崔 瑜,張春茍,張靈敏
(1 河北科技師范學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,河北 秦皇島,066004;2 首都師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院)
?
Szász-Baskakov-Durrmeyer算子導(dǎo)數(shù)的完全漸進(jìn)展開(kāi)
崔 瑜1,張春茍2,張靈敏1
(1 河北科技師范學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,河北 秦皇島,066004;2 首都師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院)
主要研究了Szsz-Baskakov-Durrmeyer算子導(dǎo)數(shù)的漸進(jìn)展開(kāi)問(wèn)題,即同時(shí)逼近的漸進(jìn)展開(kāi)問(wèn)題,建立了該算子導(dǎo)數(shù)的點(diǎn)態(tài)完全漸進(jìn)展開(kāi)公式。
SBD算子;導(dǎo)數(shù);Durrmeyer變形;漸進(jìn)展開(kāi)
算子的構(gòu)造方法多種多樣,比如有積分變形、組合迭加、推廣修正、加權(quán)求和等等,而算子的積分變形主要有Kantorovich變形和Durrmeyer變形等兩種,Durrmeyer變形就是如下的一種構(gòu)造新算子的方法:
設(shè)有算子
其Durrmeyer變形定義為
這里被積函數(shù)所加的權(quán)函數(shù)lnk(t)與算子的基函數(shù)lnk(x)通常是一致的。如果不一致,就是所謂的異權(quán)。文獻(xiàn)[2]正是基于這種方法引入了Baskakov-Szsz-Durrmeyer算子(簡(jiǎn)稱為BSD算子)如下:
算子以及算子導(dǎo)數(shù)的漸進(jìn)展開(kāi)是算子逼近的一種表現(xiàn)形式。一方面直觀展現(xiàn)了算子的逼近性質(zhì),另一方面也是深入研究算子逼近性質(zhì)的準(zhǔn)備。因此,算子以及算子導(dǎo)數(shù)的漸進(jìn)展開(kāi)問(wèn)題是算子逼近的一個(gè)重要的研究方向,尤其是完全漸進(jìn)展開(kāi),這方面已有大量的文章進(jìn)行研究[4~16]。
定理A 設(shè)q∈N,x∈[0.tif,+∞),則對(duì)于每一個(gè)函數(shù)f∈K[2q;x],有
這里f∈K[2q;x]表示函數(shù)f在x點(diǎn)2q階連續(xù)可導(dǎo),且f∈Wγ[0,∞),即f在[0,∞)上局部可積且存在實(shí)數(shù)γ,使得f(t)=O(tγ)(t→+∞)。系數(shù)
其中
對(duì)于任意非負(fù)整數(shù)p,在此記
則有如下關(guān)鍵性引理:
引理1 設(shè)f(p)∈Wγ[0,∞),則對(duì)于n>p有
證明 約定Sn,-1(x)=0,則由
可得
再由歸納法可得
證畢。
記em(x)=xm(m=0,1,2,…),ψx(t)=t-x。則運(yùn)用文獻(xiàn)[1]中的引理1~引理3的方法,可得本次研究的:
引理2
這里
=O(n-[r+1/2])
引理3[4]設(shè)q∈N,x∈I,An:L∞(I)(I上本性有界)→C(I)(I上連續(xù))是一個(gè)具有如下性質(zhì)的正算子序列
則對(duì)于任意f∈L∞(I)在x上2q階可導(dǎo)函數(shù),有漸進(jìn)關(guān)系
如果f(2q+2)(x)存在,那么上式中的o(n-q)能被O(n-(q+1))替換。
引理4(局部化定理) 當(dāng)x>0時(shí),假設(shè)f∈Wγ(0,∞),且在x的某鄰域值為0,則對(duì)任意的q>0有
定理B設(shè)p=0,1,…,且f(p)∈K[2q;x],則
其中
證明 記g=f(p),則g∈K[2q;x]。據(jù)引理4,不失一般性可設(shè)g在[0.tif,+∞)上有界,則
由引理1,引理2和引理3可得
這里
定理得證。
顯然,p=0時(shí),定理B化為定理A。
(2S(p+2,p+1)-S(p+1,p)-S(p+3,p+2))x2]f(p+2)(x)。
這里S(k,j)表示第二類Stirling數(shù),其定義如下
取q=1,則由定理B可得如下Voronovskaja型漸進(jìn)展開(kāi)式:
推論 設(shè)x∈(0,1),f∈K[2+p;x],則對(duì)于p=0,1,…有
[1] Chungou Zhang.Complete asymptotic expansions for some summation-integral type operators with different weights[J].Journal computational analysis and applications,2015,18(1):99-107.
[2] Ulrich Abel,Vijay Gupta,Mircea Ivan.Asymptotic approximation of functions and their derivatives by generalized Baskakov-Szsz-Durrmyer operators[J].Analysis in Theory and Applications,2005,21(1):15-26.
[3] Guo S S,Hsu L C.Some inverse theorems for a certain special class of operators[C]//Constructive theory of functions.Sofia:Publ House Bulgar Acad Sci,1988.
[4] P C Sikkema.On the asymptotic approximation with operators of Meyer-K?nig and Zeller[J].Indag Math,1970,32:428-440.
[5] Ulrich Abel,Margareta Heilmann.The complete asymptotic expansion for Bernstein-Durrmeyer operators with Jacobi weights[J].Mediterranean Journal of Mathematics 2004,1: 487-499.
[6] U Abel,V Gupta,M Ivan.The complete expansion for a general Durrmeyer variant of the Meyer-K?nig and Zeller operators[J].Mathematical and computer modeling,2004,40:867-875.
[7] Ulrich Abel.Asymptotic approximation by Bernstein-Durrmeyer operators and their derivatives[J].Analysis in Theory and Applications,2000,16(2):1-12.
[8] U Abel.The complete asymptotic expansion for the Meyer-K?nig and Zeller operators[J].J Math Anal Appl,1997,208:109-119.
[9] U Abel.On the asymptotic approximation with bivariate of Bleimann, Butzer and Hahn[J].J Approx Theory,1999,97:181-198.
[10] U Abel,M Ivan.Asymptotic approximation with a sequence of positive linear operator[J].J Comput Anal and Appl,2001,3(4): 331-341.
[11] Ming-jun Lai.Asymptotic formulae of multivariate Bernstein approximation[J].Journal of Approximation Theory,1992,70:229-242.
[12] Feng Yuyu,Jernel Kozak.Asymptotic expansion formula for Bernstein polynomial defined on a Simplex[J].Constr Approx,1992,8(1):45-58.
[13] A J López-Moreno,F(xiàn) J Munoz-Delgado.Asymptotic expansion of multivariate conservative linear operators[J].J Comput Appl Math,2003,150:219-251.
[14] Antonio-Jesus, Loper-Moreno, Franciseo-Javier. Asymptotic expansion of multivariate Kantorovich type operators[J].Numerical Algorithms,2005,39(1-3):237-252.
[15] Chungou Zhang,Quan-e Wang.The complete asymptotic expansion for the Szász-Mirkjan-type operators[J].International Journal of Wavelet,Multiresolution and Information Processing,2009,7(6):551-858.
[16] 張春茍.多元 Kantorovich 算子Lp范數(shù)下的漸進(jìn)展開(kāi)[J].數(shù)學(xué)學(xué)報(bào),1998,41(6):1 239-1 248.
(責(zé)任編輯:朱寶昌)
Complete Asymptotic Expansion of Derivative of the Szász-Baskakov-Durrmeyer Operator
CUI Yu1,ZHANG Chun-gou2,ZHANG Ling-min1
(1 School of Mathematics & Information,Hebei Normal University of Science & Technology,Qinhuangdao Hebei,066004;2 School of Mathematical Sciences,Capital Normal University;China)
In this paper, we will study this operator asymptotic expansion of derivative and establish a complete expansion formula in point wise form.
Operator; Durrmeyer’s modification; Asymptotic expansion
10.3969/J.ISSN.1672-7983.2015.02.003
2015-03-26; 修改稿收到日期: 2015-05-27
O174
A
1672-7983(2015)02-0012-04
崔瑜(1982-),女,講師,碩士。主要研究方向:函數(shù)逼近論。