚洲精品456在线播放app | 亚洲黑人精品在线| 人妻夜夜爽99麻豆av| 亚洲一区高清亚洲精品| 国产精品免费一区二区三区在线| 免费av观看视频| 久久亚洲真实| 亚洲专区中文字幕在线| 精品久久久久久成人av| 精品久久久久久久久av| 国内精品一区二区在线观看| 国产欧美日韩一区二区精品| 精品人妻视频免费看| 久久久久精品国产欧美久久久| 成年女人永久免费观看视频| 99久久九九国产精品国产免费| 亚洲av免费高清在线观看| 2021天堂中文幕一二区在线观| 99久久成人亚洲精品观看| 床上黄色一级片| 人妻制服诱惑在线中文字幕| 久久午夜福利片| 国产乱人视频| 日本三级黄在线观看| 精品久久国产蜜桃| 亚洲av五月六月丁香网| 成人性生交大片免费视频hd| 男人舔女人下体高潮全视频| 夜夜躁狠狠躁天天躁| 少妇裸体淫交视频免费看高清| 亚洲成人免费电影在线观看| 色视频www国产| 我的女老师完整版在线观看| 久久久久免费精品人妻一区二区| 99riav亚洲国产免费| 波多野结衣高清无吗| 亚洲第一电影网av| 中文字幕熟女人妻在线| 国产视频一区二区在线看| 老司机午夜十八禁免费视频| 亚洲激情在线av| 91在线观看av| a在线观看视频网站| av中文乱码字幕在线| 国产在视频线在精品| 中文字幕熟女人妻在线| 亚洲人成网站在线播放欧美日韩| 亚洲欧美激情综合另类| 国产精品免费一区二区三区在线| 一本综合久久免费| 亚洲欧美清纯卡通| 日本与韩国留学比较| 中文字幕人妻熟人妻熟丝袜美| 亚洲狠狠婷婷综合久久图片| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 高清日韩中文字幕在线| 一本综合久久免费| 亚洲av免费高清在线观看| 久久国产乱子免费精品| 免费在线观看日本一区| 一个人观看的视频www高清免费观看| 日本免费一区二区三区高清不卡| 内地一区二区视频在线| 亚洲无线在线观看| 欧美区成人在线视频| 色视频www国产| 亚洲精品色激情综合| 天天一区二区日本电影三级| 美女cb高潮喷水在线观看| 国产高潮美女av| 中文字幕精品亚洲无线码一区| 精品人妻1区二区| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 美女 人体艺术 gogo| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 免费在线观看影片大全网站| 精品欧美国产一区二区三| 成人av一区二区三区在线看| 成人性生交大片免费视频hd| 亚洲成人久久性| 国产美女午夜福利| 亚洲 国产 在线| 简卡轻食公司| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久 | 嫩草影院新地址| 99久久九九国产精品国产免费| 在线观看午夜福利视频| 久99久视频精品免费| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 亚洲精品一区av在线观看| 蜜桃亚洲精品一区二区三区| 欧美在线黄色| 欧美国产日韩亚洲一区| 五月玫瑰六月丁香| 午夜免费男女啪啪视频观看 | 成人国产综合亚洲| 国产成人影院久久av| 国内少妇人妻偷人精品xxx网站| 最新在线观看一区二区三区| 久久亚洲精品不卡| 亚洲人成网站高清观看| 中文字幕熟女人妻在线| 少妇高潮的动态图| 久久性视频一级片| 亚洲 国产 在线| 如何舔出高潮| 欧美黄色片欧美黄色片| 色综合婷婷激情| 91久久精品国产一区二区成人| 全区人妻精品视频| 狂野欧美白嫩少妇大欣赏| www.色视频.com| 99国产精品一区二区三区| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 黄色配什么色好看| 日本撒尿小便嘘嘘汇集6| 天堂√8在线中文| 国产老妇女一区| 如何舔出高潮|