• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quintic spline smooth semi-supervised support vector classication machine

    2015-04-11 02:35:51XiaodanZhangJinggaiMaAihuaLiandAngLi

    Xiaodan Zhang,Jinggai Ma,Aihua Li,and Ang Li

    1.School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;

    2.Department of Mathematical Sciences,Montclair State University,New Jersey 07043,USA

    Quintic spline smooth semi-supervised support vector classication machine

    Xiaodan Zhang1,*,Jinggai Ma1,Aihua Li2,and Ang Li1

    1.School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;

    2.Department of Mathematical Sciences,Montclair State University,New Jersey 07043,USA

    A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classication.Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth,many fast optimization algorithms cannot be applied to solve the model.In order to overcome the difculty of dealing with non-smooth objective functions,new methods that can solve the semi-supervised vector machine with desired classication accuracy are in great demand. A quintic spline function with three-times differentiability at the origin is constructed by a general three-moment method,which can be used to approximate the symmetric hinge loss function.The approximate accuracy of the quintic spline function is estimated. Moreover,a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed.Three experiments are performed to test the efciency of the model.The experimental results show that the new model outperforms other smooth models,in terms of classication performance.Furthermore,the new model is not sensitive to the increasing number of the labeled samples,which means that the new model is more efcient.

    semi-supervised,support vector classication machine,smooth,quintic spline function,convergence.

    1.Introduction

    Using the support vector machine(SVM)[1]to obtain an accurate classier requires a large number of labeled samples.In many applications[2],labeled samples are scarce. Manual labeling for the purposes of training SVM is often a slow,expensive,and error prone process.By contrast,unlabeled samples can be cheaply and automatically collected.Therefore,in machine learning it is important to utilize unlabeled data sufciently.The design of semisupervisedsupportvectormachine(S3VM)[3–7]is based on applying the margin maximization principle to both labeled and unlabeled data.Because of the practicality of S3VM,the semi-supervised classication problem has attracted wide attention of many researchers[8].

    Since the objective function of the unconstrained optimization problem of S3VM is not smooth,most existing fast algorithms[9,10]cannot be used for solving the S3VM problem.With this regard,smoothing methods are developedand applied to solve the unconstrainedproblem. Chapelle et al.[11]established a smooth semi-supervised vector machine model.They replaced the symmetric hinge loss function by the Gaussian function.Liu et al.[12]constructed a smooth semi-supervised vector machine model based onthe polynomialfunctions.Yang et al.[13]applied anewsmoothingstrategytoaclass ofS3VMsandobtained a class of smooth S3VMs.

    In this paper,a quintic spline function with three-times differentiability at the origin is constructed by a general three-moment method,which plays an important role in approximating the symmetric hinge loss function.Corresponding numerical calculations show that the quintic spline function has a better approximation precision than that of both the Gaussian function and the cubic spline function.Additionally,aconvergencetheoremis proposed, which proves that the solution of the new smooth S3VM (SS3VM)converges to the solution of the original nonsmooth one.Finally,three experiments are performed to test the efciencyof the model.The classication accuracy of the new model is compared with that of other smooth modelsmentionedin this paper.The sensitivityto the parametric variation of the new model is analyzed.The results indicate that the new model has a better classication performance.

    2.S3VM model

    We considertheproblemofclassifying[14–17]m labeled samples and l unlabeled samples in the n-dimensional real space Rn,represented by an m×n matrix A and an l×n matrix B,respectively.Let Aibe the ith row of A,treatedas a point in Rn.The membership of each point Aiin the classes 1 or–1 is determined by a given m×m diagonal matrix D with 1 or–1 along its diagonal.Precisely,a S3VM model is given by the following quadratic program:

    where ω is the normal to the boundingplanes:xTω+b= ±1,with x,ω∈Rn,and b∈R.Note that each ei(i= 1,2)is a columnvectorwith all 1 entries,where e1∈Rm, e2∈Rl.Also,c and c?are positive weights and ξ1and ξ2are slack vectors with ξ1∈Rm,ξ2∈Rl.We further set

    where Λ(t)=max(0,1?t)is called the hinge loss function and Λ(|t|)=max(0,1?|t|)is called the symmetric hinge loss function[18].If x∈Rn,Λ(x)=(Λ(x1), Λ(x2),...,Λ(xn))T.By substituting ξi(i=1,2)dened by(2)into(1),the S3VM model(1)can be converted into an unconstrained optimization model as

    However,the objective function in(3)is not differentiable, which precludes the use of many fast optimization methods.To improve non-differentiability,we modify(3)as

    where f(x)is an arbitrary smooth function at the origin and is used to approximate the symmetric hinge loss function Λ(|t|).Although this amendment has little effect on the original problem,it avoids the non-differentiability of the original model(3).Below we study the SS3VM based on the quintic spline function.

    3.Construction and analysis of the spline symmetric hinge smooth function

    3.1Construction of the quintic spline function

    Defnition 1For k>1,m,n∈Z+,let x0=?1/k, x1=0,x2=1/k be a set of nodes and s(x,k)be a piece-

    wise function in the following form:

    The s(x,k)is called an n-spline with m times differentiability at the origin for Λ(|x|)if it satises following conditions:

    (i)Both s0(x,k)and s1(x,k)are polynomials in x of degree n;

    (ii)s(d)(x0,k)=0,d=2,3,...,m,s′(x0,k)=1,and s(x0,k)=1?1/k;

    (iii)s(d)(x2,k)=0,d=2,3,...,m,s′(x2,k)=?1, and s(x2,k)=1?1/k;

    Next we will give the quintic spline function.

    Theorem 1Let k> 1 and x0= ?1/k,x1=0, x2=1/k be a set of nodes.Then there exists a unique quintic spline s(x,k)with the third derivative at the origin approximating Λ(|x|).The function must have the following expression:

    ProofWe prove this conclusion by the general threemoment method[19].

    Let s(x,k)be a quintic spline with the third derivative at the origin,which satises the conditions in Denition 1. We derive the equation for s(x,k)on[?1/k,1/k].Set s(4)(xi,k)=Mi(i=0,1,2).For each x∈[?1/k,0], we have s(x,k)=s0(x,k).Since s0(x,k)is a polynomial of degreeve on[?1/k,0],s(4)0(x,k)is a linearfunction satisfyingTherefore,

    Let the aboveequation be integratedfour times,then we can obtain that

    where a1,a2,a3,and a4are integration constants.According to the condition(ii)in Denition 1,we can determine

    By successive integration,we get

    where b1,b2,b3,and b4are integrationconstants.Based on the condition(iii)in Denition 1,it follows

    In this way,we show that s(x,k)is a piecewise dened polynomial of degreene with parameters M0,M1,and M2on[?1/k,1/k].Now we apply the condition(iv)in Denition 1:

    then the following matrix equation is obtained:

    Finally,the unique quintic spline s(x,k)with the third derivative at the origin approximating Λ(|x|)is constructed.On the interval[?1/k,1/k],it can be expressed as(5). □

    Similarly,a cubic spline with the second differentiability at the origin approximating Λ(|x|)is shown as

    In order to show the differences between different smooth functions more clearly,we present the following smooth performance comparison diagram.

    As shown in Fig.1,the quintic spline function with a greater k value is getting closer to the symmetric hinge loss function than that one with a smaller k.In Section 5, we will discuss further dependence of classication accuracy on the parameter k.

    Fig.1 Effect images of the quintic spline function approximating Λ(|x|)when k=10 and k=20

    As shown in Fig.2,the quintic spline function is closer to the symmetric hinge loss function than the other functions.Especially,in terms of keeping the parameter k unchanged,the quintic spline function is closer to the symmetric hinge loss function than the general cubic spline function.

    Fig.2 Effect images of the different smooth functions approximating Λ(|x|)

    3.2Approximate precision of quintic spline functionIn this section,we prove two important properties of s(x,k),which will be applied in the next section to provide the convergenceanalysis of the model.

    Theorem 2Let Λ(|x|)be the symmetric hinge loss function.Then,for x∈R and k>1,

    (i)0≤s(x,k)≤Λ(|x|);

    ProofObviously,if x>1/k or x≤1/k,both inequalities(i)and(ii)are true,since s(x,k)=Λ(|x|).Itremains to show that the inequalities are true on the interval(?1/k,1/k).

    Therefore,λ(x,k)is also an increasing function on(?1/k,0).The minimum is obtained at x =?1/k,λ(?1/k,k)=0.Thus 0≤s(x,k)≤Λ(|x|),when x∈(?1/k,0).

    Furthermore,s(x,k)is a decreasing function on (0,1/k).Similar to therst part,the inequality(i)also holds on(0,1/k).

    Similarly,if x∈(0,1/k),the above equation is true as well.Therefore,for every x∈R,the(ii)holds. □

    4.Convergence analysis of the model

    In this section,the convergence theorem of the SS3VM model(4)is presented.We prove that the solution of the SS3VM can closely approximate that of the non-smooth S3VM model.

    Defnition 2Let A∈Rm×n,B∈Rl×n,x∈Rn, η∈Rn,μ∈Rn,c,c?∈R,and k>1.

    Theorem 3Two real functions h(x)and g(x,k)are dened as above.Then

    (i)There exists a solutionˉx of minh(x)and a solutionof ming(x,k)such that

    (ii)Let Uhbe the set of the solutions of minh(x),then there exists convergent subsequence{ˉxkn}of{ˉxk}satisfying

    In addition,for arbitrary x∈Rn,by inequality(ii)in Theorem 2,we can have

    5.Algorithm for the SS3VM model

    The Broyden-Fletcher-Goldfarb-Shanno(BFGS)algorithm[20]is suitable for unconstrained optimization problems whenthe objectivefunctionand its gradientvaluecan easily be obtained.The BFGS method is the most widely used one among various quasi-Newton methods.

    Step 1Initialization(ω0,b0)=p0∈Rn+1,H0=I, set max=500,i=0,and eps=10?5.

    Step 2If i≤max,calculate vi=??(pi).

    Step 4Perform linear search along direction dito get a step length αi>0.

    Let

    Calculate

    Step 5Update Hito get Hi+1:

    Step 6Let i=i+1,go to Step 2.

    In the BFGS algorithm,?(x)is dened in model(4),αiis determined by the following equations:

    where 0<ρ<1/2.

    6.Numerical experiments

    Experiments are performedon datasets with various scales obtained from the UCI Machine Learning Library.The generalization ability of the classier is applied as a test indicator in order to compare the performance of different SS3VM.Correct rates of unlabeled training samples are used to measure the generalization ability of the classier.

    The experimental model is dened by(4)where the function f(x)is taken as the Gaussian function,the cubic spline function,the polynomial function,and the quintic spline function given in(6)respectively.For the ease of notation,when f(x)is taken as the Gaussian function,the SS3VM model is named as GSS3VM.Correspondingly, when f(x)is taken as an n-spline function,the SS3VM model is specied as nSS3VM.For example,the SS3VM based on a quintic spline is expressed as 5SS3VM.When f(x)is taken as a polynomial function,the SS3VM model is expressed as PSS3VM.

    6.1Experiment to test the wine quality

    The considered dataset is made of 1 599 samples.All samplesarelabeledandseparatedintotwoparts:labeledorunlabeled.The labeled part consists of therst 200 samples of the dataset and the rest samples are processed as unlabeled.Each sample contains 11 physicochemicalproperties andone sensoryattribute.The physicochemicaltesting information includes thexed acidity,volatile acidity,citric acid,residual sugar,chlorides,free sulfur dioxide,total sulfur dioxide,density,pH,sulphates,and the alcohol respectively.The sensory data represent the quality which is graded by experts between 0(very bad)and 10(very excellent).The wine quality is divided into two categories: excellent or poor.If the quality score is greater thanve, the wine quality is considered as excellent.Otherwise,the wine quality is poor.

    Table 1 Training accuracy of the different smooth S3VM

    Table 1 shows that 5SS3VM achieves a higher correct rate under the same conditions.The value of c and c?have some effect on the correct rate of SS3VM.Choosing the value of c and c?properly may improve the correct rate of SS3VM effectually.At the end of this experiment,we study the effect of the parameter k on the classication accuracy of 5SS3VM.Here,the values of both c and c?are selected to be three in the 5SS3VM model.

    As can be seen from Fig.3,the parameter k has an inuence on the classication accuracy.The accuracy of 5SS3VM is increasing as the value of k is increasing,unless k reaches a certain level.When the value of k is big enough,the accuracy will keep unchanged.Thus,we should select suitable values of k for different datasets.

    Fig.3 Effect of the parameter k on the classifcation accuracy of 5SS3VM

    6.2Experiment on the wilt dataset

    Thewilt dataset involvesdetectingdiseasedtrees inQuickbird imagery.The dataset is made of 4 339 samples.All samples are labeled.Theve properties of the testing information are GLCM Pan,Mean G,Mean R,Mean NIR, and SD Pan respectively.The wilt dataset is divided into two categories:diseased trees class and other land cover. In this experiment,we also study the effect of proportion of labeled samples on the classication accuracy.Here,we select 20%,30%,and 50%samples to be labeled respectively.And the rest are processed as unlabeled.The classication performances are shown in Table 2.In this experiment,performances of the four SS3VM models are very similar,but overall,5SS3VM is still the best.However,Table 2 shows that the proportion of labeled samples has an inuenceon the correctrate of SS3VM,but not signicant. When the number of labeled samples is large,the classication accuracy cannot be improvedgreatly.It implies that wecan useonlya smallamountoflabeledsamples toguarantee the classication accuracy.

    Table 2 Training accuracy of the different SS3VMs(wilt dataset)

    6.3Experiment on banknote authentication

    The banknote authentication dataset is made of 1372 samples.Data are extracted from images taken for the evaluation of an authentication procedure for banknotes.Wavelet transform tools are used to extract features from images. The four statistical features of the wavelet transformed image are variance,skewness,curtosis,and entropy of images,respectively.The banknote-like specimens are dividedintotwo categories:genuineorforged.Similar tothe wilt dataset,this dataset is labeled too.In the experiment, the effect of proportion of labeled samples and the values of c and c?on the classication accuracy is tested.The classication performances are shown in Table 3.It shows that when dealing with different proportions of the labeled samplesandvariousvaluesofcandc?,the5SS3VMmodel outperforms 3SS3VM and GSS3VM.When dealing with the greater values of c and c?(c=c?=12,c=c?=20), 5SS3VM has a training advantage than PSS3VM.The above results demonstrate that the 5SS3VM model is feasible and effective,and has good features compared with other SS3VM models.

    Table 3 Training accuracy of different SS3VMs(banknote authentication dataset)

    7.Conclusions

    In this paper,a quintic spline symmetric hinge approximation functionwith three-times differentiabilityat the origin is constructed by a general three-moment method.The approximation accuracy of the quintic spline function to the symmetrichingeloss functionis analyzed.A quinticspline smooth semi-support vector machine is obtained.The convergence of the smooth model to the non-smooth one is proved.In three experiments,the classication accuracy and sensitivity to the parametric variation of 5SS3VM are analyzed.The numerical experiments show that the new model has a better classication performance.It is signicant to propose the 5SS3VM model because it adds a new choice when applying SS3VM.

    [1]N.Y.Deng,Y.J.Tian.New method in data mining:support vector machine.Beijing:Science Press,2004.(in Chinese)

    [2]M.Mozer,M.I.Jordan,T.Petsche,et al.Advances in neural information processing systems.Cambridge:MIT Press,1997.

    [3]G.Fung,O.L.Mangasarian.Semi-supervised support vector machines for unlabeled data classifcation.Optimization Methods and Software,2001,15(1):29–44.

    [4]J.Long,Y.Li,Z.Yu.A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces.Cognitive Neurodynamics,2010, 4(3):207–216.

    [5]S.Reddy,S.Shevade,M.N.Murty.A fast quasi-Newton method for semi-supervised SVM.Pattern Recognition Letters,2011,44(10):2305–2313.

    [6]L.Angelini,D.Marinazzo,M.Pellicoro,et al.Semisupervised learning by search of optimal target vector.Pattern Recognition Letters,2008,29(1):34–39.

    [7]M.Kalakech,P.Biela,L.Macaire,et al.Constraint scores for semi-supervised feature selection:a comparative study.Pattern Recognition Letters,2011,32(5):656–665.

    [8]Y.Q.Liu,S.Y.Liu,M.T.Gu.Polynomial smooth classication algorithm of semi-supervised support vector machines. Computer Science,2009,36(7):179–181.(in Chinese)

    [9]A.Astorino,A.Fuduli.Nonsmooth optimization techniques for semi-supervised classication.IEEE Trans.on Pattern Analysis and Machine Intelligence,2007,29(12):2135–2142.

    [10]D.P.Liao,B.Jiang,X.Z.Wei,et al.Fast learning algorithm with progressive transductive support vector machine.Systems Engineering and Electronics,2007,29(1):87–91.(in Chinese)

    [11]O.Chaplle,A.Zien.Semi-supervised classication by low density separation.Proc.of the 10th International Workshop on Artifcial Intelligence and Statistics,2005.

    [12]Y.Q.Liu,S.Y.Liu,M.T.Gu.Polynomial smooth semisupervised support vector machine.Systems Engineering—Theory and Practice,2009,29(7):113–118.(in Chinese)

    [13]L.M.Yang,L.S.Wang.A class of smooth semi-supervised SVM by difference of convex functions programming and algorithm.Knowledge Based Systems,2013,41(2):1–7.

    [14]Y.J.Lee,O.L.Mangasarian.SSVM:a smooth support vector machine for classication.Computational Optimization and Applications,2001,22(1):5–22.

    [15]Y.B.Yuan,J.Yan,C.X.Xu.Polynomial smooth support vector machine.Chinese Journal of Computers,2005,28(1):9–17.(in Chinese)

    [16]D.R.Musicant,A.Feinberg.Active set support vector regression.IEEE Trans.on Neural Networks,2004,15(2):268–275. [17]S.Park,B.Zhang.Co-trained support vector machines for large scale unstructured document classication using unlabeled data and syntactic information.Information Processing &Management,2004,40(3):421–439.

    [18]J.Wu.Support vector machines learning algorithm research based on optimization theory.Xi’an:Xidian University,2009. (in Chinese)

    [19]X.D.Zhang,S.Shao,Q.S.Liu.Smooth support vecter machine model based on spline function.Jornal of University of Science and Tecnology Beijing,2012,34(6):718–725.(in Chinese)

    [20]J.Z.Xiong,H.Q.Yuan,H.Peng.A general formulation of polynomial smooth support vector machines.Journal of Computer Research and Development,2008,45(8):1346–1353.

    Biographies

    Xiaodan Zhang was born in 1959.She is a professor of mathematics in School of Mathematics and Physics,University of Science and Technology Beijing.In 2009,she was a visiting professor at DIMACS,Rutgers University,USA.Her research interests include data mining and dynamical systems.

    E-mail:bkdzxd@163.com

    Jinggai Ma was born in 1987.She received her B.S. degree from the Hebei Normal University ofScience and Technology in 2011,and M.S.degree in mathematics from the University of Science and Technology Beijing in 2014.

    E-mail:abcdef 7110@126.com

    Aihua Li was born in 1956.She is a professor at Montclair State University located in New Jersey, USA.She received her Ph.D.degree in mathematics from the University of Nebraska-Lincoln in 1994. Her research interests include commutative algebra, graph theory,discrete dynamical systems,and computational mathematics.

    E-mail:lia@mail.montclair.edu

    Ang Li was born in 1991.He received his B.S.degree from the University of Science and Technology Beijing in 2013,and pursues his graduate study in mathematics at the same university since then.

    E-mail:siwang744@gmail.com

    10.1109/JSEE.2015.00070

    Manuscript received April 17,2014.

    *Corresponding author.

    This work was supported by the Fundamental Research Funds for University of Science and Technology Beijing(FRF-BR-12-021).

    欧美不卡视频在线免费观看| 狠狠狠狠99中文字幕| 国产成人a∨麻豆精品| 麻豆国产av国片精品| 99在线视频只有这里精品首页| 中出人妻视频一区二区| 国产欧美日韩精品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 日日啪夜夜撸| 日本 av在线| 亚洲性夜色夜夜综合| 亚洲国产精品合色在线| 国产精品一区二区性色av| 3wmmmm亚洲av在线观看| 国产一区二区激情短视频| 亚州av有码| 亚洲精品成人久久久久久| 亚洲专区国产一区二区| 午夜免费男女啪啪视频观看 | 国产三级在线视频| 欧美又色又爽又黄视频| 2021天堂中文幕一二区在线观| 嫩草影视91久久| 亚洲精品一区av在线观看| 男人舔奶头视频| 亚洲乱码一区二区免费版| 久久国产乱子免费精品| 欧美bdsm另类| a级毛片免费高清观看在线播放| 日韩亚洲欧美综合| 99久久精品一区二区三区| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 亚洲欧美日韩高清专用| 亚洲人成网站在线观看播放| av中文乱码字幕在线| 久久久久久国产a免费观看| 简卡轻食公司| 亚洲成av人片在线播放无| 一区二区三区高清视频在线| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 男女那种视频在线观看| 国产免费一级a男人的天堂| 在线免费观看的www视频| 欧美xxxx黑人xx丫x性爽| 99热这里只有精品一区| 日本黄色视频三级网站网址| 亚洲av免费在线观看| 插阴视频在线观看视频| 中文在线观看免费www的网站| 看十八女毛片水多多多| 日韩欧美精品v在线| 听说在线观看完整版免费高清| 别揉我奶头~嗯~啊~动态视频| 99热这里只有是精品50| 国产精品亚洲美女久久久| 国产成人freesex在线 | 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 乱人视频在线观看| 国产精品一二三区在线看| 亚洲精华国产精华液的使用体验 | 成人特级av手机在线观看| 国产人妻一区二区三区在| 亚洲三级黄色毛片| 日日啪夜夜撸| 岛国在线免费视频观看| 老师上课跳d突然被开到最大视频| .国产精品久久| 国产不卡一卡二| 男女之事视频高清在线观看| 国产精品一二三区在线看| 欧美成人免费av一区二区三区| 亚洲欧美日韩高清专用| 天堂√8在线中文| 婷婷六月久久综合丁香| 国产一区二区三区av在线 | 99久久精品热视频| 色综合亚洲欧美另类图片| 99在线人妻在线中文字幕| 国产一区二区激情短视频| 女生性感内裤真人,穿戴方法视频| 女人十人毛片免费观看3o分钟| 99riav亚洲国产免费| 99国产精品一区二区蜜桃av| 毛片女人毛片| 国产精品久久久久久久久免| 欧美中文日本在线观看视频| 观看免费一级毛片| 亚洲人成网站在线播| 人人妻人人看人人澡| 国产视频一区二区在线看| 日本成人三级电影网站| 国产精品无大码| 成人三级黄色视频| a级毛片免费高清观看在线播放| 欧美成人一区二区免费高清观看| 国产午夜精品久久久久久一区二区三区 | 极品教师在线视频| 日日干狠狠操夜夜爽| 女人十人毛片免费观看3o分钟| 日韩强制内射视频| 99在线人妻在线中文字幕| 国产一区二区三区av在线 | 两个人的视频大全免费| 精品一区二区三区视频在线观看免费| 在线观看66精品国产| 亚洲第一区二区三区不卡| av.在线天堂| 此物有八面人人有两片| 精品熟女少妇av免费看| 午夜福利高清视频| 少妇丰满av| 九色成人免费人妻av| 一个人免费在线观看电影| 一个人观看的视频www高清免费观看| 可以在线观看的亚洲视频| 直男gayav资源| 内射极品少妇av片p| 国产精品一区二区性色av| 国产一区二区亚洲精品在线观看| 成年女人毛片免费观看观看9| 国内精品一区二区在线观看| 波多野结衣高清作品| 国产欧美日韩一区二区精品| 搞女人的毛片| 香蕉av资源在线| 国产亚洲av嫩草精品影院| 青春草视频在线免费观看| 日本免费一区二区三区高清不卡| 久久综合国产亚洲精品| 性欧美人与动物交配| 久久久久国产网址| 99在线人妻在线中文字幕| 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区 | 网址你懂的国产日韩在线| 在线观看免费视频日本深夜| 日本色播在线视频| 中国国产av一级| 最近手机中文字幕大全| 久久久久性生活片| 中国国产av一级| 日日摸夜夜添夜夜添av毛片| 一a级毛片在线观看| 看十八女毛片水多多多| 国产精品一区二区三区四区免费观看 | 天堂av国产一区二区熟女人妻| 伊人久久精品亚洲午夜| 久久久久国产精品人妻aⅴ院| 国产乱人偷精品视频| 亚洲欧美精品综合久久99| 黄色欧美视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲专区国产一区二区| 日韩人妻高清精品专区| 国产蜜桃级精品一区二区三区| 中文字幕av成人在线电影| 日本精品一区二区三区蜜桃| 成年女人永久免费观看视频| 天天躁日日操中文字幕| 国产美女午夜福利| 十八禁国产超污无遮挡网站| 亚洲av二区三区四区| 少妇人妻一区二区三区视频| 精品国产三级普通话版| 久久久久精品国产欧美久久久| 熟妇人妻久久中文字幕3abv| 亚洲成人中文字幕在线播放| 男女边吃奶边做爰视频| 日本a在线网址| 久久99热6这里只有精品| 在线免费观看不下载黄p国产| 蜜桃久久精品国产亚洲av| 免费看光身美女| 亚洲精品日韩在线中文字幕 | 神马国产精品三级电影在线观看| 国产黄a三级三级三级人| 久久国内精品自在自线图片| 免费在线观看成人毛片| 精品人妻一区二区三区麻豆 | 欧美bdsm另类| а√天堂www在线а√下载| 亚洲av不卡在线观看| 一个人看视频在线观看www免费| 色在线成人网| 免费高清视频大片| 国产人妻一区二区三区在| 免费av观看视频| 亚洲av五月六月丁香网| 看免费成人av毛片| 亚洲乱码一区二区免费版| 国内揄拍国产精品人妻在线| a级毛片a级免费在线| 最近的中文字幕免费完整| 国产午夜精品论理片| 国产真实伦视频高清在线观看| 最近视频中文字幕2019在线8| 日本欧美国产在线视频| 熟妇人妻久久中文字幕3abv| 91午夜精品亚洲一区二区三区| 国产精品国产三级国产av玫瑰| 偷拍熟女少妇极品色| 国产亚洲av嫩草精品影院| 亚洲人成网站高清观看| 又粗又爽又猛毛片免费看| 在线观看美女被高潮喷水网站| 精品无人区乱码1区二区| 成人欧美大片| 国产精品综合久久久久久久免费| 在线免费观看的www视频| 日本精品一区二区三区蜜桃| 精品久久久久久久久av| 午夜亚洲福利在线播放| 男女之事视频高清在线观看| 一级av片app| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 波多野结衣高清作品| 免费看美女性在线毛片视频| 中出人妻视频一区二区| 国语自产精品视频在线第100页| 深夜a级毛片| 男女视频在线观看网站免费| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看| av天堂在线播放| 国产精品免费一区二区三区在线| 女生性感内裤真人,穿戴方法视频| 一级毛片我不卡| 亚洲不卡免费看| 看十八女毛片水多多多| 亚洲av.av天堂| 亚洲五月天丁香| 精品人妻一区二区三区麻豆 | 久久精品人妻少妇| 国产精品精品国产色婷婷| 女的被弄到高潮叫床怎么办| 天堂av国产一区二区熟女人妻| 又粗又爽又猛毛片免费看| 舔av片在线| 久久精品国产亚洲网站| 国产探花极品一区二区| 久久99热这里只有精品18| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址| 亚洲精品在线观看二区| 色综合站精品国产| 男人的好看免费观看在线视频| 干丝袜人妻中文字幕| 婷婷亚洲欧美| av免费在线看不卡| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 日本成人三级电影网站| 久久人人爽人人爽人人片va| 中出人妻视频一区二区| 亚洲欧美精品自产自拍| 最近视频中文字幕2019在线8| 极品教师在线视频| 三级男女做爰猛烈吃奶摸视频| 草草在线视频免费看| 一本一本综合久久| 亚洲av中文字字幕乱码综合| 欧美日韩一区二区视频在线观看视频在线 | 最近手机中文字幕大全| 联通29元200g的流量卡| 国产高潮美女av| 国产精品一区二区三区四区久久| 51国产日韩欧美| 中国美白少妇内射xxxbb| 婷婷六月久久综合丁香| 国产欧美日韩一区二区精品| 国产亚洲精品av在线| 婷婷色综合大香蕉| 久久韩国三级中文字幕| 亚洲av不卡在线观看| 国产探花极品一区二区| 18禁黄网站禁片免费观看直播| 深爱激情五月婷婷| 别揉我奶头 嗯啊视频| 国产精品1区2区在线观看.| 日韩三级伦理在线观看| 精品人妻熟女av久视频| 国产成人freesex在线 | 亚洲欧美日韩高清专用| 亚洲最大成人中文| 国产午夜精品久久久久久一区二区三区 | 男人的好看免费观看在线视频| 在线国产一区二区在线| www.色视频.com| 免费搜索国产男女视频| 精品久久久久久久久久免费视频| 国产亚洲精品久久久久久毛片| 在线观看一区二区三区| 最近手机中文字幕大全| 中文资源天堂在线| 成人三级黄色视频| 变态另类丝袜制服| 国产精品伦人一区二区| 欧美区成人在线视频| 国产精品女同一区二区软件| 观看免费一级毛片| 2021天堂中文幕一二区在线观| 欧美成人a在线观看| 成人欧美大片| 男女做爰动态图高潮gif福利片| 国产成人影院久久av| 99精品在免费线老司机午夜| av中文乱码字幕在线| 夜夜爽天天搞| 亚洲三级黄色毛片| 美女大奶头视频| 色尼玛亚洲综合影院| 永久网站在线| 亚洲性夜色夜夜综合| 国产视频内射| 变态另类成人亚洲欧美熟女| av天堂在线播放| 男女视频在线观看网站免费| 99热这里只有是精品在线观看| 日韩在线高清观看一区二区三区| 亚洲美女黄片视频| а√天堂www在线а√下载| 日本三级黄在线观看| 国语自产精品视频在线第100页| 国产高清视频在线观看网站| 99热6这里只有精品| 午夜久久久久精精品| 久久热精品热| 免费观看人在逋| 最近2019中文字幕mv第一页| 内射极品少妇av片p| 男人舔女人下体高潮全视频| 床上黄色一级片| 成年av动漫网址| 老熟妇仑乱视频hdxx| 国产精品久久久久久av不卡| 少妇的逼水好多| 美女免费视频网站| 18禁在线播放成人免费| 亚洲在线观看片| 亚洲精品日韩在线中文字幕 | 日本爱情动作片www.在线观看 | 在线天堂最新版资源| 最近视频中文字幕2019在线8| 一本精品99久久精品77| 亚洲欧美精品自产自拍| 免费看美女性在线毛片视频| 亚洲av成人精品一区久久| 中文字幕av成人在线电影| 观看美女的网站| 久久精品国产亚洲av天美| 国产精品一区二区性色av| 一区二区三区四区激情视频 | 精品久久久久久成人av| 午夜福利高清视频| 国模一区二区三区四区视频| 国产伦一二天堂av在线观看| 亚洲国产欧洲综合997久久,| 午夜爱爱视频在线播放| 欧美激情国产日韩精品一区| 国产精品免费一区二区三区在线| 久99久视频精品免费| h日本视频在线播放| 深夜精品福利| 国产精品无大码| 国产亚洲av嫩草精品影院| 啦啦啦韩国在线观看视频| 搡女人真爽免费视频火全软件 | 最近中文字幕高清免费大全6| 99热6这里只有精品| 九九在线视频观看精品| 草草在线视频免费看| 夜夜爽天天搞| 日韩精品有码人妻一区| 91在线精品国自产拍蜜月| 亚洲国产精品国产精品| 成人av一区二区三区在线看| 国产一区二区三区在线臀色熟女| 高清日韩中文字幕在线| 国产不卡一卡二| 少妇人妻精品综合一区二区 | 一边摸一边抽搐一进一小说| 精品一区二区三区av网在线观看| 成人亚洲欧美一区二区av| 哪里可以看免费的av片| 91久久精品电影网| 国产久久久一区二区三区| 国产精品电影一区二区三区| 亚洲av中文av极速乱| videossex国产| 蜜桃久久精品国产亚洲av| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| av在线蜜桃| 亚洲最大成人av| a级毛色黄片| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成网站在线播| 日韩欧美国产在线观看| 老熟妇仑乱视频hdxx| 亚洲国产精品sss在线观看| 久久久久国内视频| 久久精品国产亚洲av涩爱 | 两个人的视频大全免费| 天堂√8在线中文| 亚洲国产精品成人久久小说 | 久久精品91蜜桃| 午夜老司机福利剧场| 日韩成人伦理影院| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品| 日本在线视频免费播放| 亚洲av中文av极速乱| 精品久久久久久久末码| 欧美潮喷喷水| 久久久久久九九精品二区国产| 国产一区亚洲一区在线观看| 午夜激情福利司机影院| 亚洲精华国产精华液的使用体验 | 给我免费播放毛片高清在线观看| 日韩av不卡免费在线播放| 久久精品夜色国产| 精品人妻视频免费看| 老司机午夜福利在线观看视频| eeuss影院久久| 欧洲精品卡2卡3卡4卡5卡区| 99热只有精品国产| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av| 国产成人a区在线观看| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添小说| av在线天堂中文字幕| 日韩精品中文字幕看吧| 免费观看人在逋| 日日摸夜夜添夜夜添av毛片| 日产精品乱码卡一卡2卡三| 2021天堂中文幕一二区在线观| 久久九九热精品免费| 在线观看免费视频日本深夜| 欧美在线一区亚洲| а√天堂www在线а√下载| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 久久久久国内视频| 少妇熟女aⅴ在线视频| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 夜夜看夜夜爽夜夜摸| 日日干狠狠操夜夜爽| 晚上一个人看的免费电影| 国产黄片美女视频| 国产av不卡久久| 国产综合懂色| 看非洲黑人一级黄片| 18禁黄网站禁片免费观看直播| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 国产成人福利小说| 国产av一区在线观看免费| 日韩中字成人| 亚洲成a人片在线一区二区| av.在线天堂| 91久久精品国产一区二区成人| 久久久久久久久大av| 夜夜夜夜夜久久久久| av在线蜜桃| 国产片特级美女逼逼视频| 变态另类成人亚洲欧美熟女| 欧美在线一区亚洲| 伦理电影大哥的女人| 69人妻影院| 欧美激情久久久久久爽电影| 露出奶头的视频| 午夜免费男女啪啪视频观看 | 久久人人爽人人片av| 国产三级中文精品| 精品一区二区三区视频在线| 我的老师免费观看完整版| 欧美zozozo另类| 丝袜喷水一区| av免费在线看不卡| 美女高潮的动态| 我的老师免费观看完整版| 精品久久国产蜜桃| 最近2019中文字幕mv第一页| 欧美不卡视频在线免费观看| 有码 亚洲区| 人妻久久中文字幕网| av中文乱码字幕在线| 秋霞在线观看毛片| 精品人妻偷拍中文字幕| 春色校园在线视频观看| 三级男女做爰猛烈吃奶摸视频| 亚洲婷婷狠狠爱综合网| 亚洲精品一卡2卡三卡4卡5卡| 亚洲婷婷狠狠爱综合网| 婷婷精品国产亚洲av| 天天躁日日操中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 六月丁香七月| 亚洲专区国产一区二区| 日韩欧美精品免费久久| 熟女电影av网| 毛片女人毛片| 色哟哟哟哟哟哟| 亚洲国产色片| 22中文网久久字幕| 简卡轻食公司| 在线观看av片永久免费下载| 国产午夜福利久久久久久| 综合色av麻豆| 欧美潮喷喷水| 波多野结衣高清作品| 久久精品国产亚洲av天美| 亚洲美女视频黄频| 晚上一个人看的免费电影| 午夜福利在线在线| 一级黄片播放器| 久久欧美精品欧美久久欧美| 在现免费观看毛片| av.在线天堂| 国内精品宾馆在线| 国产免费一级a男人的天堂| 久久午夜亚洲精品久久| 悠悠久久av| 乱系列少妇在线播放| 97碰自拍视频| 国产日本99.免费观看| 人人妻,人人澡人人爽秒播| 啦啦啦啦在线视频资源| 日本色播在线视频| 欧美另类亚洲清纯唯美| 成人国产麻豆网| 色尼玛亚洲综合影院| 免费电影在线观看免费观看| 国产aⅴ精品一区二区三区波| 国产一区亚洲一区在线观看| 国产探花在线观看一区二区| 国产精品三级大全| 97超碰精品成人国产| 我要搜黄色片| 人妻制服诱惑在线中文字幕| 久久韩国三级中文字幕| av福利片在线观看| av.在线天堂| 美女cb高潮喷水在线观看| 99久久久亚洲精品蜜臀av| 最近在线观看免费完整版| 在线天堂最新版资源| 99久国产av精品国产电影| 精品熟女少妇av免费看| 91久久精品国产一区二区成人| 少妇高潮的动态图| 日本爱情动作片www.在线观看 | 国产av在哪里看| 啦啦啦啦在线视频资源| 少妇丰满av| 国产综合懂色| 99在线人妻在线中文字幕| 99久久精品一区二区三区| 黄色视频,在线免费观看| 看免费成人av毛片| 亚洲精品久久国产高清桃花| 1000部很黄的大片| 免费看av在线观看网站| www.色视频.com| 大又大粗又爽又黄少妇毛片口| 床上黄色一级片| 搡老熟女国产l中国老女人| 亚洲七黄色美女视频| 国产老妇女一区| 人妻少妇偷人精品九色| 日本与韩国留学比较| 免费看日本二区| 一区福利在线观看| 99热这里只有是精品50| 精品熟女少妇av免费看| 成人午夜高清在线视频| 国产精品1区2区在线观看.| 亚洲欧美日韩高清专用| 亚洲乱码一区二区免费版| 国内精品宾馆在线| 亚洲真实伦在线观看| 久久精品国产亚洲网站| 国产三级在线视频| 精品午夜福利视频在线观看一区| 久久亚洲精品不卡| 在线播放国产精品三级| 亚洲精品色激情综合| 小蜜桃在线观看免费完整版高清| 69人妻影院| 啦啦啦观看免费观看视频高清| 男人舔奶头视频| 麻豆av噜噜一区二区三区| 搡老岳熟女国产| 国产又黄又爽又无遮挡在线| 久久人人爽人人爽人人片va| 真人做人爱边吃奶动态| 亚洲av一区综合| 国产白丝娇喘喷水9色精品| 男人和女人高潮做爰伦理| 12—13女人毛片做爰片一| 午夜激情福利司机影院| 日韩av不卡免费在线播放| 欧美中文日本在线观看视频| 成人国产麻豆网| 精品一区二区三区av网在线观看| 中国国产av一级|