范文斯,黃 煒,曹 豐
第四軍醫(yī)大學(xué)西京醫(yī)院 心臟內(nèi)科,陜西西安 710032
哺乳動(dòng)物雷帕霉素靶蛋白復(fù)合體1在心肌缺血再灌注損傷中作用的研究進(jìn)展
范文斯,黃 煒,曹 豐
第四軍醫(yī)大學(xué)西京醫(yī)院 心臟內(nèi)科,陜西西安 710032
哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是一種保守、非典型的絲氨酸/氨酸蛋白激酶,其主要通過(guò)復(fù)合體1(mTOR complex 1,mTORC1)和復(fù)合體2(mTOR complex 2,mTORC2)發(fā)揮作用。有研究證實(shí),復(fù)合體1在心肌缺血期和再灌注期分別起到了不同的重要作用,通過(guò)調(diào)控復(fù)合體1可以影響細(xì)胞自噬水平、線粒體通透性轉(zhuǎn)換孔的開(kāi)放、抗氧化基因的上調(diào)等機(jī)制起到保護(hù)心肌的作用。本文對(duì)mTOR復(fù)合體的結(jié)構(gòu),以及mTORC1信號(hào)分別在心肌缺血期和再灌注期的作用機(jī)制進(jìn)行綜述。
哺乳動(dòng)物雷帕霉素靶蛋白復(fù)合體1;心??;缺血再灌注損傷;自噬
經(jīng)皮冠狀動(dòng)脈介入術(shù)(percutaneous coronary intervention,PCI)和冠狀動(dòng)脈旁路移植術(shù)(coronary artery bypass grafting,CABG)自問(wèn)世以來(lái),已成為臨床普遍應(yīng)用的血管再通療法[1-2],挽救了大量患者的生命。然而仍有25%左右的患者經(jīng)PCI治療后由于缺血再灌注損傷導(dǎo)致預(yù)后不良[3]。缺血再灌注損傷是指缺血的心肌在恢復(fù)血液灌注后引起超微結(jié)構(gòu)、功能、代謝及電生理方面的進(jìn)一步損傷。目前研究認(rèn)為,這一過(guò)程與心肌能量代謝障礙、自由基生成增多、鈣離子超載及炎癥反應(yīng)等有關(guān)[4-5]。因此,我們很有必要進(jìn)一步研究其發(fā)生的具體機(jī)制,以期尋找有效的防治靶點(diǎn)。哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是一種磷酸肌醇-3-激酶(phosphoinositide-3-kinase,PI3K)相關(guān)激酶家族的一員,也是一種非典型、保守的絲氨酸/蘇氨酸蛋白激酶[6-7]。mTOR是雷帕霉素或西羅莫司的作用靶點(diǎn),主要通過(guò)兩種復(fù)合體即mTOR復(fù)合體1(mTOR complex 1,mTORC1)和mTOR復(fù)合體2(mTOR complex 2,mTORC2)發(fā)揮作用。其中mTORC1對(duì)雷帕霉素敏感,可以被雷帕霉素所抑制。與復(fù)合體1相比,復(fù)合體2對(duì)雷帕霉素及其類似物的敏感性較差。但有研究表明,延長(zhǎng)雷帕霉素的作用時(shí)間亦可以抑制mTORC2[8]。mTOR信號(hào)在調(diào)節(jié)細(xì)胞穩(wěn)態(tài)和應(yīng)激過(guò)程中起到了關(guān)鍵作用。其中mTORC1主要在蛋白合成,細(xì)胞生長(zhǎng)、增殖,線粒體、核糖體生物合成,細(xì)胞自噬以及代謝中起到重要作用[9-10]。近來(lái)多項(xiàng)研究以及我們的前期結(jié)果均提示,mTORC1在缺血和再灌注過(guò)程中發(fā)揮重要的作用[11-12]。
mTORC1是較大的復(fù)合體[13]。由6個(gè)部分組成:共同的mTOR亞單位、哺乳動(dòng)物致死性蛋白8(mammalian lethal with Sect13 protein 8,mLST8也被稱作GβL)、含有mTOR相互作用蛋白的DEP結(jié)構(gòu)域(DEP domain containing mTOR-interacting protein,Deptor)、Tti/Tel2、mTORC1特有的mTOR調(diào)節(jié)相關(guān)蛋白(regulatory-associated protein of mamma-lian target of rapamycin,Raptor)和富含脯氨酸的蛋白激酶底物(proline-rich Akt substrate 40 kU,PRAS40)[13]。每個(gè)復(fù)合體功能各異,mTOR作為絲氨酸/蘇氨酸激酶發(fā)揮作用;Raptor參與募集底物并與底物結(jié)合以及支架蛋白的組裝和定位;而Deptor與PRAS40則是mTORC1的內(nèi)源性抑制物[14-15];Tti/Tel2具有穩(wěn)定mTORC1結(jié)構(gòu)的作用,同時(shí)也具有支架蛋白組裝的功能[16];mLST8目前尚不知曉其主要功能,它的缺失并不影響mTOR與現(xiàn)階段發(fā)現(xiàn)的mTORC1主要底物的結(jié)合[17]。
mTORC1可以調(diào)控絲氨酸/蘇氨酸激酶核糖體蛋白(p70S6K)和真核起始因子4E結(jié)合蛋白1(4EBP1)的活性。去磷酸化狀態(tài)下的4EBP1能夠阻斷蛋白質(zhì)翻譯,eIF4G作為4EBP1的下游分子,是一種可以誘導(dǎo)mRNA與核糖體結(jié)合的蛋白。在mTORC1的作用下促使4EBP1磷酸化,導(dǎo)致4EBP1從eIF4E上分離下來(lái),進(jìn)而在eIF4G作用下開(kāi)始翻譯。mTORC1的磷酸化也可以增加p70S6K激酶的活性,而磷酸化的p70S6K可以促進(jìn)RNA的合成、核糖體蛋白的翻譯以及細(xì)胞生長(zhǎng)。此外,PRAS40還能夠阻斷p70S6K和4EBP1與Raptor結(jié)合[18-19]。
已有的證據(jù)表明,心肌缺血和能量缺乏的狀態(tài)下,mTOR信號(hào)通路參與了心肌保護(hù)性應(yīng)答的過(guò)程,缺血缺氧的狀態(tài)抑制了mTORC1的活性,而mTORC1下調(diào)可以激活細(xì)胞自噬[20]。組織器官能量缺乏時(shí),細(xì)胞自噬是細(xì)胞最初的分解和降解過(guò)程,它在維持細(xì)胞最基本的能量和營(yíng)養(yǎng)需求上起到重要作用[21]。在mTORC1抑制劑的作用下,通過(guò)減少細(xì)胞能量消耗和激活細(xì)胞自噬可以起到保護(hù)心肌細(xì)胞的作用。這一過(guò)程目前被認(rèn)為是心肌缺血期的心肌自身保護(hù)性機(jī)制[22]。
2.1 TSC/Rheb/mTORC1信號(hào)通路 結(jié)節(jié)性硬化癥復(fù)合體(tuberous sclerosis complex,TSC)是一類GTP酶激活蛋白(GTPase-activating protein,GAP),作用于小的GTP酶(RAS homologue enriched in brain,Rheb),通過(guò)Rheb-GTP的水解作用,使Rheb轉(zhuǎn)化為與GDP結(jié)合的抑制狀態(tài),從而起到負(fù)性調(diào)節(jié)mTORC1的作用[23-24]。研究證明,在能量缺乏和缺血的狀態(tài)下,可以通過(guò)激活TSC使Rheb轉(zhuǎn)化為GDP結(jié)合抑制狀態(tài),進(jìn)而起到抑制mTORC1的作用,引起上調(diào)心肌細(xì)胞自噬水平,減少心肌細(xì)胞死亡,最終起到心肌保護(hù)的作用。而當(dāng)mTORC1再次被激活時(shí),離體和在體實(shí)驗(yàn)中均被證實(shí)出現(xiàn)自噬水平下調(diào)、心肌細(xì)胞死亡增加的現(xiàn)象[20]。這一結(jié)果表明,Rheb是主要的mTORC1調(diào)節(jié)分子,是心肌細(xì)胞能量應(yīng)激、心肌缺血等不良狀態(tài)下的適應(yīng)性機(jī)制,通過(guò)上調(diào)細(xì)胞自噬水平促進(jìn)心肌細(xì)胞存活。
2.2 AMPK-mTORC1-自噬信號(hào)通路 一磷酸腺苷依賴的蛋白激酶(AMP-activated protein kinase,AMPK)作為mTOR信號(hào)通路中最具代表性的通路之一,可以直接或間接調(diào)節(jié)mTORC1。在能量缺乏的狀態(tài)下,AMPK可以直接磷酸化Raptor,起到負(fù)性調(diào)節(jié)mTORC1的作用[25]。同時(shí),AMPK也可以通過(guò)磷酸化作用激活TSC,由TSC/Rheb/mTORC1通路發(fā)揮抑制mTORC1的作用[26]。這兩種直接和間接的方式最終均引起心肌細(xì)胞自噬水平的上調(diào),從而起到心肌保護(hù)的作用。此外,AMPK也參與了不依賴于mTORC1的細(xì)胞自噬調(diào)節(jié),即AMPK/ULK1的自噬途徑[27]。在能量缺乏的狀態(tài)下,AMPK通過(guò)磷酸化Unc51樣激酶1(Unc51-like kinase 1,ULK1)進(jìn)而激活細(xì)胞自噬。因此,我們可以認(rèn)為,AMPK途徑既可以在缺血狀態(tài)下直接對(duì)mTORC1起到調(diào)控作用,也可以間接調(diào)節(jié)mTORC1,最終引起細(xì)胞自噬水平上調(diào),保護(hù)心肌。
2.3 GSK-3β/TSC/mTORC1信號(hào)通路 糖原合成激酶-3β (glycogen synthase kinase-3β,GSK-3β)是一種絲氨酸/蘇氨酸激酶[28]。GSK-3β在心肌缺血和再灌注的過(guò)程中扮演著不同的角色。研究證實(shí),在使用特異性抑制GSK-3β的轉(zhuǎn)基因鼠的實(shí)驗(yàn)中,心肌缺血時(shí),GSK-3β處于去磷酸化激活狀態(tài),活化狀態(tài)下的GSK-3β激活下游的TSC,進(jìn)而通過(guò)TSC/Rheb/mTORC1激活mTOR,上調(diào)自噬,發(fā)揮心肌保護(hù)的作用[28-29];而在再灌注的過(guò)程中GSK-3β是磷酸化的抑制狀態(tài)。但這兩種狀態(tài)在心肌缺血和再灌注過(guò)程中都是心臟的保護(hù)性機(jī)制,且都是通過(guò)mTORC1發(fā)揮作用。有趣的是,通過(guò)抑制線粒體的GSK-3β可以抑制通透性轉(zhuǎn)換孔(mitochondrial permeability transition pore,mPTP)的開(kāi)放,這一機(jī)制是多種心肌保護(hù)性作用的最終通路,使得這可能成為治療心肌缺血再灌注損傷中作為潛在的藥物靶點(diǎn)發(fā)揮作用[30]。另有研究表明,Wnt信號(hào)通路在GSK-3β和mTORC1之間存在著環(huán)狀的聯(lián)系,Wnt信號(hào)起到抑制GSK-3β的作用[31]。
3.1 再灌注期激活mTORC1信號(hào)存在心肌保護(hù)性作用mTOR在心肌再灌注損傷中的作用仍然存在爭(zhēng)議。實(shí)驗(yàn)中觀察到,與缺血期截然相反,激活狀態(tài)下的mTORC1在再灌注過(guò)程中具有保護(hù)性;負(fù)性抑制GSK-3β的轉(zhuǎn)基因小鼠的實(shí)驗(yàn)中觀察到,間接激活mTORC1,出現(xiàn)了梗死面積減小的現(xiàn)象,而在心肌再灌注前使用雷帕霉素抑制了mTORC1,這一現(xiàn)象消失[28]。盡管也有研究表明雷帕霉素在心肌缺血期,可能是通過(guò)不依賴于mTOR的酪氨酸激酶2信號(hào)通路和轉(zhuǎn)錄因子3發(fā)揮其保護(hù)性的作用[32],因此在再灌注期不發(fā)揮作用。但是在其他實(shí)驗(yàn)中,如使用他汀類藥物亦可以通過(guò)抑制mTORC1信號(hào)調(diào)節(jié)自噬,進(jìn)一步起到心肌保護(hù)的作用[33]。
3.2 GSK-3β/mTORC1在心肌再灌注期的作用 在特異性抑制GSK-3β的轉(zhuǎn)基因鼠的實(shí)驗(yàn)中觀察到,通過(guò)GSK-3β的抑制,過(guò)度激活了mTORC1,進(jìn)而減輕了心肌再灌注的損傷[28]。進(jìn)一步的實(shí)驗(yàn)研究中發(fā)現(xiàn),通過(guò)GSK-3β激活mTORC1的心肌保護(hù)性作用,可能是通過(guò)限制過(guò)度的細(xì)胞自噬的激活,而在這一期間,過(guò)度的細(xì)胞自噬是被認(rèn)為有害的[34]。另一方面,再灌注時(shí)抑制GSK-3β可以直接或通過(guò)mTORC1間接調(diào)節(jié)線粒體通透性轉(zhuǎn)換孔的開(kāi)放。關(guān)閉狀態(tài)下的mPTP可以保存細(xì)胞內(nèi)抗氧化物質(zhì),減少活性氧(reactive oxygen species,ROS)的產(chǎn)生,防止線粒體和胞質(zhì)內(nèi)的鈣超載,從而起到保護(hù)心肌細(xì)胞作用[35]。
3.3 mTORC1相關(guān)其他保護(hù)性機(jī)制 mTORC1在心肌再灌注時(shí)的激活狀態(tài)還可以促進(jìn)線粒體的生物合成,這一過(guò)程有利于心肌在缺血后的恢復(fù)。同時(shí),mTORC1可以通過(guò)激活過(guò)氧化物酶增殖依賴受體γ共激活劑1α(peroxisome proliferator activated receptorγcoactivator 1α,PGC-1α)-雌激素相關(guān)受體α(estrogen-related receptorα,ERRα)上調(diào)線粒體抗氧化基因的表達(dá)[36-37]。另有研究證明,過(guò)表達(dá)的mTOR可以減少心肌細(xì)胞凋亡、減輕心肌炎癥反應(yīng),但是缺乏相應(yīng)的在體實(shí)驗(yàn)證據(jù),這一過(guò)程除mTORC1的激活外,可能與mTORC2的激活有關(guān),mTORC2在心肌缺血時(shí)可能起到保護(hù)心肌細(xì)胞、減輕慢性心肌缺血時(shí)的心肌重塑作用[38]。
最近在一些實(shí)驗(yàn)室研究中發(fā)現(xiàn)了一些潛在的、可能成為藥物治療的新靶點(diǎn),例如通過(guò)藥物或者慢病毒轉(zhuǎn)染,抑制p53可以激活mTOR,進(jìn)而減輕了細(xì)胞在氧糖缺乏模型中的損傷[39]。但是這一過(guò)程缺乏在體實(shí)驗(yàn)的證據(jù)支持。微小RNA(microRNA)和RNA結(jié)合蛋白(RNA-binding protein)在心血管發(fā)育和疾病中起到至關(guān)重要的作用,Lin28作為一種調(diào)節(jié)發(fā)育的RNA結(jié)合蛋白,它過(guò)表達(dá)狀態(tài)可以上調(diào)mTOR,進(jìn)而縮小梗死面積,改善左心室功能,減少心肌細(xì)胞凋亡[40]。
在心肌缺血再灌注損傷的過(guò)程中,理想的狀態(tài)應(yīng)該是在心肌缺血期抑制mTORC1信號(hào),而在再灌注期激活mTORC1信號(hào)。但是在臨床中,一些急性冠狀動(dòng)脈綜合征患者,要經(jīng)歷較長(zhǎng)時(shí)間的缺血期后才能恢復(fù)血液灌流,甚至可能存在無(wú)法恢復(fù)灌流的情況。所以,在缺血期抑制mTORC1信號(hào)的實(shí)際應(yīng)用意義可能大于在再灌注期的激活作用[41]。
近些年關(guān)于mTORC1在心肌缺血再灌注損傷方面的研究,為今后可能的臨床應(yīng)用提供了一定的理論基礎(chǔ)。如何合理調(diào)控mTORC1信號(hào)分別在心肌缺血期和再灌注期的作用,盡可能減少心肌損傷、促進(jìn)心功能恢復(fù),尋找可能的藥物靶點(diǎn),這些都將是今后研究的主要方向。同時(shí),進(jìn)一步闡明mTOR信號(hào)通路具體的作用機(jī)制也將是下一步研究的主要內(nèi)容。
1 梁東亮,高長(zhǎng)青,肖蒼松.急診冠狀動(dòng)脈旁路移植術(shù)在急性心肌梗死治療中的臨床應(yīng)用[J].軍醫(yī)進(jìn)修學(xué)院學(xué)報(bào),2011,32(6):548-549.
2 Stefanini GG, Holmes DR. Drug-eluting coronary-artery stents[J]. N Engl J Med, 2013, 368(3): 254-265.
3 Miura T, Miki T. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy[J]. Basic Res Cardiol, 2008,103(6): 501-513.
4 Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options[J]. Int J Cardiol, 1997, 58(2): 95-117.
5 Eisner DA, Trafford AW, Díaz ME, et al. The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation[J]. Cardiovasc Res, 1998, 38(3): 589-604.
6 Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex[J]. Nature, 1994,369(6483): 756-758.
7 Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells[J]. J Biol Chem, 1995, 270(2): 815-822.
8 Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB[J]. Mol Cell,2006, 22(2): 159-168.
9 焦慧,張志,馬清華,等.Apelin-13對(duì)葡萄糖剝奪乳鼠心肌細(xì)胞自噬的影響及機(jī)制[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2013(2):167-171.
10 Huang K, Fingar DC. Growing knowledge of the mTOR signaling network[J]. Semin Cell Dev Biol, 2014, 36:79-90.
11 Fan W, Li C, Qin X, et al. Adipose stromal cell and sarpogrelate orchestrate the recovery of inflammation-induced angiogenesis in aged hindlimb ischemic mice[J]. Aging Cell, 2013, 12(1): 32-41.
12 Fan W, Cheng K, Qin X, et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo[J]. Stem Cells, 2013, 31(1): 203-214.
13 Yip CK, Murata K, Walz T, et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition[J]. Mol Cell, 2010, 38(5): 768-774.
14 Peterson TR, Laplante M, Thoreen CC, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival[J]. Cell, 2009, 137(5): 873-886.
15 Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulinregulated inhibitor of the mTORC1 protein kinase[J]. Mol Cell,2007, 25(6): 903-915.
16 Kaizuka T, Hara T, Oshiro N, et al. Tti1 and tel2 are critical factors in mammalian target of rapamycin complex assembly[J]. J Biol Chem, 2010, 285(26): 20109-20116.
17 Thedieck K, Polak P, Kim ML, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis[J]. PLoS One, 2007, 2(11): e1217.
18 Hwang SK, Kim HH. The functions of mTOR in ischemic diseases[J]. BMB Rep, 2011, 44(8): 506-511.
19 Chong ZZ, Shang YC, Maiese K. Cardiovascular disease and mTOR signaling[J]. Trends Cardiovasc Med, 2011, 21(5): 151-155.
20 Sciarretta S, Zhai P, Shao D, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome[J]. Circulation,2012, 125(9): 1134-1146.
21 Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741.
22 Nemchenko A, Chiong M, Turer A, et al. Autophagy as a therapeutic target in cardiovascular disease[J]. J Mol Cell Cardiol, 2011, 51(4):584-593.
23 Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35.
24 Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274-293.
25 Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]. Mol Cell, 2008, 30(2): 214-226.
26 Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth[J]. Cell, 2006, 126(5): 955-968.
27 Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011, 331(616): 456-461.
28 Zhai P, Sciarretta S, Galeotti J, et al. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion[J]. Circ Res, 2011, 109(5): 502-511.
29 Hirotani S, Zhai P, Tomita H, et al. Inhibition of glycogen synthase kinase 3beta during heart failure is protective[J]. Circ Res, 2007,101(11): 1164-1174.
30 Juhaszova M, Zorov DB, Kim SH, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore[J]. J Clin Invest, 2004,113(11): 1535-1549.
31 Vigneron F, Dos Santos P, Lemoine S, et al. GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways[J]. Cardiovasc Res, 2011, 90(1):49-56.
32 Das A, Salloum FN, Durrant D, et al. Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway[J]. J Mol Cell Cardiol, 2012, 53(6): 858-869.
33 Andres AM, Hernandez G, Lee P, et al. Mitophagy is required for acute cardioprotection by simvastatin[J]. Antioxid Redox Signal,2014, 21(14):1960-1973.
34 Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy[J]. Circ Res,2007, 100(6): 914-922.
35 Ong SB, Samangouei P, Kalkhoran SB, et al. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 23-34.
36 Cunningham JT, Rodgers JT, Arlow DH, et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex[J]. Nature, 2007, 450(7170): 736-740. 37 Lu Z, Xu X, Hu X, et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload[J]. Antioxid Redox Signal, 2010,13(7): 1011-1022.
38 V?lkers M, Konstandin MH, Doroudgar S, et al. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage[J]. Circulation, 2013, 128(19): 2132-2144.
39 Li X, Gu S, Ling Y, et al. p53 inhibition provides a pivotal protective effect against ischemia-reperfusion injury in vitro via mTOR signaling[J]. Brain Res, 2015, 1605: 31-38.
40 Zhang M, Sun D, Li S, et al. Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway[J/OL]. http://onlinelibrary.wiley.com/ doi/10.1111/jcmm.12369/abstract.
41 Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease[J]. Circ Res, 2014,114(3): 549-564.
Advances in mTORC1 in myocardium ischemia/reperfusion injury
FAN Wensi, HUANG Wei, CAO Feng
Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
CAO Feng. Email: fengcao8828@163.com
The mammalian target of rapamycin (mTOR) is a conservative and atypical serine/threonine kinase which exerts its main functions through 2 different multi-protein complexes, named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) respectively. Recent studies have demonstrated that mTORC1 plays a pivotal cardioprotective role in phase of myocardial ischemia as well as reperfusion through modulating autophagy, activation of mitochondrial permeability transition pore (mPTP) and upregulation of antioxidant genes. This article reviews the structure of mTOR complexes and the pivotal role of mTORC1 signaling during the injury process of myocardial ischemia and reperfusion respectively.
mammalian target of rapamycin complex 1; myocardium; ischemia-reperfusion injury; autophagy
R 541
A
2095-5227(2015)10-1048-04 DOI:10.3969/j.issn.2095-5227.2015.10.023
時(shí)間:2015-05-20 09:46
http://www.cnki.net/kcms/detail/11.3275.R.20150520.0946.001.html
2015-03-09
國(guó)家杰出青年科學(xué)基金(81325009);國(guó)家973基礎(chǔ)研發(fā)計(jì)劃(2012CB518101)
Supported by the National Science Found for Distinguished Young Scholars (81325009); National “973” Program for Basic Research of China(2012C B518101)
范文斯,男,在讀碩士。研究方向:心肌缺血再灌注損傷。Email: fanwensi1989@126.com
曹豐,女,博士,教授,博士生導(dǎo)師。Email: fengcao88 28@163.com
解放軍醫(yī)學(xué)院學(xué)報(bào)2015年10期