• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault detection and optimization for networked control systems with uncertain time-varying delay

    2015-04-11 02:35:15QingWangZhaoleiWangChaoyangDongandErzhuoNiu

    Qing Wang,Zhaolei Wang,2,*,Chaoyang Dong,and Erzhuo Niu

    1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;

    2.Beijing Aerospace Automatic Control Institute,Beijing 100854,China;

    3.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China;

    4.Flight Automatic Control Research Institute,Aviation Industry Corporation,Xi’an 710065,China

    Fault detection and optimization for networked control systems with uncertain time-varying delay

    Qing Wang1,Zhaolei Wang1,2,*,Chaoyang Dong3,and Erzhuo Niu4

    1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;

    2.Beijing Aerospace Automatic Control Institute,Beijing 100854,China;

    3.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China;

    4.Flight Automatic Control Research Institute,Aviation Industry Corporation,Xi’an 710065,China

    The observer-based robust fault detectionlter design and optimization for networked control systems(NCSs)with uncertain time-varying delays are addressed.The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory.Based on the model,an observer-based residual generator is constructed and the sufcient condition for the existence of the desired fault detectionlter is derived in terms of the linear matrix inequality.Furthermore,a time domain optimization approach is proposed to improve the performance of the fault detection system.To prevent the false alarms,a new threshold function is established,and the solution of the optimization problem is given by using the singular value decomposition(SVD) of the matrix.A numerical example is provided to illustrate the effectiveness of the proposed approach.

    fault detection,networked control systems,residual generator,time-varying delay,time domain optimization approach.

    1.Introduction

    Networked control systems(NCSs)are feedback control systems in which sensors,controllers,actuators and other system components are connected via a shared communication network[1,2].The new structure has many advantages over the conventional point-to-point system connection,suchas low cost,simpleinstallation andmaintenance, high reliability,and enhanced resource utilization,which makes the NCS a promising structure for control systems [3].However,some problems and shortcomings of NCSs, such as bandwidth constraints[4,5],network induced delay[6,7]and packet dropout[8,9],will inevitably increase the complexity of system design and degrade the system performance or even cause instability[10].As an important essential to improve the performance,safety and reliability of dynamic systems,fault detection(FD)for NCSs has recently attracted considerable research attention[11,12].

    The network induced delay is one of the activeelds for NCSs researches,and there are three main categories in the FDelds for NCSs with various network induced delays:procurable delay[13,14],known delay’s probability distributions[15,16]and unknown delay[17–20].So far,there have been already fruitful promising results on the FD for NCSs with procurable delay or known probability distributions delay,but only a limited number of results about FD for NCSs with unknowndelay can be found owing to the high difculties in the treatment.In fact,for most network protocols,time delays are unknown timevarying,and it would be more reasonable to assume that the time delays in NCSs are uncertain.

    To deal with the unknown delay,in[17],Taylor expansion was used to approximate the inuence of unknown delay,and then a parity space based FD method was introduced to generate the residual.In[18],based on eigendecomposition,a known structure matrix wasrst extracted from the additional unknown disturbance vector caused by the random and unknown delay,and a parity space approach was used to generate the residual,but the structure matrix was time varying which leads to the increase of design and computation complexity.To overcome this problem,in some work[19,20],the unknown delay’s inuence was transformed into uncertainties of the system, and then the robust FD method based on the reference model was adopted to detect faults.For example,in[19], the unknown delays’inuence was transformed into timevarying polytopic uncertainty based on Cayley-Hamilton theorem,and in[20],it was transformed into parameteruncertainty based on the matrix theory.

    In addition,much attention has also been paid to improvethe FD performanceto detectthe faults morequickly and accurately,and the basic idea is to make the generated residual sensitive to the small faults and robust against augmented disturbances,which is called the optimal residual generation problem.To improve the performance of FD systems,the multi-objective H?/H∞trade-offdesignapproachhas beenwidely utilized[21,22], where H?index stands for the residual’s sensitivity,while H∞index can be used to describe the robustness.Meanwhile,based on the parity space approach,a time domain optimization approach is proposed for the traditional FD systems[23,24],where a post-lter is used to enhance the performance of FD systems.While these works are very promising,to the best of the authors’knowledge, the observer-based robust FDlter(FDF)design and optimization problem for the NCSs with parameter uncertainties caused by uncertain time-varying delay has not been investigated yet,which constitutes the main motivation of this paper.

    This paper addresses the observer-based robust FDF design and optimization problem for NCSs with unknown time-varying delays.Firstly,based on the matrix theory[25],the unknown time-varying delays in the NCSs are modelled as parameter uncertainties of the system.Secondly,referring to the parameter-uncertain system approach,an observer-basedresidual generatoris constructed,and the robust FD problem is formulated as altering problem to make the error between the residual signal and fault as small as possible.Then,a sufcient condition for the existence of the desired FDF is established in terms of the linear matrix inequality(LMI).Furthermore, a time domain optimization approach is proposed to improve the FD system performance,where the optimal solution of the post-lter can be determined by the matrix singular value decomposition(SVD),and a new threshold is also constructed to prevent false alarms.Finally,a numerical example is provided to illustrate the effectiveness of the proposed approach.

    2.Modeling of the NCS

    For the NCS shown in Fig.1,the plant is modeled as the following continuous-time linear time-invariant system:

    where x∈Rn,u∈Rm,y∈Rl,f∈Rqdenote the state vector,the control input vector,the output vector and the latent fault vector,respectively,d∈Rpis the external disturbance belonging to l2[0,∞).The real matrices Ac,Bc,Bcf,Bcd,C,Ddare of appropriate dimensions.

    Fig.1 Structure of NCS

    Without loss of generality,the followingassumptions as in[6]are introduced for the studied NCS:

    Assumption 1The sensors are clock-driven and the sampling period of the NCS is T,the controller and actuators are event-driven.Data are transmitted in a signal packet during every sampling period,and there are no packet dropout and non-orderedsequence.

    Assumption 2The discrete control law is designed as u(k)=?Kx(k).The sensor-controller delay is denoted asand the controller-actuator delay is denotedcan be lumped together aswhich is introducedto describethe uncertaintime-varyingnetwork induceddelay at the time instant k andτmaxis denedas the upperbound of the time-varying delay τk.

    Under Assumptions 1 and 2,considering the effect of the delay τkand the sampling period T,system(1)can be transformed into the following discrete time model[19]

    From(2),it is easy to see that the discrete NCS model is a time-varying system with uncertain time-varying parameter τkand the parameter τkinuences the system in a multiplicative way,which is very difcult to deal with[26].To overcome this difculty,referring to the networkedcontrolsystemsmodelingapproachin[25],thefollowing Lemma 1 will berstly introducedto transformthe discrete NCS into the parameter-uncertain system.

    where B0,B1,D and E are known constant matrices of appropriate dimensions which will be given in the following part,and F(τk)is an unknown matrix with Lebesguemeasurable elements and satises FT(τk)F(τk)≤I.

    ProofReferring to the analysis in[25],based on the matrix theory,if the matrix Achas n nonzero distinct eigenvalues λr(r=1,2,...,n),then we have Ac= Λdiag{λ1,...,λn}Λ?1,where Λ=[Λ1,...,Λn],and Λris the eigenvector corresponding to λr.Thus we can rewrite B0(τk)and B1(τk)as follows:

    Similarly,it can be easily proved that

    where

    andαiis chosensuchthateλi(T?τk?αi)<1,i=1,...,n, τk<T.

    Otherwise,if the matrix Achas zero eigenvalues and multiple eigenvalues,without loss of generality,it can be assumed that matrix Achas one eigenvalue 0,eigenvalueλ?with multiplicity r and othersare nonzerodistinct eigenvalues,and the other situations can be easy to deal with in the similar method.Then there exists a nonsingular matrix Λ such that Ac= Λdiag{0,J1,J2}Λ?1,where J1=diag{λ2,...,λn?r}and J2∈ Rr×ris the Jordan block corresponding to λ?.Thus,we can also rewrite B0(τk)and B1(τk)as follows:

    Similarly,one has

    and α1> τk,αiis chosen such that eλi(T?τk?αi)< 1, i=2,...,n?r,τk<T,G2∈Rr×ris a diagonal and invertible matrix and is chosen such that

    By Lemma 1,the system(2)can be equivalently written as the following parameter-uncertainsystem:

    where B0,B1,D and E are dened in(4)–(7),and F(τk)satises FT(τk)F(τk)≤I.

    Applying the state feedback control law u(k) = ?Kx(k)and augmented state z(k) = [xT(k) xT(k?1)]Tto the system(8)results in the following closed-loop parameter-uncertain system model:

    3.Problem formulation

    For the purpose of FD for the NCS,based on the obtained NCS model in(9),an observer-based FDF is concretelyadopted to generate the residual signal

    Set the estimation error e(k)=z(k)??z(k),and then the FD system is governed by

    After the above manipulations,the original robust FDF problem for the system(1)can be further convertedtondlter gain matrix L such that the parameter-uncertain system(12)is asymptotically stable and the H∞performance index γ is made as small as possible in the feasibility of

    Meanwhile,for improving the performance of the fault detection system(10),a time domain optimization approach is adopted in this paper.Let ξ(k)=V(z)r(k)= (Vs+Vs?1z?1+···+V0z?s)r(k)denote the modied residual signal[27],where the matrix V(z)is called the post-lter[23,27]and the index s is the order of V(z).

    According to the system(14)and the denition of ξ(k), we can rewrite ξ(k)in the following compact form:

    where

    Remark 1It should be noted that the selection of the index s which is the order of the post-lter V(z)is arbitrary in principle.Considering the computational complexity of online implementation,we set it equal to 2n.

    For convenience of analysis,we rewrite(15)as

    where

    In order to detect the fault,the residual evaluation function and the threshold can be selected as

    where α denotes the detection window.

    Obviously,the goal of this paper can be generalized tond out thelter gain matrix L and the optimal post-lter matrix V to acquire a desired FD performance,and after that,the faults can be observed by comparing J(k)with the threshold Jthaccording to the following logic:

    4.Main results

    4.1Filter gain design

    Lemma 2[28] Consider the following discrete LTI system ?

    Given γ>0,if there exists the matrix P>0,LMI

    holds,thenthe system is asymptoticallystable andsatises (13).

    Lemma 3[29–30]For any matrices M,N and F(k) with FT(k)F(k)≤I,and any scalar ε>0,the following inequality holds

    As an application of Lemma 2 and Lemma 3,the following theorem provides sufcient conditions for the existence of an admissible H∞FDF with the form of(10).

    Theorem 1Consider the system(12)and let γ>0 be a given scalar.If there exist matrices P1>0,P2>0,G and scalar ε>0,such that the following LMI

    holds,then system(12)is asymptotically stable with an H∞performance γ.Moreover,thelter gain of an admissible H∞FDF with the form of(10)is given by L=Meanwhile,the following matrix are given:

    ProofFromLemma2 andtheparameter-uncertainsystem(12),we can obtain

    By the Schur complement,(23)is equivalent to

    Without losing generality,we can readily obtain the following inequality by replacingˉA,ˉB,ˉC,ˉD into(24)

    where

    where

    According to Lemma 3,(26)holds if and only if the following inequality is satised for any ε

    Remark 2The optimal H∞performance γ?and the corresponding FDF gain matrix can be obtained by setting δ=γ2and solving the following optimization problem:

    4.2Determination of threshold

    From(16)and(17),we can determine the threshold as

    It should be pointed out that the above threshold is the minimum threshold that prevents false alarms.It follows from(15)and(16)that

    From(14),we can obtain

    where

    So we have

    From(9),it is easy to show that

    where

    Then we can have

    As

    then we have

    Therefore,the threshold Jthcan be dened as

    4.3Post-flter gain design

    For improvingthe FD capability of the system(12),an optimal post-lter V in(15)is required to be obtained using the time domain optimization technic in order to detect the faults as small as possible.Firstly,we give the following denitions[23]which can be used as the performance index to describe the FD capability.

    Defnition 1The set of detectable faults which are denoted by Sfcan be expressed by

    Defnition 3Maximal minimum detectable faults,denoted by fmmin,are dened by

    Note that the smaller fmminbecomes,the smaller faults can be detected.Thus,our objective of optimizing can be formulated as the following performance index

    According to(40),we know the detectable faults can satisfy the following form:

    Then we have

    and furthermore

    Thus,we can obtain(47)from(40),(45)and(46)

    where

    Since

    where σ(·)denotes the minimum singular value,Thus,

    and are equal to the eigenvector of matrix(V Hf)TV Hfcorrespondingto the eigenvalue,then the equality in(49)holds true.According to the denition of faults fmmin,wenally have

    Thus,we can know from(42),(43)and(51)that the objective of optimizing system(12)is reduced tond matrix V that satises the following optimization problems:

    From(39),we know the optimization problems in(52) can be furthermore rewritten as follows:

    From Theorem 1 and(9),(33),(36),we know that λd, λz,σ(?D)and σ(?E)are constants which can be calculated off-line.Thus the original optimization problem(53) is equivalent to the following optimization problem:

    The solution of(54)is not unique,and there exist some theoremsto derivetheoptimizationsolution.Next,we give the following lemma that plays a key role in deriving the optimization solution of(54).

    Lemma 4The SVD of a matrix Ω ∈Rλ×δcan be expressed by

    where U ∈ Rλ×λ,Θ ∈ Rδ×δ,and UUT= Iλ×λ,ΘΘT=Iδ×δ.For λ>δ

    and for λ≤δ

    with σ1≥···≥σλdenoting the singular values of Ω.

    Based on Lemma 4,we have Theorem 2 to determine the optimal solution for(54).

    Theorem 2Given matrices Hd,v∈Rλ×δand Hf∈Rλ×βwhich are dened as(15)and(16),where λ= l(s+1),β=q(s+1)and δ=(p+2n)(s+1)+2n,then the optimal solution V∈Rλ×λfor(54)is given by

    Furthermore,

    ProofIt is easy to see that λ<δ,using Lemma 4 to do an SVD of Hd,vgives

    with UUT= Iλ×λ,ΘΘT= Iδ×δ,Σ = [diag{σ1,...,σλ} 0λ×(δ?λ)].

    Then any matrix V can be expressed as

    where S=diag{σ1,...,σλ},so from(58)and(59)it turns out that

    and substituting it into(54),we have

    Note that σ(ˉV S?1UTHf)≤ σ(ˉV)σ(S?1UTHf), we have

    and the equality holds true if and only if

    Hence,the optimal solution V for(54)is given by

    Remark 3It is worthwhile to point out that the optimal post-lter V actually depends on the observer-basedlter L,which means the gain of V will change with the variety of the H∞performance index γ.It can be easily found from(56)that the optimal V is dependent on the matrix Hd,v

    Δ=[HdHv]which is dened in(16).Considering the matrices Hdand Hvare constructed by the matrix AL= ?A?L?C,thelter L is pre-designed using the H∞performance index in(13).Thus,it can be seen that the optimal post-lter V is dependent on the H∞performance index.

    However,owing to the fact that thelter L is independentonthe post-lterV(z)andcanbeobtainedseparately, thepost-lterV(z)canbeimmediatelyobtainedfrom(56) once thelter L has been determined.Thus,thelter L and the post-lter V(z)can be truly designed separately in this meaning,although V is depended on L.

    Remark 4From(53),it can be seen that the optimal V is designed to detect the faults as small as possible,and this will no doubt reduce the detection delay Tdwhich is dened as the time cost on the detection.Therefore,the post-lter can make the FD system more sensitive to the smaller faults and reduce the detection delay,but cannot eliminate the detection delay completely owing to the fact that the goalJ in(53)cannotbe guaranteedto be 0 for all situations.

    4.4Solution procedure

    The following Algorithm 1 is given out to summarize the essential parts of this section and the approach proposed above for the FD system design.

    Algorithm 1

    Step 1Solve the optimal H∞problem in Theorem 1 and Remark 2 for L.

    Step 2Generateresidual signa

    Step 3Construct Hv,Hd,Hf,and Hd,v.

    Step 4Do an SVD on Hd,v,and calculate U,S using (58)and(59).

    Step 5Set the optimal post-lter V=S?1UT.

    Step 6Establish the threshold

    Step 7Let ξ(k)=V(z)r(k)denote the modied residual signal,then the residual evaluation function is

    From Algorithm 1,it can be easily known that these steps are implemented off line except Step 2 and Step 7.

    5.Numerical example

    A numerical example is given to show the effectiveness of the proposed method.Consider the following continuousplant model

    Supposethat the sampling periodof NCS is T=0.01 s, the network induced delay τkis less than one sampling period and is a random sequence uniformly distributed between 0 and T,then we can easily obtain parameteruncertain system(8)with the following parameters:

    Using the discrete control law u(k) = ?0.613 6 0.760 8?x(k), the optimal H∞performance index is γ? = 0.01 and the gain matrix for the observer-based FDF is L = ?0.443 2 ?0.200 5 0.400 7 ?0.190 8?Tby solving the optimization problem(28).In what follows,according to Theorem 2,we can obtain the optimal solution from optimization problem(54)as follows:

    Theinitial state is set to be x(0)=[0 0]T.The external disturbance d(t)is supposed to be a random sequence uniformly distributed over[?0.5,0.5],and the slow variation fault signal f(t)which is shown in Fig.2 is given as

    where fais the maximal value of f(t).

    Fig.2 Slow variation fault signal

    Setting the detection window α=10 and the upper bound of time delay τmax=T,simulation results with and without optimization are given in Fig.3 and Fig.4 for the faults with fa=1 and fa=0.5 respectively.

    Fig.3 Simulation result when fa=1,τmax=T

    Fig.4 Simulation result when fa=0.5,τmax=T

    Form Fig.3 it can be seen that the residual signal r(k) reects the fault f(t)when it occurs,and obviously,the FD system with optimization is more sensitive to the faults and needs fewer time steps to detect the fault,that is to say that the FD system with optimization can detect smaller faults quickly than the FD system without optimization.

    Furthermore,to show the effectiveness of our approach, we give another simulation and compare the proposed approach to existing results in[19],and the residual signals and corresponding thresholds are also constructed in the same conditions accordingto[19].The simulation result is given in Fig.5 for τmax=T and fa=0.5.

    By comparing Fig.4 and Fig.5,it can be seen that the performance of the approach in[19]is better than the FD system without optimization,but the optimization technic can further enhance the performance of the FD system to detect the faults more quickly and accurately.

    Fig.5 Simulation result with approach in[19]when fa=0.5, τmax=T

    Furthermore,in order to analyze the inuence of the time delay on the FD system,other simulations are also performed when τmax=0.1T.Meanwhile,the maximal value faof the fault is decreased step by step with a step Δf=0.025 to validate the FD speed and the small FD capability.The minimum detectable faand the related detection delay Tdcan be obtained by 100 times simulations separately for τmax=T and τmax=0.1T,and the results are given in Table 1.

    Table 1 fa,and Tdfor different situations

    It canbefoundfromTable 1that ourmethodhas a better performance,and the time-varying delay will degrade the performance of the FD system,where the robust FD strategy and the time domain optimization technic are necessary to restrain the inuence of the time delay and improve the FD system performance.

    6.Conclusions

    The problem of observer-based robust FDF design and optimization for NCSs with uncertain time-varying delays is addressed in this paper.The inuence caused by uncertain time-varying delays is transformed into parameteruncertainty with the matrix theory.Under the parameteruncertain system,the LMI-based sufcient condition of FDF is obtained and a time domain optimization approach with the new threshold functionis proposedto improvethe performance of the FD system.An illustrative numerical exampleis presentedtoshowthattheproposedmethodcan detect smaller faults and need fewer times.

    [1]L.A.Montestruque,P.J.Antsaklis.On the model-based control of networked systems.Automatica,2003,39(10):1837–1843.

    [2]Q.Ai,C.Liu,B.Jiang.Robust fault detection for a class of nonlinear network control system with communication delay. Journal of Systems Engineering and Electronics,2009,20(5): 1024–1030.

    [3]W.Zhang,M.S.Branicky,S.M.Philips.Stability of networked control systems.IEEE Trans.on Control Systems, 2001,21(1):84–99.

    [4]X.G.Zhang,A.Cela,S.I.Niculescu,et al.Some problems in the stability of networked-control systems with periodicscheduling.International Journal of Control,2010,83(5): 996–1008.

    [5]L.Shi,P.Cheng,J.M.Chen.Optimal periodic sensor scheduling with limited resources.IEEE Trans.on Automatic Control, 2011,56(9):2190–2195.

    [6]W.A.Zhang,L.Yu,S.Yin.A switched system approach to H∞control of networked control systems with time-varying delays.Journal of the Franklin Institute,2011,348:165–178.

    [7]Y.Zhang,H.Fang,Z.Luo.H∞-based fault detection for nonlinear networked systems with random packet dropout and probabilistic interval delay.Journal of Systems Engineering and Electronics,2011,22(5):825–831.

    [8]J.Xiong,J.Lam.Stabilization of linear systems over networks with bounded packet loss.Automatica,2007,43(1):80–87.

    [9]X.Fang,J.Wang.Stochastic observer-based guaranteed cost control for networked control systems with packet dropouts. IET Control Theory Applications,2008,2(11):980–989.

    [10]X.He,Z.D.Wang,D.H.Zhou.Robust fault detection for net-worked systems with communication delay and data missing. Automatica,2009,45(11):2634–2639.

    [11]X.He,Z.D.Wang,Y.D.Ji,et al.Network-based fault detection for discrete-time state-delay systems:a new measurement model.International Journal of Adaptive Control and Signal Processing,2008,22(5):510–528.

    [12]Z.Zhu,X.Jiao.Fault detection for nonlinear networked control systems based on fuzzy observer.Journal of Systems Engineering and Electronics,2012,23(1):129–136.

    [13]Y.Zheng,H.J.Fang,H.Wang,et al.Observer-based FDI design of networked control system with output transfer delay. Control Theory and Applications,2003,20(5):653–656.

    [14]Y.Zheng,X.L.Hu,H.J.Fang,et al.Research on observerbased fault diagnosis of networked control system.Systems Engineering and Electronics,2005,27(6):1069–1072.(in Chinese)

    [15]Z.H.Mao,B.Jiang,P.Shi.H∞fault detectionlter design for networked control systems modeled by discrete Markovian jump systems.IET Control Theory and Applications,2007, 1(5):1336–1343.

    [16]L.X.Zhang,E.K.Boukas,L.Baron,et al.Fault detection for discrete-time Markov jump linear systems with partially known transition probabilities.International Journal of Control,2010,83(8):1564–1572.

    [17]H.Ye,S.X.Ding.Fault detection of networked control systems with network-induced delay.Proc.of the 8th International Conference on Control,Automation Robotics and Vision,2004:294–297.

    [18]Y.Q.Wang,H.Ye,G.Z.Wang.Fault detection of NCS based on eigendecomposition,adaptive evaluation and adaptive threshold.International Journal of Control,2007,80(12): 1903–1911.

    [19]Y.Q.Wang,S.X.Ding,H.Ye,et al.A new fault detectionscheme for networked control systems subject touncertain time-varying delay.IEEE Trans.on Signal Processing,2008, 56(10):5258–5268.

    [20]Y.Q.Wang,H.Ye,S.X.Ding.Fault detection of networked control systems based on optimal robust fault detectionlter. Acta Automatic Sinica,2008,34(12):1534–1539.

    [21]J.L.Wang,G.H.Yang,J.Liu.An LMI approach to H-index and mixedH?/H∞fault detection observer design.Automatica,2007,43(9):1656–1665.

    [22]M.Chadli,A.Abdob,S.X.Ding.H?/H∞fault detectionlter design for discrete-time Takagi-Sugeno fuzzy system.Automatica,2013,49(7):1996–2005.

    [23]X.Ding,L.Guo.An approach to time domain optimization of observer-based fault detection systems.International Journal of Control,1998,69(3):419–442.

    [24]M.Y.Zhong,S.X.Ding,E.L.Ding.Optimal fault detection for linear discrete time-varying systems.Automatica,2010, 46(8):1395–1400.

    [25]W.H.Fan,H.Cai,Q.W.Chen,et al.Stability of networked control systems with time delay.Control Theory and Application,2004,21(6):880–884.

    [26]Y.Q.Wang,H.Ye,G.Z.Wang.Recent development of fault detection techniques for networked control systems.Control Theory and Application,2009,26(4):400–409.

    [27]M.Abid,W.Chen,S.X.Ding,et al.Optimal residual evaluation for nonlinear systems using post-lter and threshold. International Journal of Control,2011,84(3):526–539.

    [28]M.Y.Zhong,S.X.Ding,J.Lam,et al.An LMI approach to design robust fault detectionlter for uncertain LTI systems. Automatica,2003,39(3):543–550.

    [29]A.D.Liu,Y.Liu,W.A.Zhang.H∞control for network-based systems with time-varying delay and packet disordering.IET Control Theory and Applications,2007,1(5):1344–1354.

    [30]C.X.Yang,Z.H.Guan,J.Huang.Stochastic fault tolerant control of networked control systems.Journal of the Franklin Institute,2009,346(10):1006–1020.

    Biographies

    Qing Wang was born in 1968.She received her M.E.and Ph.D.degrees inight vehicle control guidance and simulation from Northwestern Polytechnical University,in 1993 and 1996,respectively.She worked as a post-doctoral researcher at the Department of Automatic Control,Beihang University,from 1996 to 1998.She worked in China Academy of Space Technology in 1999. During this period she visited Moscow College of Aeronautics as a visitor.She is currently a professor of guidance,navigation and control,in the School of Automation Science and Electrical Engineering,Beihang University.Her research interests are guidance and control of aerospace vehicles and intelligentight control system.

    E-mail:wangqing@buaa.edu.cn

    Zhaolei Wang was born in 1986.He received his B.S.degree in automation from Beijing Institute of Technology in 2009.He is now a Ph.D.candidate of navigation,guidance and control,in the School of Automation Science and Electrical Engineering, Beihang University.He is now an engineer of Beijing Aerospace Automatic Control Institute,Beijing. His research interests include fault diagnosis,networked control system,switched system theory and its application inight vehicles.

    E-mail:beiliwzl123@163.com

    Chaoyang Dong was born in 1966.He received his M.E.degree at Northwestern Polytechnical University,in 1992,and Ph.D.degree in guidance,navigation and control from Beihang University.From 2002 to 2008,he was an associate professor in the Department of Automatic Control,Beihang University.He is currently a professor ofight mechanics in the School of Aeronautic Science and Engineering,Beihang University.His research interests are kinetic analysis ofexible vehicles and control of the complex dynamics system.

    E-mail:dongchaoyang@buaa.edu.cn

    Erzhuo Niu was born in 1983.He received his Ph.D.degree in navigation,guidance and control from Beihang University.He is currently an engineer of the Flight Automatic Control Research Institute of Aviation Industry Corporation,Xi’an.His research interests are control law design,fault detection and networked control systems.

    E-mail:nz830111@163.com

    10.1109/JSEE.2015.00062

    Manuscript received March 04,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61074027;61273083).

    亚洲不卡免费看| 男人的好看免费观看在线视频| 久久99热这里只有精品18| 久久久久国产精品人妻aⅴ院| 精品午夜福利视频在线观看一区| 18禁美女被吸乳视频| 精品久久久久久,| 亚洲精品一卡2卡三卡4卡5卡| 一本精品99久久精品77| 亚洲av日韩精品久久久久久密| 欧美色视频一区免费| 最近最新免费中文字幕在线| 搡女人真爽免费视频火全软件 | 可以在线观看毛片的网站| 欧美色视频一区免费| 99久久无色码亚洲精品果冻| 国产一区二区亚洲精品在线观看| 国内揄拍国产精品人妻在线| 国产精品久久久久久亚洲av鲁大| 亚洲色图av天堂| 国产亚洲精品av在线| 尤物成人国产欧美一区二区三区| 国产真实乱freesex| 国产精品久久久久久人妻精品电影| 国产黄a三级三级三级人| 国产男靠女视频免费网站| 色哟哟哟哟哟哟| 波野结衣二区三区在线 | 久久久国产精品麻豆| 亚洲成人中文字幕在线播放| 日本成人三级电影网站| 无限看片的www在线观看| 日韩有码中文字幕| 天堂√8在线中文| 国产高潮美女av| 99久久99久久久精品蜜桃| 在线观看免费午夜福利视频| 国产精品自产拍在线观看55亚洲| 一进一出好大好爽视频| 色哟哟哟哟哟哟| 好看av亚洲va欧美ⅴa在| 亚洲男人的天堂狠狠| 亚洲成av人片免费观看| 成人特级av手机在线观看| 日本 av在线| 国产乱人伦免费视频| 夜夜躁狠狠躁天天躁| 亚洲五月天丁香| 久久久久久久久大av| 国产高潮美女av| 中文字幕高清在线视频| 国产中年淑女户外野战色| 制服丝袜大香蕉在线| 亚洲精品国产精品久久久不卡| 中文字幕av成人在线电影| 又黄又粗又硬又大视频| 中文字幕人妻熟人妻熟丝袜美 | 91在线精品国自产拍蜜月 | 色综合站精品国产| 婷婷精品国产亚洲av在线| 国产av在哪里看| 亚洲av五月六月丁香网| 亚洲天堂国产精品一区在线| 欧美成狂野欧美在线观看| 中文字幕av成人在线电影| 日本一本二区三区精品| 亚洲最大成人手机在线| 18禁美女被吸乳视频| 一进一出好大好爽视频| 999久久久精品免费观看国产| 一级毛片女人18水好多| 天堂网av新在线| 亚洲第一欧美日韩一区二区三区| 欧美在线一区亚洲| АⅤ资源中文在线天堂| 午夜福利欧美成人| 久久久久亚洲av毛片大全| 全区人妻精品视频| 99久久99久久久精品蜜桃| 欧美中文综合在线视频| av女优亚洲男人天堂| 欧美一区二区亚洲| 久久亚洲精品不卡| 亚洲电影在线观看av| av专区在线播放| 免费看日本二区| 亚洲av免费高清在线观看| x7x7x7水蜜桃| 欧美zozozo另类| 19禁男女啪啪无遮挡网站| 国产真实伦视频高清在线观看 | 搡女人真爽免费视频火全软件 | 日韩欧美国产在线观看| 国产成人欧美在线观看| 一进一出抽搐动态| 禁无遮挡网站| 男女视频在线观看网站免费| 极品教师在线免费播放| 国产av不卡久久| 天堂动漫精品| 婷婷六月久久综合丁香| 久久精品国产自在天天线| 亚洲精品日韩av片在线观看 | 香蕉av资源在线| 男人舔女人下体高潮全视频| 在线视频色国产色| 欧美一区二区精品小视频在线| 欧美三级亚洲精品| 熟妇人妻久久中文字幕3abv| 一区二区三区国产精品乱码| 久久久久久久亚洲中文字幕 | 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清专用| 国产精品久久视频播放| 一区二区三区免费毛片| 久久精品91无色码中文字幕| 久久天躁狠狠躁夜夜2o2o| 亚洲av第一区精品v没综合| 久久6这里有精品| 男女之事视频高清在线观看| 亚洲性夜色夜夜综合| 99国产综合亚洲精品| av在线天堂中文字幕| 欧美性猛交╳xxx乱大交人| 国产精品自产拍在线观看55亚洲| 99国产综合亚洲精品| 香蕉丝袜av| а√天堂www在线а√下载| а√天堂www在线а√下载| 国产伦人伦偷精品视频| 两个人视频免费观看高清| а√天堂www在线а√下载| 亚洲精华国产精华精| 久久天躁狠狠躁夜夜2o2o| 高清毛片免费观看视频网站| 国产精华一区二区三区| 一进一出抽搐动态| 老司机午夜十八禁免费视频| 最新美女视频免费是黄的| 日本在线视频免费播放| 亚洲五月婷婷丁香| 欧美成人性av电影在线观看| 男女床上黄色一级片免费看| 九色成人免费人妻av| 变态另类丝袜制服| 亚洲精品美女久久久久99蜜臀| 久久香蕉国产精品| 欧美性猛交黑人性爽| 最近视频中文字幕2019在线8| or卡值多少钱| 极品教师在线免费播放| 欧美zozozo另类| 一夜夜www| а√天堂www在线а√下载| 日日干狠狠操夜夜爽| 丝袜美腿在线中文| 亚洲国产精品成人综合色| 亚洲黑人精品在线| av视频在线观看入口| 国产精品精品国产色婷婷| 欧美性感艳星| 免费观看人在逋| av视频在线观看入口| 最近最新中文字幕大全免费视频| 国产精品精品国产色婷婷| 黄色视频,在线免费观看| 90打野战视频偷拍视频| 丰满乱子伦码专区| 琪琪午夜伦伦电影理论片6080| 99热只有精品国产| 免费电影在线观看免费观看| 深夜精品福利| 一进一出好大好爽视频| 美女高潮喷水抽搐中文字幕| 亚洲精品美女久久久久99蜜臀| 老汉色av国产亚洲站长工具| 丰满乱子伦码专区| 超碰av人人做人人爽久久 | 亚洲人成电影免费在线| 国产成人aa在线观看| 国产69精品久久久久777片| 精品午夜福利视频在线观看一区| 亚洲男人的天堂狠狠| www.熟女人妻精品国产| 国产探花在线观看一区二区| 亚洲午夜理论影院| 国产探花极品一区二区| 女同久久另类99精品国产91| 三级国产精品欧美在线观看| 国产三级在线视频| av国产免费在线观看| 丰满的人妻完整版| www.999成人在线观看| 午夜福利免费观看在线| 欧美一区二区亚洲| 欧美黑人巨大hd| 欧美激情在线99| 嫁个100分男人电影在线观看| 亚洲五月婷婷丁香| 女警被强在线播放| 婷婷丁香在线五月| www.熟女人妻精品国产| 国产在视频线在精品| 九色国产91popny在线| 麻豆一二三区av精品| 久久精品国产亚洲av涩爱 | 观看免费一级毛片| 岛国在线观看网站| 村上凉子中文字幕在线| 成年女人永久免费观看视频| 给我免费播放毛片高清在线观看| 91麻豆av在线| 在线十欧美十亚洲十日本专区| 男人舔奶头视频| 长腿黑丝高跟| av女优亚洲男人天堂| 淫妇啪啪啪对白视频| 国语自产精品视频在线第100页| 五月伊人婷婷丁香| 在线观看美女被高潮喷水网站 | 最近最新中文字幕大全免费视频| 两人在一起打扑克的视频| 欧美日韩国产亚洲二区| 在线视频色国产色| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 国产99白浆流出| 51午夜福利影视在线观看| 免费观看精品视频网站| 91麻豆精品激情在线观看国产| xxxwww97欧美| 91字幕亚洲| 欧美成人一区二区免费高清观看| 国内精品一区二区在线观看| 叶爱在线成人免费视频播放| 麻豆一二三区av精品| 精品国产美女av久久久久小说| xxxwww97欧美| 国产一区二区三区视频了| 成人午夜高清在线视频| 搡老熟女国产l中国老女人| 亚洲av美国av| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 国产亚洲精品一区二区www| 天堂动漫精品| 最近最新中文字幕大全电影3| 村上凉子中文字幕在线| 久久亚洲真实| 91九色精品人成在线观看| 深夜精品福利| 在线播放国产精品三级| 亚洲国产精品999在线| 日韩亚洲欧美综合| 日韩中文字幕欧美一区二区| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 偷拍熟女少妇极品色| 天堂网av新在线| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 麻豆久久精品国产亚洲av| 天天躁日日操中文字幕| 成人国产综合亚洲| 观看美女的网站| 国产激情偷乱视频一区二区| 国产国拍精品亚洲av在线观看 | 亚洲自拍偷在线| 99精品久久久久人妻精品| 黄色成人免费大全| 久久亚洲真实| 欧美不卡视频在线免费观看| 狠狠狠狠99中文字幕| 中文字幕av在线有码专区| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色| 国内少妇人妻偷人精品xxx网站| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱 | 日本黄色片子视频| 精品人妻1区二区| 麻豆成人午夜福利视频| 国产午夜福利久久久久久| 天天躁日日操中文字幕| 亚洲av五月六月丁香网| 女人十人毛片免费观看3o分钟| 午夜免费男女啪啪视频观看 | 欧美日韩国产亚洲二区| 天天添夜夜摸| netflix在线观看网站| 十八禁网站免费在线| 黄色丝袜av网址大全| 国产一区在线观看成人免费| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| av福利片在线观看| 午夜福利在线观看吧| 亚洲国产精品合色在线| 欧美成人性av电影在线观看| 亚洲欧美日韩东京热| 国产精品自产拍在线观看55亚洲| 亚洲国产欧美网| 麻豆国产97在线/欧美| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面| 亚洲美女黄片视频| 成人鲁丝片一二三区免费| 日韩欧美国产一区二区入口| 三级毛片av免费| 日韩欧美 国产精品| 午夜老司机福利剧场| 国产黄片美女视频| 国产精品久久视频播放| 日本成人三级电影网站| 99riav亚洲国产免费| 亚洲av二区三区四区| 国产高清有码在线观看视频| 又黄又爽又免费观看的视频| av视频在线观看入口| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 免费观看人在逋| 国产亚洲精品av在线| 亚洲无线在线观看| 亚洲国产欧美网| 亚洲av日韩精品久久久久久密| 怎么达到女性高潮| 变态另类丝袜制服| 午夜视频国产福利| 舔av片在线| a级一级毛片免费在线观看| АⅤ资源中文在线天堂| 国产精品野战在线观看| 久久久国产精品麻豆| 国产欧美日韩精品一区二区| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 国产在线精品亚洲第一网站| 亚洲av成人av| 看片在线看免费视频| 19禁男女啪啪无遮挡网站| 高潮久久久久久久久久久不卡| 岛国视频午夜一区免费看| 观看免费一级毛片| 一二三四社区在线视频社区8| 亚洲av成人精品一区久久| 日韩欧美三级三区| 脱女人内裤的视频| 成人特级av手机在线观看| 精品久久久久久久人妻蜜臀av| 九色成人免费人妻av| 脱女人内裤的视频| 亚洲无线在线观看| 久久久久免费精品人妻一区二区| 男女之事视频高清在线观看| 欧美不卡视频在线免费观看| 免费看十八禁软件| 午夜福利在线观看免费完整高清在 | 亚洲精品国产精品久久久不卡| 怎么达到女性高潮| 丰满乱子伦码专区| 国模一区二区三区四区视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看吧| 在线观看66精品国产| 欧美成人一区二区免费高清观看| 精品国产亚洲在线| 亚洲人成电影免费在线| 99国产极品粉嫩在线观看| xxxwww97欧美| av国产免费在线观看| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影| 欧美中文综合在线视频| 国产精品一及| 啦啦啦观看免费观看视频高清| 亚洲av成人av| 日韩欧美在线乱码| 天美传媒精品一区二区| 国产精品99久久99久久久不卡| 久久精品91无色码中文字幕| 午夜福利在线观看免费完整高清在 | 亚洲人与动物交配视频| 欧美日本亚洲视频在线播放| 两人在一起打扑克的视频| 亚洲成人精品中文字幕电影| 亚洲人成网站在线播| 黄色女人牲交| 国内精品久久久久精免费| 亚洲精品粉嫩美女一区| 18+在线观看网站| 欧美性感艳星| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 午夜福利在线观看免费完整高清在 | 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av在线| 欧美成人免费av一区二区三区| 美女免费视频网站| 亚洲精品乱码久久久v下载方式 | 国产熟女xx| 观看美女的网站| 成人国产综合亚洲| 久久久久九九精品影院| 久久久久久九九精品二区国产| 一级黄片播放器| 久久人人精品亚洲av| 国产单亲对白刺激| 久久久成人免费电影| 国产又黄又爽又无遮挡在线| 女生性感内裤真人,穿戴方法视频| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 亚洲av五月六月丁香网| 成年人黄色毛片网站| 精品人妻偷拍中文字幕| e午夜精品久久久久久久| 亚洲国产精品sss在线观看| 亚洲人成网站在线播| 香蕉av资源在线| 怎么达到女性高潮| 俄罗斯特黄特色一大片| 欧美日本视频| 丰满乱子伦码专区| netflix在线观看网站| 性色av乱码一区二区三区2| 小蜜桃在线观看免费完整版高清| 亚洲熟妇熟女久久| 在线国产一区二区在线| 丝袜美腿在线中文| 成年女人看的毛片在线观看| 亚洲人成伊人成综合网2020| 99精品在免费线老司机午夜| or卡值多少钱| 国产精品国产高清国产av| 18美女黄网站色大片免费观看| 午夜福利在线观看免费完整高清在 | 久久草成人影院| 久久婷婷人人爽人人干人人爱| 国产在线精品亚洲第一网站| or卡值多少钱| 成年版毛片免费区| 国产欧美日韩一区二区精品| 午夜福利18| 亚洲不卡免费看| 五月玫瑰六月丁香| netflix在线观看网站| av视频在线观看入口| 国产亚洲精品久久久久久毛片| 成人性生交大片免费视频hd| 久久国产乱子伦精品免费另类| 法律面前人人平等表现在哪些方面| 97超视频在线观看视频| 亚洲成av人片在线播放无| 两个人视频免费观看高清| 99视频精品全部免费 在线| 最近在线观看免费完整版| av天堂在线播放| 精品99又大又爽又粗少妇毛片 | avwww免费| 99热这里只有是精品50| 极品教师在线免费播放| 亚洲专区国产一区二区| 日韩有码中文字幕| 国产真人三级小视频在线观看| 制服人妻中文乱码| 亚洲狠狠婷婷综合久久图片| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 久久国产乱子伦精品免费另类| 丰满人妻熟妇乱又伦精品不卡| 久久精品影院6| 特级一级黄色大片| 性色avwww在线观看| 91字幕亚洲| 老司机福利观看| 美女高潮喷水抽搐中文字幕| 久久久久免费精品人妻一区二区| 成人无遮挡网站| 久久久久久九九精品二区国产| 老司机午夜福利在线观看视频| 国产私拍福利视频在线观看| 日韩欧美在线乱码| 午夜福利在线观看吧| 日本免费一区二区三区高清不卡| 亚洲av不卡在线观看| 88av欧美| 熟妇人妻久久中文字幕3abv| 亚洲五月婷婷丁香| 午夜影院日韩av| 日韩欧美国产在线观看| 久久久精品欧美日韩精品| 国产乱人伦免费视频| 麻豆成人午夜福利视频| 五月伊人婷婷丁香| 啦啦啦观看免费观看视频高清| 我要搜黄色片| 亚洲成人免费电影在线观看| xxxwww97欧美| 色吧在线观看| 搡老熟女国产l中国老女人| 18美女黄网站色大片免费观看| 在线观看av片永久免费下载| 亚洲av电影不卡..在线观看| 少妇的逼好多水| 伊人久久精品亚洲午夜| 真人一进一出gif抽搐免费| 欧美日本亚洲视频在线播放| 最近最新中文字幕大全电影3| 久久久精品欧美日韩精品| av天堂中文字幕网| 亚洲欧美激情综合另类| www.色视频.com| 免费一级毛片在线播放高清视频| 夜夜爽天天搞| 此物有八面人人有两片| 99久久成人亚洲精品观看| 亚洲av电影在线进入| 欧美最新免费一区二区三区 | 亚洲久久久久久中文字幕| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影| 麻豆成人午夜福利视频| 国产精品香港三级国产av潘金莲| 国产av麻豆久久久久久久| 色播亚洲综合网| 精品人妻偷拍中文字幕| 国产精品永久免费网站| 中文字幕熟女人妻在线| 欧美区成人在线视频| e午夜精品久久久久久久| 在线观看一区二区三区| 国产高清videossex| 在线免费观看的www视频| 好看av亚洲va欧美ⅴa在| 18禁裸乳无遮挡免费网站照片| 国产一区二区三区视频了| 国产美女午夜福利| 欧美在线黄色| 免费一级毛片在线播放高清视频| 嫩草影院入口| 亚洲精品一区av在线观看| 欧美大码av| 免费观看人在逋| av在线蜜桃| 国产精品久久电影中文字幕| 琪琪午夜伦伦电影理论片6080| 黄色成人免费大全| 桃色一区二区三区在线观看| 99热只有精品国产| 国产精品乱码一区二三区的特点| 别揉我奶头~嗯~啊~动态视频| 久久精品夜夜夜夜夜久久蜜豆| 少妇的逼水好多| 一区二区三区免费毛片| 最好的美女福利视频网| 久久久精品大字幕| 丝袜美腿在线中文| 国产精品影院久久| 黑人欧美特级aaaaaa片| av视频在线观看入口| 久久精品人妻少妇| 国产又黄又爽又无遮挡在线| 18禁美女被吸乳视频| 丰满人妻一区二区三区视频av | 亚洲av日韩精品久久久久久密| 国产精品98久久久久久宅男小说| 日本撒尿小便嘘嘘汇集6| 高清日韩中文字幕在线| 伊人久久精品亚洲午夜| 亚洲成人久久爱视频| 久久久久久久久大av| 国产免费男女视频| 在线观看免费午夜福利视频| 丰满的人妻完整版| 一个人看视频在线观看www免费 | 欧美bdsm另类| 免费av观看视频| 亚洲av免费高清在线观看| av欧美777| 91九色精品人成在线观看| 一本一本综合久久| 国产高清激情床上av| 亚洲无线观看免费| 桃红色精品国产亚洲av| 精品久久久久久,| 丁香六月欧美| 十八禁人妻一区二区| 美女免费视频网站| 久久久久久久久中文| 成年人黄色毛片网站| 日本 av在线| 亚洲一区二区三区不卡视频| 别揉我奶头~嗯~啊~动态视频| 色综合亚洲欧美另类图片| 国产探花极品一区二区| 黄色片一级片一级黄色片| 亚洲激情在线av| www日本在线高清视频| 很黄的视频免费| 国产欧美日韩精品亚洲av| 国产精品1区2区在线观看.| 性欧美人与动物交配| 国产三级黄色录像| 国产精品1区2区在线观看.| 两人在一起打扑克的视频|