• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effective Method of UV-Oxidation of Dissolved Organic Carbon in Natural Waters for Radiocarbon Analysis by Accelerator Mass Spectrometry

    2015-04-01 01:57:36XUEYuejunGETiantianandWANGXuchen
    Journal of Ocean University of China 2015年6期

    XUE Yuejun, GE Tiantian, and WANG Xuchen, 2), *

    ?

    An Effective Method of UV-Oxidation of Dissolved Organic Carbon in Natural Waters for Radiocarbon Analysis by Accelerator Mass Spectrometry

    XUE Yuejun1), GE Tiantian1), and WANG Xuchen1), 2), *

    1)Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China,Qingdao 266100, P.R. China?2)Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao266100,P.R. China

    Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%± 4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3μgC) that is critical for14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

    radiocarbon; dissolved organic carbon; UV-oxidation; natural waters; AMS

    1 Introduction

    Dissolved organic carbon (DOC) is the second largest organic carbon reservoir on earth and the largest exchangeable organic carbon pool (about 660PgC) in the ocean (Hedges, 1992). DOC plays important roles not only for the global carbon cycle but affecting the nutrients and many elements cycles and microbial activities in the ocean as well (Hansell and Carlson, 2001, 2002; Middelbore and Lundsgaard, 2003; Jiao., 2010; Nelson and Carlson, 2012). In the last two decades, although we have gained a great knowledge about the distribution and cycling of DOC in the world oceans (Druffel., 1992; Hansell., 2009; Bauer., 2013). Its sources and bioavailability in the ocean especially in the ocean’s deep regions (>1500m), however, are still not fully understood (Jiao and Azam, 2011; Becker., 2014; Follett., 2014). It thus remains as an on-going active research area to study the sources, transformation and bioavailability of DOC in the ocean.

    Measurement of natural occurring radiocarbon (14C) compositions in DOC is a very powerful tool to identify the sources and cycling processes of DOC in natural waters (Williams and Druffel, 1987; Williams., 1992; Druffel., 1992; Raymond and Bauer, 2001; Wang., 2012). Based on the abundances of14C, the radiocarbon age (year before present) of DOC can be then calculated so it provides insight information about the sources and cycling time scales of DOC in the ocean. Measurements of14C in DOC have revealed that the14C age of DOC in the deep ocean ranged 4000-6000 years old, suggesting that a large fraction of DOC in the ocean is cycling on a very long time scales (Williams and Druffel, 1987; Druffel and Bauer, 2000). However, a recent DOC-14C study by Follett. (2014) reported that up to 30% of DOC in the deep ocean could be modern which represents a significant fraction of recent-fixed modern carbon flux in the deep ocean. In the river and coastal waters,14C age of DOC also varied widely. Our previous study have measured the14C compositions of DOC in the Huanghe and Changjiang Rivers and the14C age ranged from 305 to 1570 years with great seasonality as affected by different organic matter inputs (Wang., 2012). These14C studies certainly provide promise information to our understanding of the sources and cycling of DOC in the river and ocean that other chemical methods could not possibly provide.

    To measure14C in seawater DOC is a complicated process that requires the first step for complete oxidation of sufficient DOC to CO2. This is rather difficult for seawater analysis because the very high proportion of salts and extremely low DOC concentrations in the deep ocean (about 40μmolL?1). Contamination during sample processing is often a big consideration. With the application of accelerator mass spectrometry (AMS) in the last 20 years, the amount of carbon required for high precision14C analysis has been sustainably reduced to about 100μgC or less. Even though, 300-500mL seawater usually is needed for oxidation in order to collect enough CO2for high precision14C analysis. The most commonly used method for sufficient DOC oxidation is by ultraviolet light oxidation (UV-Oxidation) (Williams and Druffel, 1987; Bauer., 1992). More recently, Beaupre. (2007) developed a UV-oxidation method for DOC based on the modification of the conventional UV-oxidation method. This method could oxidize 30mL to 500mL seawater and gives low blank and high precision for14C measurements. However, the disadvantage of the method is that only one sample can be oxidized at same time using the system and it takes at least 6h to finish one sample. This time consuming process certainly has limitations for studies when large number of DOC samples need to be processed throughput.

    In the paper, we report an effective UV-oxidation method developed in our laboratory for oxidation of DOC in natural waters. Depending on the DOC concentration, 4 to 12 samples can be oxidized at the same time and the reproducibility and precisions are good for both13C and14C measurements. We have used this method for DOC-14C studies in riverine, estuarine, coastal and oceanic waters and have obtained promise results.

    2 Methods

    2.1 UV-Oxidation System

    The UV-oxidation system we used is shown in Fig.1. It includes an Ace Glass model 7900 UV-Oxidation apparatus with power supply (Ace Glass Inc.). A 50cm long 1200 watts medium-pressure mercury arc UV lamp (Hanovia) is vertically placed in the center of the UV- Oxidation housing. Twelve custom-made quartz sample reaction tubes (140mL, 2.6cm OD×56cm, Fig.1-1) can be vertically placed in the housing around the UV lamp. The specially designed reaction tube has a top ground-glass joint stripping probe which is used for gas purging and can be connected directly to the vacuum line for CO2extraction as shown in Fig.1. The vacuum extraction line is made from 12-15mm OD Pyrex tubing and contains mainly a (2) KI solution trap; (3) a cold water trap (dry ice/isopropanol slush); (4) a liquid nitrogen trap for CO2collection; (5) cold-finger trap with calibrated volume for CO2quantification; (6) CO2transfer tubing connection; (7) a protection liquid nitrogen trap at the end of the vacuum line leading to (10) an oil-free molecular rotary pump (TPS Compact Dry TV301, Agilent Technologies); (8) a pressure gauge for high vacuum measurement (to 1×10?4Torr, Agilent) and (9) a pressure transducer to quantify CO2volume (0-200 Torr, MKS Inc.). The major improvement of our UV-oxidation system is using the multiple Ace Glass UV-Oxidation apparatus with specially designed 12 quartz UV-oxidation tubes which can be connected directly to vacuum line. In this case, multiple water samples can be oxidized at the same time.

    Fig.1 Schematic diagram of the UV-oxidation system for DOC and the vacuum extraction line. Detail information for each component is provided in the text.

    2.2 UV-Oxidation of DOC

    We first tested the UV-oxidation efficiency and the blank level using the system. A 1.0molL?1DOC stock solution was prepared using a reagent purity oxalic acid (Aladdin, 99.99%). Three DOC concentrations (100μmolL?1, 200μmolL?1and 400μmolL?1) were then diluted using the stock solution and Milli-Q high purity water. Measured 120mL of each DOC solution was placed in each of the pre-combusted (850℃ for 2h) quartz reaction tubes and acidified to pH 2 using 85% H3PO4. The acidified DOC solutions were purged with ultra-high purity (UHP) helium gas through the top of the reaction tube (Fig.1-1) for 20min to remove dissolved inorganic carbon (DIC). Four duplicates were prepared for each DOC standard solution. After purging, the DOC standard solutions were UV-oxidized for 5h. At each half hour, water samples were collected from each reaction tube to measure DOC concentration. We also used river water, estuarine water and seawater of different salinities to test the UV-oxidation efficiencies. The water samples were collected in Changjiang River and Huanghe River Estuaries during cruises in March and April, 2014. Water samples were filtered using GF/F filters (pre-combusted at 550℃ for 5h) and kept frozen in glass bottles until processing. The procedure of UV-oxidation of DOC for the field water samples was conducted in the same way as the DOC standard solutions as described above.

    To test the system blanks on carbon isotope measurement, we used a 200μmolL?1DOC standard solution to conduct UV-oxidation and extracted CO2generated from DOC oxidation for carbon isotope measurement. As described above, 120mL solution was placed into a quartz reaction tube in four duplicates and acidified to pH 2 using 85% H3PO4. The acidified standard solutions were purged with UHP helium gas for 20min and UV-oxidized for 5h. Following the UV-oxidation, gaseous CO2generated from DOC oxidation was purged again with UHP helium gas through the vacuum extraction line and CO2was purified and collected cryogenically and flame- sealed inside 6mm OD Pyrex break-seal tubes for14C and13C analysis.

    We also conducted the UV-oxidation blank test using field water samples. Three samples (from Huanghe River, Changjiang River and coastal seawater outside Changjiang Estuary) were tested for reproducibility on isotope measurements. As described above, 120mL water sample was placed into a quartz reaction tube in triplicate and acidified to pH 2 using 85% H3PO4. The acidified water samples were purged with UHP helium gas for 20min and UV-oxidized for 5h. After UV-oxidation, generated CO2from DOC oxidation was purged again with UHP helium gas through the vacuum extraction line and CO2was purified and collected cryogenically. After measuring the volume, CO2was then flame-sealed inside 6mm OD Pyrex break-seal tubes for14C and13C analysis.

    Concentration of DOC was measured by high temperature catalytic oxidation (HTCO) method (Sharp., 1993) using a Shimadzu TOC-L analyzer equipped with an ASI-L auto-sampler. The instrument was calibrated using 5-point calibration curves derived from prepared DOC standard (KHP) solution. Instrument blank DOC value was checked against reference low carbon water and seawater (CRM, University of Miami, Rosenstiel School of Marine and Atmospheric Sciences). Blank subtraction was carried out using Milli-Q water which was analyzed before each sample ran. Total blanks associated with DOC measurement was about 5μmolL?1and the analytic precision on triplicate injections were < 3%.

    2.3 Isotopic Measurement

    Carbon isotope (14C and13C) compositions were measured for the purified CO2gas generated from UV-oxidation of DOC at the National Ocean Science Accelerator Mass Spectrometry (NOSAMS) facilities at Woods Hole Oceanographic Institution (WHOI) in USA. A small split fraction of CO2was measured for13C using a VG IR-MS and the rest CO2was graphitized for14C analysis using AMS. Values of13C are reported in ‰ relative to the PDB standard and values of14C measured as the fraction modern based on modern reference material used and14C values are calculated and reported in ‰ relative to the standard as well.

    3 Results and Discussion

    3.1 UV-Oxidation Efficiency

    The results of UV-oxidation efficiency tested using DOC standard solution and field samples were summarized in Table 1 and plotted in Fig.2. The UV-oxidation efficiencies were 97% to 98%±2% for DOC standard solutions and 94% to 96%±4% for the field samples determined at the end of the UV-oxidation (Table 1). During the time series UV-oxidation test, about 40%-60% of DOC were oxidized after one hour and 94%-98% of DOC oxidation efficiencies were reached at 4h. These oxidation efficiencies obtained in our experiments are quite consistent with the results reported using a different setting of UV-oxidation method (Beaupre., 2007), indicating that our UV-oxidation system is effective for DOC oxidation in natural waters with good reproducibility. We therefore set 5 consecutive hours as standard oxidation time for all samples to ensure a completed DOC oxidation. The recovery of CO2collected cryogenically on the vacuum extraction line was slightly lower than that of UV-oxidized, probably due to the small calibration errors of CO2pressure volume or lost during pumping of the uncondensed gases. In any cases, this small differences will not affect the measured values of both13C and14C (Table 1).

    The values of bothd13C andD14C measured for the DOC standard solution after UV-oxidation showed good agreement with the values of solid oxalic acid standard (within 2% differences), indicating the system blanks arevery low and the reproducibility of UV-oxidation is good. For the three field DOC samples, the reproducibility and precisions ofd13C andD14C measurements are slightly lower than that of the DOC standard solution but still considered as reasonably well as compared with the results of Beaupre. (2007) using a different UV-oxidation method.

    Table 1 UV-oxidation efficiency and isotope results reproducibility

    Note:aUV-oxidized (%) is calculated based on DOC concentrations measured before and after UV-oxidation;bRecovery (%) is calculated based on the CO2collected at the end of the UV-oxidation.

    Fig.2 (a) DOC concentration changes and (b) DOC oxidation efficiencies during the time series UV-oxidation of DOC standard solutions; (c) DOC concentration changes and (d) DOC oxidation efficiencies during the time series UV-oxidation of riverine, estuarine and coastal waters with different salinity.

    As discussed by Beaupre. (2007), the biggest pro- blems and challenges for measuring marine DOC isotopic ratios are the high proportion of salts in seawater, low DOC concentration and blanks associated with sample processing. Since the application of AMS, the amount of carbon needed for high precision14C analysis has been reduced substantially to 100μg or less. Thus the sample volume needed for DOC oxidation can be reduced to 100-200mL for estuarine and coastal waters and 300mL for deep ocean waters accordingly. Our results suggest that with carefully designed UV-oxidation systems and sample handling, this can be successfully achieved. We have used our UV-Oxidation system to oxidize DOC in natural waters including rain and snow samples for14C studies and have received promise results (Wang., 2015).

    As a summary, our UV-oxidation system showed high efficiency for DOC oxidation in natural waters. The blanks associated with the system are low and the reproducibility is high for DOC isotopic measurement. As a great advantage of our UV-Oxidation system, multiple samples (4 to 12 depending on DOC concentration) can be oxidized at same time so it reduces the sample processing time substantially compared with other UV-oxidation methods. This system and method can be used for radiocarbon studies of DOC in natural waters especially when large amount of samples need to be processed in timely.

    Acknowledgements

    We thank the advices and technical assistants from Dr. Xu Li in the NOSAMS facility at Woods Hole Oceanographic Institution in USA. We also thank the staff at NOSAMS for high precision measurements of14C of the samples. Financial support for this work was provided by Ocean University of China (841312004) and National Natural Science Foundation of China (Grant Nos. 41476057 and 41221004).

    Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A., 2013. The changing carbon cycle of the coastal ocean.,504: 61-70.

    Bauer, J. E., Williams, P. M., and Druffel, E. R. M., 1992.14C activity of dissolved Organic carbon fractions in the N. central Pacific and Sargasso Sea., 357: 667- 670.

    Beaupre, S. R., Druffel, E. R. M., and Griffin, S., 2007. A low- blank phytochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon.:, 5: 174-184.

    Becker, J. W., Berube, P. M., Follett, C. L., Waterbury, J. B., Chrisholm, S. W., DeLong E. F., and Repeta, D. J., 2014. Closely related phytoplankton species produce similar suites of dissolved organic matter., DOI:10.3389/fmicb.2014.00111.

    Druffel, E.R.M., and Bauer, J.E., 2000. Radiocarbondistributions in Southern Oceandissolved and particulate organic matter.,27:1495-1498.

    Druffel, E.R.M., Williams, P.M., Bauer, J.E., and Ertel, J.R., 1992.Cycling ofdissolved and particulate organic matter in the open ocean.,97: 15639-15659.

    Follett, C. L., Repeta, D. J., Rothman, D. H., Xu, L., and Santinelli, C., 2014. Hidden cycle of dissolved organic carbon in the deep ocean.,111: 16706-16711.

    Hansell, A. A., Carlson, C. A., Repeta, D., and Schlitzer, R., 2009. Dissolved organic matter in the ocean: New insights stimulated by a controversy.,22: 202-211.

    Hansell, D. A., and Carlson, C. A., 2001. Biogeochemistry of total organic carbon andnitrogen in the Sargasso Sea: Control by convective overturn.II:,48: 1649-1667, DOI:10.1016/S0967-0645(00)00153-3.

    Hansell, D. A., and Carlson, C. A., 2002.. Academic Press, Beijing, 774pp.

    Hedges, J. I., 1992. Global biogeochemical cycles: Progress and problems.,39: 67-93.

    Jiao, N. Z., and Azam, F., 2011. Microbial carbon pump and its significance for carbon sequestration in the ocean. In:. Jiao, N.,., eds., Science/AAAs, Washington D. C., 43-45, DOI: 10.1126/science. opms.sd 0001.

    Jiao, N. Z., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T. W., Chen, F., and Azam, F., 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean.,8: 593- 599.

    Middelbore, M., and Lundsgaard, C., 2003. Microbial activity in the Greeland Sea: Role of DOC lability, mineral nutrients and temperature., 32: 151-163.

    Nelson, C. E., and Carlson, C. A., 2012. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton., DOI: 101111/j.1462-2920.2012.02738. x.

    Raymond, P. A., and Bauer, J. E., 2001. Use of14C and13C natural abundances forevaluating riverine, estuarine, and coastal DOC and POC sources and cycling: Areview and synthesis.,32: 469-485, DOI:10.1016/S0146-6380(00)00190-X.

    Sharp, J. H., Benner, R., Bennett, L., Carlson, C. A., Dow, R., and Fitzwater, S. E., 1993. Re-evaluation of high-temperature combustion and chemical oxidation measurements of dissolved organic in seawater., 38: 1774-1782.

    Wang, X. C., and Ge, T. T., Xue, Y. J., and Luo, C. L., 2015. Carbon isotopic (14C and13C) characterization of fossil-fuel derived dissolved organic carbon in wet precipitation in Shandong Province, China., DOI: 10.1007/s10874-015-9323-3.

    Wang, X. C., Ma, H. Q., Li, R. H., Song, Z. S., and Wu, J. P., 2012. Seasonal fluxes and source variation of organic carbon transported by two major Chinese rivers: The Yellow River and Changjiang (Yangtze) River.,26, DOI: 10.1029/2011GB004130.

    Williams, P. M., and Druffel, E. R. M., 1987. Radiocarbon in dissolved organic carbon in the central North Pacific Ocean.,330: 246-248.

    Williams, P. M., Robertson, K. J., Soutar, A., Griffin, S. M., and Druffel, E. R. M., 1992. Isotopic signatures (14C,13C,15N) as tracers of sources and cycling of soluble andparticulate organic matter in the Santa Monica Basin, California.,30: 253-290, DOI:10.1016/0079-6611(92)90015-R.

    (Edited by Ji Dechun)

    DOI 10.1007/s11802-015-2935-z

    ISSN 1672-5182, 2015 14 (6): 989-993

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    (January 20, 2015; revised August 4, 2015; accepted September 15, 2015)

    * Corresponding author. Tel: 0086-532-66782831 E-mail:xuchenwang@ouc.edu.cn

    久久ye,这里只有精品| 性色av一级| 精品人妻一区二区三区麻豆| 国产精品一区二区三区四区免费观看| 久久精品久久久久久噜噜老黄| 麻豆国产97在线/欧美| 色播亚洲综合网| 日韩 亚洲 欧美在线| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 日韩av不卡免费在线播放| 精品一区二区免费观看| 亚洲国产最新在线播放| 久久久久久久大尺度免费视频| 亚洲欧美成人精品一区二区| 国产精品成人在线| 色视频在线一区二区三区| 麻豆精品久久久久久蜜桃| 男女无遮挡免费网站观看| 精品酒店卫生间| 国产真实伦视频高清在线观看| 丰满乱子伦码专区| 天堂俺去俺来也www色官网| 久久这里有精品视频免费| 色播亚洲综合网| 韩国av在线不卡| av在线老鸭窝| 三级男女做爰猛烈吃奶摸视频| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 中文字幕制服av| 欧美人与善性xxx| 在线观看av片永久免费下载| 国产精品久久久久久久电影| av国产精品久久久久影院| 91久久精品国产一区二区三区| 精品国产乱码久久久久久小说| 久久精品国产自在天天线| 国产黄色免费在线视频| 国产精品国产三级专区第一集| 久久久亚洲精品成人影院| 国产一区二区在线观看日韩| 深夜a级毛片| 国产一区二区三区av在线| 国产精品福利在线免费观看| 亚洲精品,欧美精品| 日本与韩国留学比较| 日产精品乱码卡一卡2卡三| 国产午夜精品久久久久久一区二区三区| 只有这里有精品99| 最新中文字幕久久久久| av在线播放精品| 成人二区视频| 免费看光身美女| 国产一区二区三区av在线| 一级毛片久久久久久久久女| 成人亚洲精品av一区二区| 国产探花极品一区二区| 精品国产乱码久久久久久小说| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 成人毛片a级毛片在线播放| 在线观看三级黄色| 99久国产av精品国产电影| 尤物成人国产欧美一区二区三区| 成年女人看的毛片在线观看| 一级毛片电影观看| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 少妇人妻 视频| 91久久精品国产一区二区成人| 极品教师在线视频| 日韩,欧美,国产一区二区三区| 成人毛片60女人毛片免费| 国产成人a区在线观看| 亚洲色图综合在线观看| 欧美日韩国产mv在线观看视频 | 国产亚洲午夜精品一区二区久久 | 亚洲人成网站高清观看| 欧美+日韩+精品| 精品人妻偷拍中文字幕| 看非洲黑人一级黄片| 高清av免费在线| 亚洲,一卡二卡三卡| 国产乱来视频区| 日韩欧美一区视频在线观看 | 最近的中文字幕免费完整| 熟妇人妻不卡中文字幕| 尾随美女入室| 在线a可以看的网站| 欧美精品人与动牲交sv欧美| 又大又黄又爽视频免费| 国产av不卡久久| 亚洲精品国产成人久久av| 精品少妇久久久久久888优播| 亚洲高清免费不卡视频| 久久久久性生活片| 人妻一区二区av| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 国产成人a∨麻豆精品| 只有这里有精品99| 日韩在线高清观看一区二区三区| 国产精品国产三级国产专区5o| 欧美精品国产亚洲| 欧美精品国产亚洲| 亚洲美女视频黄频| 久久久久久久精品精品| 久久99精品国语久久久| 伊人久久精品亚洲午夜| 99热6这里只有精品| 国产老妇伦熟女老妇高清| 国产成人免费观看mmmm| 中国国产av一级| 亚洲欧洲国产日韩| 精品人妻偷拍中文字幕| 色综合色国产| 我的老师免费观看完整版| 国产午夜精品一二区理论片| 免费黄色在线免费观看| 国产探花在线观看一区二区| 在线看a的网站| 99久久中文字幕三级久久日本| 亚洲色图综合在线观看| 丝袜脚勾引网站| 国产老妇伦熟女老妇高清| 亚洲精品第二区| 99久久人妻综合| 国产成人午夜福利电影在线观看| 国产在线男女| 成人综合一区亚洲| 黄色一级大片看看| 1000部很黄的大片| 亚洲国产欧美人成| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 青青草视频在线视频观看| 如何舔出高潮| 制服丝袜香蕉在线| 亚洲精品久久午夜乱码| 夜夜爽夜夜爽视频| 精华霜和精华液先用哪个| 国产免费一区二区三区四区乱码| 欧美潮喷喷水| 26uuu在线亚洲综合色| 久久午夜福利片| 国产高清三级在线| 少妇人妻一区二区三区视频| 国产亚洲av嫩草精品影院| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 18禁在线无遮挡免费观看视频| 国产综合懂色| 日本与韩国留学比较| 国产成人a∨麻豆精品| 99热这里只有是精品50| 日日啪夜夜撸| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看| 日韩伦理黄色片| 日本一二三区视频观看| 亚洲无线观看免费| 亚洲精品乱久久久久久| 国产69精品久久久久777片| 成人免费观看视频高清| 中文精品一卡2卡3卡4更新| 免费黄色在线免费观看| 欧美日韩综合久久久久久| 日韩av免费高清视频| 美女高潮的动态| 欧美最新免费一区二区三区| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 插逼视频在线观看| 午夜免费鲁丝| 天堂网av新在线| 亚洲av国产av综合av卡| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看| 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 秋霞伦理黄片| www.色视频.com| 熟女人妻精品中文字幕| 久久女婷五月综合色啪小说 | 久久国内精品自在自线图片| 中文资源天堂在线| 高清日韩中文字幕在线| 久久精品国产亚洲网站| 永久网站在线| 久久6这里有精品| 在线观看一区二区三区激情| eeuss影院久久| 国产在视频线精品| 亚洲在久久综合| 日韩三级伦理在线观看| 女人被狂操c到高潮| 国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 久久这里有精品视频免费| 26uuu在线亚洲综合色| 国产亚洲av嫩草精品影院| 国产伦理片在线播放av一区| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 亚洲欧美日韩东京热| 爱豆传媒免费全集在线观看| 国产视频内射| 亚洲欧美精品自产自拍| av卡一久久| 80岁老熟妇乱子伦牲交| 一本色道久久久久久精品综合| a级毛色黄片| 免费av不卡在线播放| 久久精品综合一区二区三区| 国产大屁股一区二区在线视频| 久久99精品国语久久久| 大香蕉97超碰在线| 国产精品.久久久| 一级片'在线观看视频| 亚洲精品456在线播放app| 亚洲国产高清在线一区二区三| 久久久精品欧美日韩精品| 久久久久久久久久久丰满| 亚洲精品乱码久久久久久按摩| 一二三四中文在线观看免费高清| 免费人成在线观看视频色| 看非洲黑人一级黄片| 精品一区二区三区视频在线| 国产精品一区二区三区四区免费观看| 久久影院123| 中文在线观看免费www的网站| 亚洲真实伦在线观看| 一级毛片我不卡| 色5月婷婷丁香| 一本色道久久久久久精品综合| 欧美3d第一页| 1000部很黄的大片| 国产精品人妻久久久影院| 哪个播放器可以免费观看大片| 尤物成人国产欧美一区二区三区| 男女那种视频在线观看| 精品国产露脸久久av麻豆| 亚洲精品乱久久久久久| 亚洲四区av| 97超碰精品成人国产| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 亚洲国产精品成人综合色| 国产一级毛片在线| 日本熟妇午夜| 精品久久久久久电影网| 一级毛片我不卡| 亚洲在线观看片| 熟女电影av网| 国产亚洲91精品色在线| 水蜜桃什么品种好| 真实男女啪啪啪动态图| 黄色配什么色好看| 国产黄频视频在线观看| 国产成人福利小说| 国产精品国产三级国产专区5o| 色5月婷婷丁香| 亚洲精品,欧美精品| 欧美激情在线99| 极品少妇高潮喷水抽搐| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区 | 97超视频在线观看视频| 久久久久九九精品影院| 亚洲在线观看片| 在线天堂最新版资源| 欧美bdsm另类| 视频中文字幕在线观看| 欧美丝袜亚洲另类| 欧美 日韩 精品 国产| 尾随美女入室| 久久热精品热| 国产av不卡久久| 高清欧美精品videossex| 男人添女人高潮全过程视频| 国内精品美女久久久久久| 各种免费的搞黄视频| 日韩欧美精品免费久久| 午夜精品国产一区二区电影 | 欧美bdsm另类| 欧美激情在线99| 又爽又黄a免费视频| 精品国产露脸久久av麻豆| 在线观看三级黄色| 久久精品夜色国产| 亚洲av欧美aⅴ国产| 成人无遮挡网站| 搞女人的毛片| 欧美一区二区亚洲| 国产成人午夜福利电影在线观看| 男女边吃奶边做爰视频| 一级毛片aaaaaa免费看小| 99久久精品热视频| 熟妇人妻不卡中文字幕| 亚洲欧美精品专区久久| 99热6这里只有精品| 亚洲av日韩在线播放| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 国产综合精华液| 欧美变态另类bdsm刘玥| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久九九精品二区国产| 亚洲欧美清纯卡通| 波野结衣二区三区在线| 六月丁香七月| 色综合色国产| 卡戴珊不雅视频在线播放| 在线精品无人区一区二区三 | a级毛色黄片| 国产永久视频网站| 精品人妻熟女av久视频| 91久久精品电影网| 国产亚洲av嫩草精品影院| 免费av不卡在线播放| 久久97久久精品| 高清视频免费观看一区二区| 久久ye,这里只有精品| 成人欧美大片| 七月丁香在线播放| 日韩 亚洲 欧美在线| 看免费成人av毛片| 看免费成人av毛片| 亚洲一区二区三区欧美精品 | 久热这里只有精品99| 亚洲精品成人久久久久久| 国产精品99久久99久久久不卡 | 成年av动漫网址| 国产午夜福利久久久久久| 免费大片18禁| 一级爰片在线观看| av播播在线观看一区| 99久久精品国产国产毛片| 免费av观看视频| 国产精品av视频在线免费观看| 国产亚洲精品久久久com| 夜夜爽夜夜爽视频| 麻豆久久精品国产亚洲av| 高清av免费在线| 国产淫片久久久久久久久| 亚洲在久久综合| 国内揄拍国产精品人妻在线| 亚洲高清免费不卡视频| 日日啪夜夜爽| 国产乱人视频| 偷拍熟女少妇极品色| 高清在线视频一区二区三区| 国产爱豆传媒在线观看| 午夜亚洲福利在线播放| 国产乱人偷精品视频| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 中文字幕制服av| 五月伊人婷婷丁香| 99热这里只有精品一区| 少妇人妻 视频| 亚洲不卡免费看| 国内揄拍国产精品人妻在线| 精品亚洲乱码少妇综合久久| 日日撸夜夜添| 丝袜喷水一区| 精品午夜福利在线看| 国产高清三级在线| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 久久久国产一区二区| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| 老师上课跳d突然被开到最大视频| 免费av毛片视频| 丝瓜视频免费看黄片| 亚洲欧美成人综合另类久久久| 中文字幕免费在线视频6| 精华霜和精华液先用哪个| 欧美 日韩 精品 国产| 日本午夜av视频| 国产精品久久久久久久久免| 少妇丰满av| 蜜桃久久精品国产亚洲av| 国产精品国产三级国产专区5o| 国产毛片a区久久久久| 国产黄片视频在线免费观看| 亚洲色图av天堂| 一二三四中文在线观看免费高清| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡免费网站照片| 在线天堂最新版资源| 春色校园在线视频观看| 1000部很黄的大片| 99热6这里只有精品| 久久99精品国语久久久| 欧美 日韩 精品 国产| 99热国产这里只有精品6| 蜜桃久久精品国产亚洲av| 日韩制服骚丝袜av| tube8黄色片| 亚洲精品色激情综合| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久 | 免费观看性生交大片5| 亚洲欧美日韩东京热| 一个人观看的视频www高清免费观看| 亚洲av二区三区四区| 18禁在线无遮挡免费观看视频| 99精国产麻豆久久婷婷| 国产老妇伦熟女老妇高清| 午夜福利高清视频| 久久人人爽人人片av| 黄片无遮挡物在线观看| 丝瓜视频免费看黄片| av免费观看日本| 中文字幕免费在线视频6| 少妇人妻久久综合中文| 一级爰片在线观看| 亚洲精品国产色婷婷电影| 成年女人在线观看亚洲视频 | 免费看日本二区| 欧美 日韩 精品 国产| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区成人| av在线亚洲专区| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 亚洲精品日韩在线中文字幕| 午夜福利视频1000在线观看| 国产精品一区二区在线观看99| 嫩草影院精品99| 夜夜爽夜夜爽视频| 少妇丰满av| 少妇 在线观看| 欧美日韩综合久久久久久| 亚洲av一区综合| 99久久精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 性色av一级| 男人舔奶头视频| 好男人在线观看高清免费视频| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 看黄色毛片网站| 精品午夜福利在线看| av黄色大香蕉| 最新中文字幕久久久久| 日本黄色片子视频| 日韩人妻高清精品专区| 国产在视频线精品| 看十八女毛片水多多多| 日韩成人av中文字幕在线观看| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 色视频在线一区二区三区| 亚洲精品成人av观看孕妇| av福利片在线观看| 国产黄a三级三级三级人| 日本与韩国留学比较| 午夜激情久久久久久久| 嘟嘟电影网在线观看| 永久网站在线| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 亚洲高清免费不卡视频| 三级男女做爰猛烈吃奶摸视频| 欧美成人一区二区免费高清观看| 波野结衣二区三区在线| 王馨瑶露胸无遮挡在线观看| 网址你懂的国产日韩在线| 国产av国产精品国产| 亚洲最大成人中文| 亚洲精品久久午夜乱码| av在线亚洲专区| 青春草亚洲视频在线观看| 成人欧美大片| 久久久国产一区二区| 日本一本二区三区精品| 国产一区二区在线观看日韩| 亚洲成人久久爱视频| 人人妻人人澡人人爽人人夜夜| 久久久久久国产a免费观看| 亚洲国产成人一精品久久久| 人妻夜夜爽99麻豆av| 免费观看无遮挡的男女| 国产欧美日韩精品一区二区| 一级a做视频免费观看| 99久久精品一区二区三区| 亚洲欧洲日产国产| 欧美97在线视频| 我的女老师完整版在线观看| 免费在线观看成人毛片| 特级一级黄色大片| 亚洲欧美成人综合另类久久久| 亚洲va在线va天堂va国产| 男人添女人高潮全过程视频| 日韩av在线免费看完整版不卡| 在线观看国产h片| 国产精品蜜桃在线观看| h日本视频在线播放| 各种免费的搞黄视频| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 免费播放大片免费观看视频在线观看| 欧美日韩国产mv在线观看视频 | 免费观看性生交大片5| 国产在线一区二区三区精| 亚洲电影在线观看av| 2018国产大陆天天弄谢| a级毛色黄片| 女人久久www免费人成看片| www.色视频.com| 亚洲国产精品成人久久小说| 熟女av电影| 99久久精品热视频| 五月天丁香电影| 人人妻人人看人人澡| 免费观看a级毛片全部| 精品久久久久久久末码| 国产淫语在线视频| 亚洲精品,欧美精品| 六月丁香七月| 国产欧美日韩精品一区二区| 中文欧美无线码| 一级毛片我不卡| 国产伦精品一区二区三区四那| 中文欧美无线码| 性色avwww在线观看| 国产在线男女| av在线观看视频网站免费| 天天躁日日操中文字幕| 亚洲欧美一区二区三区国产| 可以在线观看毛片的网站| 男的添女的下面高潮视频| 搡女人真爽免费视频火全软件| 99热这里只有精品一区| 亚洲av成人精品一二三区| 欧美bdsm另类| 91精品伊人久久大香线蕉| 久久久色成人| 国产又色又爽无遮挡免| 亚洲国产精品国产精品| 日本-黄色视频高清免费观看| 97人妻精品一区二区三区麻豆| 18禁裸乳无遮挡免费网站照片| 伊人久久国产一区二区| h日本视频在线播放| 久久久久久伊人网av| 婷婷色综合www| 麻豆成人av视频| 日韩伦理黄色片| 亚洲国产精品成人久久小说| 人人妻人人看人人澡| 精品一区二区免费观看| 久久国内精品自在自线图片| 尾随美女入室| 日本色播在线视频| 王馨瑶露胸无遮挡在线观看| 小蜜桃在线观看免费完整版高清| 深夜a级毛片| 久久久久网色| 国产精品人妻久久久久久| 九九久久精品国产亚洲av麻豆| 毛片女人毛片| 精品久久久久久久人妻蜜臀av| 亚洲国产av新网站| 老司机影院成人| 亚洲色图av天堂| 午夜激情久久久久久久| 午夜精品国产一区二区电影 | 欧美老熟妇乱子伦牲交| 我的女老师完整版在线观看| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 国产亚洲91精品色在线| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在| 一边亲一边摸免费视频| 青春草国产在线视频| 亚洲色图av天堂| 欧美性猛交╳xxx乱大交人| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 亚洲高清免费不卡视频| 人人妻人人爽人人添夜夜欢视频 | 人妻制服诱惑在线中文字幕| 草草在线视频免费看| 久久久久精品性色| 免费大片黄手机在线观看| 噜噜噜噜噜久久久久久91| 成年av动漫网址| 国产精品无大码| 亚洲四区av| 三级男女做爰猛烈吃奶摸视频| 国产一区二区亚洲精品在线观看| 国产综合懂色| 亚洲成人精品中文字幕电影| 性插视频无遮挡在线免费观看| 久久久a久久爽久久v久久| 91aial.com中文字幕在线观看| 丝袜脚勾引网站| 人妻一区二区av| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 国产 一区精品| 亚洲欧美清纯卡通|