• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping Toll-Like Receptor Signaling Pathway Genes of Zhikong Scallop (Chlamys farreri) with FISH

    2015-04-01 02:11:53ZHAOBosongZHAOLiangLIAOHuanCHENGJieLIANShanshanLIXuanHUANGXiaotingandBAOZhenmin
    Journal of Ocean University of China 2015年6期

    ZHAO Bosong, ZHAO Liang, LIAO Huan, CHENG Jie, LIAN Shanshan, LI Xuan,HUANG Xiaoting, and BAO Zhenmin

    ?

    Mapping Toll-Like Receptor Signaling Pathway Genes of Zhikong Scallop () with FISH

    ZHAO Bosong, ZHAO Liang, LIAO Huan, CHENG Jie, LIAN Shanshan, LI Xuan,HUANG Xiaoting*, and BAO Zhenmin

    ,,,266003,

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop () have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes (TLR,Myd88,TRAF6,NFκB, andIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescencehybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes ofwill aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

    immunogenetics;; TLR signaling pathway; FISH

    1 Introduction

    The innate immune system is the first-line defense for all living organisms, and it is almost the only path for invertebrates to cope with the invasion of microorganisms present in the environment (Wang., 2011). Innate immune responses are initiated by germline-encoded pattern-recognition receptors that recognize conserved motifs of pathogens termedpathogen-associated molecules (Meijer., 2004), such as lipopolysaccharides, β-1,3- glucans and peptidoglycans (Janeway, 1989; Ashida., 1998; Hoffmann., 1999). Toll-like receptors (TLRs) are among the most extensively studied pattern-recogni- tion receptors. TLRs act as signal transducers using adaptor proteins (MyD88, TIRAP, TRIF, and TRAM), making the common TLR signaling pathway function. TLR signaling pathway culminates in the activation of a variety of inducible transcriptional factors such as nuclear factor kappa B (NFκB) and interferon-regulatory factor, raising various downstream immunological responses to the invasion of pathogens (Kawai and Akira, 2010).

    Toll protein was first reported in(Belvin and Anderson, 1996), and it has now been identified in a wide range of species (Coscia., 2011). Furthermore, the TLR gene family and their associating pathways are evolutionarily conservative from fly to humans (Roach., 2005; Hoffmann and Reichhart, 2002). Recent genomic analysis has detected a rich collection of TLR signaling pathway genes in non-mammalian organisms including marine invertebrates such as(Sasaki., 2009),(Hibino., 2006),(Inamori., 2004) and(Zhang., 2011). The structures, expressions and possible signaling of these genes are well documented. Evidence shows that TLR signaling pathway genes are involved in the innate immune system of marine invertebrates (Coscia., 2011).

    Zhikong scallop,Joneset Preston, 1904, is one of the most important maricultured shellfish in northern China. Over the last decade, the population ofis lightened sharply due to various infections. A better understanding of the innate immune system ofwould facilitate the control of infectious diseases. To date, most of the TLR signaling pathway genes have been found in, which includedTLR (Qiu.,2007a),Myd88 (Qiu., 2007b),TRAF6 (Qiu., 2009),NFκB, andIκB (Wang., 2011) with their sequence features characterized clearly. The transcripts of these genes are up-regulated after lipopolysaccharide stimulation and down-regulated once being RNA interferenced (Wang., 2011). A TLR signaling pathway exists in scallop, which may involve in immune signaling and activating downstream response and eliminating invading pathogens (Wang., 2011).

    In recent years, research on TLR signaling pathway genes of scallop has mainly focused on gene expression (Wang., 2011; Qiu., 2007a, b; Qiu., 2009). Physically mapping these genes is still unmentioned, although such mapping can help determine whether there are gene clusters in TLR signaling pathway, and how these genes arearranged on chromosomes. In species with complete genome sequence information, it is relatively easy to identify the physical location of genes through comparing sequences against a reference genome (Lorenzi., 2010). To scallop, however, the whole genome sequence is not available. Thus it is necessary to map genes with other methods such as fluorescencehybridization (FISH). Recently, three bacterial artificial chromosome (BAC) libraries ofhave been constructed based on different restriction enzymes (Zhao., 2013), providing researchers a convenience of physically mapping related genes on the chromosomes of.

    In the present study, BAC clones containing five TLR signaling pathway genes (TLR,Myd88,TRAF6,NFκB andIκB) were screened from BAC libraries of. The five genes were mapped tochromosomes through FISH. It provided the first physical mapping of TLR signaling pathway genes in mollusk, aiding to better understanding this pathway and chromosomal assignment of gene sequences.

    2 Materials and Methods

    2.1 BAC Library Screening

    PrimersforTLR,Myd88,TRAF6 andIκB were designed from their homologous cDNAs (Table 1) while those ofNFκB were the published by Wang. (2011). Positive BAC clones were screened by four-di- mensional, two-step PCR from theIII-BAC (BH) andI-BAC (BB) libraries of(Zhao., 2013). The PCR products of gene fragments were reconfirmed by sequencing (Zhao., 2012).

    Table 1 The primer sequences used for FISHing toll-like receptor signaling pathway genes

    2.2 Preparation of Probe and C0t-1 DNA

    BAC DNA was isolated from 20mL of overnight culture using a standard laboratory method (Sambrook., 1989). Approximately 1μg of BAC DNA was labeled with nick translation kit (Roche, Basel, Switzerland) with digoxygenin-11-dUTP or biotin-16-dUTP according to the manufacturer’s instructions. Labeled probes were stored at ?20℃.0-1 DNA and enriched repetitive DNA sequences were prepared according to the procedure described early (Hu., 2011).

    2.3 Chromosome Preparation

    Chromosomes were prepared from trochophore larvae ofwith the method described by Zhang. (2008). Trochophore larvae were treated with 0.01% colchicine for 2h and then exposed to 0.075molL?1of KCl for 30min. Thereafter, the larvae were fixed three times, 15 min each, in Carnoy’s solution (methanol: glacial acetic acid, 3:1). The larvae were dissociated in 50% acetic acid, then dropped onto hot-wet slides and air dried.

    2.4 FISH Analysis

    Chromosome slides were pretreated with 1.6% pepsin at 37℃ for 30min and washed in 2x saline sodium citrate (SSC) for 5min. Specimens were denatured in a mixture containing 70% formamide and 2x SSC at 75℃ for 2min, followed by immediate dehydration in an ice-cold ethanol gradient (70%, 90%, and 100%; 5min each) and air-drying. One microgram of labeled probe was mixed in a hybridization buffer of 50% deionized formamide and 2x SSC, plus 50ngμL?1 C0-1 DNA. For hybridization, the probe mixture was denatured at 75℃ for 5min and preannealed at 37℃ for 30min. Thereafter, each slide was covered with 20μL of probe mixture and incubated for 16h at 37℃ in a humid box.

    For double-color FISH, probes labeled with digoxigenin and biotin were mixed and incubated at 37℃. A series of washes was followed: 50% formamide and 2x SSC, 42℃, 5min; 1x SSC, 42℃, 5min; and 2x SSC at room temperature, 5min. The probes were detected using anti-digoxigenin-rhodamine or/and fluorescein avidin D Cell Sorter Grade. Chromosomes were counterstained with 4’,6-diamidino-2-phenylindole or propidium iodide. Slides were viewed under an Eclipse-600 epi?uorescence microscope equipped with a CCD camera. Pictures were merged and edited using LUCIA Cytogenetics and Photoshop CS3.

    For karyotype analysis, chromosomes were paired according to their morphology from 20 good metaphases. Short and long arms were measured to calculate the relative length and centrometric index in accordance with Levan. (1964).

    3 Results

    3.1 BAC Library Screening

    BAC libraries were screened by four-dimensional, two-step PCR ofTLR,Myd88,TRAF6,NFκB andIκB. BAC clones yielded clear single DNA fragments and expected sizes were selected for further use. After PCR screening, all the five genes were found to be represented by at least one BAC clones each (Table 2).

    Table 2 Positive bacterial artificial chromosome (BAC) clones containing Toll-like receptor signaling pathway genes identified from scallop BAC libraries through PCR screening

    Note:*BAC clones selected for FISH.

    3.2 FISH Mapping

    For each gene, one representative clone was selected randomly for FISH (Table 2). FISH signals for individual positive BAC clones were analyzed in 20 metaphase chromosome spreads. All the five BAC clones were mapped to the corresponding chromosomes of. TheTLR-containing clone BB87B9 was hybridized to the telomeric region of the short arm on a pair of subtelocentric chromosomes (Fig.1a), and theNFκB-contain- ing clone BH802F5 was mapped to a similar position on a pair of submetacentric chromosomes (Fig.1b). Probes derived from clones BB26G9 containingMyd88 (Fig.1c) and BH409H8 containingTRAF6 (Fig.1d) showed signals in the centromeric region of the long arm on a pair of submetacentric or subtelocentric chromosomes, respectively. TheIκB-containing clone BB275F7 (Fig.1e) was mapped to the central section of the long arm in a pair of submetacentric chromosomes.

    In order to test whether all the screened BAC clones were located on the same pair of chromosomes, the representative clone was co-hybridized with each of the other clones through double-color FISH. For example (Fig.2), we co-hybridized BB26G9 with each of the other fiveMyd88-containing clones,, BH89A3, BH254D8, BH794G3, BH925B2, and BB253F6. Co-localization of BB26G9 with each of the five clones was confirmed using probes capable of generating merged signals in each case. We concluded that all the sixMyd88-containing clones were located at the same site in the genome. Similar conclusions were drawn from the study on the remaining four genes.

    After karyotyping, the means and standard deviations of the relative length and centromeric index were calculated for chromosome pairs with signals (Table 3). TheIκB-containing chromosomes has a smaller relative length while the remaining four chromosomes with signals were considerably larger than the largest metacentric chromosome. The results indicated that clone BB275F7 containingIκB was localized to a different pair of chromosomes from the other clones, BB87B9, BB26G9, BH409H8, and BH802F5.

    Co-hybridization was necessary to estimate whether the latter four BAC clones were located on different pairs of chromosomes separately. However, signals of probes derived from each clone were weakened when all these 4 clones were co-hybridized in one experiment. Thus, two BAC clones were assigned to similar chromosomes to confirm their chromosomal assignments by double-color FISH. Clone BB87B9 containingTLRwas labeled with biotin and BH409H8containingTRAF6 with digoxigenin. Results showed that the two probes were localized to two different subtelocentric chromosome pairs (Fig.3a).

    Then, the other two BAC clones BB26G9 (digoxigenin) and BH802F5 (biotin) were co-hybridized, and signals were observed on two non-homologous submetacentric chromosome pairs (Fig.3b). The locations of the four BACs obtained from double-color FISH were consistent with the results of one-color FISH. All these available data indicated that the five BAC clones, which containedTLR,Myd88,TRAF6,NFκB andIκB, respectively, were located in five non-homologous chromosome pairs of.

    Fig.1 FISH mapping of bacterial artificial chromosome clones containing CfTLR(a),CfNFκB(b), CfIκB (c), CfMyd88(d), and CfTRAF6 (e) from Chlamys farreri. Inset at top right for each probe corresponds to one chromosomal location showing the labeled chromosome adjacent to the largest metacentric chromosome. Scale bars=5μm.

    Fig.2 Double-color FISH showing 6 CfMyd88-containing bacterial artificial chromosome clones co-localized on the Chlamys farreri genome. Red, green, and blue channels were recorded separately and then merged. Red signals indicate localization of clone BB26G9 first mapped using single-color FISH, and green signals indicate clones BH89A3, BH254D8, BH794G3, BH925B2, and BB253F6. Signals are indicated by arrows in merged images.

    Table 3 Measurements (X±S.D) and classification of Toll-like receptor pathway genes containing chromosomes and the largest metacentric chromosome from metaphases of Chlamys farreri

    Fig.3 Co-hybridization of Toll-like receptor pathway genes. (a) Bacterial artificial chromosome clones containing CfTLR and CfTRAF6; and (b) clones containing CfNFκB and CfMyd88. Scale bars=5μm.

    4 Discussion

    An understanding of immune components that underpine host resistance to pathogens is a key step towards elucidating immune mechanisms in scallop. A large number of immune components are known in scallop (Su., 2004; Gao., 2007; Wang., 2007; Yu., 2007; Zhang., 2007). Most of these components have been characterized and analyzed regarding gene function, but few have been physically mapped to chromosomes. In the present study, we used FISH to map five immune genes functioning inTLR signaling pathway in order to study their chromosomal locations. The results showed that each gene occupied a single position on a chromosome pair.

    Early studies have shown that genes with similar expression patterns tend to cluster more frequently than those with different expression patterns (Liu and Han, 2009; Chen., 2010). Inand human, there is about 43% and 65% of analyzed pathways showing significant physical clustering of genes across the genome, respectively (Lee and Sonnhammer, 2003). Immune genes inare highly concentrated on chromosome 2, clustered in regions of high recombination rates (Wegner, 2008), which may be a fast and effective way to control expression of genes. As to scallop, the lack of whole genome data limits the research of immune genes. Recently, 2 lipopolysaccharide and beta-1,3-glucan binding protein genes and 3 membrane transport genes have been shown clustered in 2 scallop BAC clones (Zhao., 2012), there may exist groups of functionally related genes that are linked, which could cluster in scallop.

    For comparison analysis, the distributions of TLR signaling pathway genes in five model species (Table 4) were obtained from the NCBI database (NCBI Map Viewer, http://www.ncbi.nlm.nih.gov/mapview/). In, all the five TLR signaling pathway genes locate on five non-homologous chromosome pairs. However, there are different distribution patterns in the remaining four species. In, there are two TLR components (Tol-1 and IκB-1) co-locate on chromosome 1, 9.2Mb apart. In, cactus and dorsal, which are homologous with IκB and NFκB, respectively, are co-located on the long arm of chromosome 2, 1.1Mb apart, while MyD88 is located on the other arm of chromosome 2. In, NFκB3 spaces out TRAF6 49.5 Mb apart on chromosome 7. In, TRAF6 is located on the short arm of chromosome 11, while NFκB3 is located on the long arm of the same chromosome. In summary, the candidate immune genes TLR, MyD88, TRAF6, IκB and NFκB are distantly linked in the latter four species.

    As to, the five immune genes studied located in five non-homologous chromosome pairs, indicating that the TLR pathway may not show significant clustering as in. These TLR signaling pathway genes were significantly more distant than other functionally related genes, such as lipopolysaccharide and beta-1,3- glucan binding protein genes and membrane transport genes. However, the non-clustering of these genes possibly has little effect on the immune response. In, there is no significant difference in gene expression between clustered and non-clustered immune genes (Wegner, 2008). Here, the co-expression of TLR signaling pathway genes inmay not act in a distance-dependent way.

    Table 4 Chromosomal localization of Toll-like receptor signal pathway genes in five model organisms

    Note: * Gene ID in NCBI GENE database.

    FISH is a powerful tool significantly contributing to aquaculture genome research. FISH mapping of multicopy genes and repetitive elements has been frequently reported in scallop. Huang. (2007) mapped ribosomal DNA and (TTAGGG)n telomeric sequence to chromosomes inZhang. (2007) detected histone H3 gene sites by FISH in four scallops,,,, and. All these results have led to research advance on bivalve evolution and facilitated chromosome identification. However, there is a limited range of probes derived from multi-copy genes and repetitive elements. Mapping of large-insert clones will extend the application of FISH. Nine P1 clones were mapped in the eastern oyster,, identifying seven chromosomes (Wang., 2005). In, Zhang. (2008) identified eight of nineteen chromosomes by co-hybridizing eight fosmid clones. In the present study, we anchored five BAC clones with immune genes to five non-homologous chromosome pairs. These results will provide useful probes for chromosome identification of.

    Acknowledgements

    We thank Xunshan Aquatic Product Group Co., Ltd. (Rongcheng, China) for scallop samples. This research was financially supported by the National Natural Science Foundation of China (31270047), the National High Tech R&D Program (2012AA10A410), the National Basic Research Program of China (2010CB126402), and the National Key Technology R&D Program of China (2011BAD45B01 and 2011BAD13B05).

    Ashida, M., and Brey, P. T., 1998. Recent advances on the research of the insect prophenoloxidase cascade. In:Chapman and Hall, London, 135-172.

    Belvin, M. P., and Anderson, K. V., 1996. A conserved signaling pathway: The Drosophila toll-dorsal pathway., 12: 393-416.

    Chen, W., Meaux, J., and Lercher, M. J., 2010. Co-expression of neighbouring genes in Arabidopsis: Separating chromatin effects from direct interactions., 11: 178.

    Coscia, M. R., Giacomelli, S., and Oreste, U., 2011. Toll-like receptors: An overview from invertebrates to vertebrates., 8: 210-226.

    Gao, Q., Song, L., Ni, D., Wu, L., Zhang, H., and Chang, Y., 2007. cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallop., 147: 704-715.

    Hibino, T., Loza-Coll, M., Messier, C., Majeske, A. J., Cohen, A. H., Terwilliger, D. P., Buckley, K. M., Brockton, V., Nair, S. V., Berney, K., Fugmann, S. D., Anderson, M. K., Pancer, Z., Cameron, R. A., Smith, L. C., and Rast, J. P., 2006. The immune gene repertoire encoded in the purple sea urchin genome., 300: 349-365.

    Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A., 1999. Phylogenetic perspectives in innate immunity., 284: 1313-1318.

    Hoffmann, J. A., and Reichhart, J. M., 2002. Drosophila innate immunity: An evolutionary perspective., 3: 121-126.

    Huang, X., Hu, X., Hu, J., Zhang, L., Wang, S., Lu, W., and Bao, Z., 2007. Mapping of ribosomal DNA and (TTAGGG)n telomeric sequence by FISH in., 73: 393-398.

    Hu, L., Shang, W., Sun, Y., Wang, S., Ren, X., Huang, X., and Bao, Z., 2011. Comparative cytogenetics analysis of,, andwith0-1DNA by fluorescencehybridization., 2011: 785831.

    Inamori, K., Ariki, S., and Kawabata, S., 2004. A Toll-like receptor in horseshoe crabs., 198: 106- 115.

    Janeway, J. C., 1989. Approaching the asymptote? Evolution and revolution in immunology.. 54: 1-13.

    Kawai, T., and Akira, S., 2010. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors., 11: 373-384.

    Lee, J. M., and Sonnhammer, E. L., 2003. Genomic gene clustering analysis of pathways in eukaryotes., 13: 875-882.

    Levan, A., Fredga, K., and Sandberg, A. A., 1964. Nomenclature for centrometric position on chromosomes., 52: 201-220.

    Liu, X., and Han, B., 2009. Evolutionary conservation of neighboring gene pairs in plants., 437: 71-79.

    Lorenzi, L., Molteni, L., and Parma, P., 2010. FISH mapping in cattle (L.) is not yet out of fashion., 51: 497-499.

    Meijer, A. H., Gabby Krens, S. F., Medina Rodriguez, I. A., He, S., Bitter, W., Ewa Snaar-Jagalska, B., and Spaink, H. P., 2004. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish., 40: 773-783.

    Qiu, L., Song, L., Xu, W., Ni, D., and Yu, Y., 2007a. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong scallop,., 22: 451-466.

    Qiu, L., Song, L., Yu, Y., Xu, W., Ni, D., and Zhang, Q., 2007b. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop., 23: 614-623.

    Qiu, L., Song, L., Yu, Y., Zhao, J., Wang, L., and Zhang, Q., 2009. Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong scallop., 26: 359-367.

    Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood, L. E., and Aderem, A., 2005. The evolution of vertebrate Toll-like receptors., 102: 9577-9582.

    Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989.. 2nd edition. Cold Spring Harbor Laboratory, New York, 1659pp.

    Sasaki, N., Ogasawara, M., Sekiguchi, T., Kusumoto, S., and Satake, H., 2009. Toll-like receptors of the ascidian,: Prototypes with hybrid functionalities of vertebrate Toll-like receptors., 284: 27336-27343.

    Su, J., Song, L., Xu, W., Wu, L., Li, H., and Xiang, J., 2004. cDNA cloning and mRNA expression of the lipopolysaccharide- and beta-1,3-glucan-binding protein gene from scallop., 239: 69-80.

    Wang, H., Song, L., Li, C., Zhao, J., Zhang, H., Ni, D., and Xu, W., 2007, Cloning and characterization of a novel C-type lectin from Zhikong scallop., 44: 722-731.

    Wang, M., Yang, J., Zhou, Z., Qiu, L., Wang, L., Zhang, H., Gao, Y., Wang, X., Zhang, L., Zhao, J., and Song, L., 2011. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop., 35: 511-520.

    Wang, Y., Xu, Z., Pierce, J. C., and Guo, X., 2005. Characterization of Eastern oyster (Gmelin) chromosomes by fluorescence in situ hybridization with bacterio- phage P1 clones., 7: 207-214.

    Wegner, K. M., 2008. Clustering ofimmune genes in interplay with recombination rate., 3: e2835.

    Yu, Y., Qiu, L., Song, L., Zhao, J., Ni, D., Zhang, Y., and Xu, W., 2007. Molecular cloning and characterization of a putative lipopolysaccharide-induced TNF-a factor (LITAF) gene homo- logue from Zhikong scallop., 23: 419-429.

    Zhang, H., Song, L., Li, C., Zhao, J., Wang, H., Gao, Q., and Xu, W., 2007. Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop., 44: 3492-3500.

    Zhang, L., Bao, Z., Wang, S., Huang, X., and Hu, J., 2007. Chromosome rearrangements in Pectinidae (Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops., 130: 193-198.

    Zhang, L., Bao, Z., Wang, S., Hu, X., and Hu, J., 2008. FISH mapping and identification of Zhikong scallop () chromosomes., 10: 151-157.

    Zhang, L., Li, L., and Zhang, G., 2011. AToll-like receptor and comparative analysis of TLR pathway in invertebrates., 30: 653-660.

    Zhao, B., Cheng, J., Chen, L., Yu, N., Huang, X., and Bao, Z., 2013. Construction of three bacterial artificial chromosome (BAC) libraries for Zhikong scallop ()., 43: 57-63.

    Zhao, C., Zhang, T., Zhang, X., Hu, S., and Xiang, J., 2012. Sequencing and analysis of four BAC clones containing innate immune genes from the Zhikong scallop ()., 502: 9-15.

    (Edited by Qiu Yantao)

    DOI 10.1007/s11802-015-2643-8

    ISSN 1672-5182, 2015 14 (6): 1075-1081

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    (April 4, 2014; revised August 21, 2014; accepted June 20, 2015)

    * Corresponding author. Tel: 0086-532-82031802 E-mail: xthuang@ouc.edu.cn

    av有码第一页| 亚洲av第一区精品v没综合| 精品国产超薄肉色丝袜足j| 少妇 在线观看| 老司机亚洲免费影院| 一级毛片精品| 两人在一起打扑克的视频| 欧美黑人欧美精品刺激| 欧美日韩乱码在线| 国产成人一区二区三区免费视频网站| 色尼玛亚洲综合影院| 亚洲 欧美一区二区三区| av免费在线观看网站| 老汉色∧v一级毛片| 国产一区在线观看成人免费| 99国产综合亚洲精品| 亚洲色图 男人天堂 中文字幕| 精品久久蜜臀av无| 精品久久久精品久久久| 麻豆久久精品国产亚洲av | 色综合站精品国产| 午夜福利在线观看吧| 免费久久久久久久精品成人欧美视频| 亚洲欧美一区二区三区久久| 大型黄色视频在线免费观看| 黄片小视频在线播放| 一夜夜www| 69精品国产乱码久久久| 精品第一国产精品| 久久婷婷成人综合色麻豆| 在线观看免费视频网站a站| or卡值多少钱| 免费在线观看成人毛片| 精品久久久久久久人妻蜜臀av| 亚洲专区国产一区二区| av欧美777| 欧美成人性av电影在线观看| 99热这里只有是精品在线观看 | 久久久久久久久大av| 日本免费a在线| 色精品久久人妻99蜜桃| av黄色大香蕉| 在线a可以看的网站| 国产精品一区二区性色av| 午夜福利欧美成人| 日韩av在线大香蕉| 男插女下体视频免费在线播放| 国产成人影院久久av| 亚洲性夜色夜夜综合| 91av网一区二区| ponron亚洲| 久久性视频一级片| 精品午夜福利在线看| 精品久久久久久久久亚洲 | 18+在线观看网站| 中文字幕av在线有码专区| 成人精品一区二区免费| netflix在线观看网站| 欧美精品啪啪一区二区三区| 亚洲av.av天堂| 舔av片在线| 亚洲aⅴ乱码一区二区在线播放| 欧美乱色亚洲激情| 男人和女人高潮做爰伦理| 深爱激情五月婷婷| 99国产综合亚洲精品| 亚洲七黄色美女视频| 国产伦人伦偷精品视频| 国产欧美日韩一区二区精品| 精品久久久久久久久久免费视频| 在线a可以看的网站| 亚洲国产精品sss在线观看| 偷拍熟女少妇极品色| 可以在线观看的亚洲视频| 真实男女啪啪啪动态图| 在线a可以看的网站| 国产精品一及| 免费观看的影片在线观看| 国产成人啪精品午夜网站| 亚洲成av人片在线播放无| 老熟妇乱子伦视频在线观看| 少妇的逼水好多| 国产一区二区三区在线臀色熟女| 亚洲精品成人久久久久久| av天堂在线播放| 国产亚洲欧美98| 国产亚洲精品久久久com| 69av精品久久久久久| 欧美一区二区亚洲| 精品人妻一区二区三区麻豆 | 亚洲av一区综合| 九九热线精品视视频播放| 国产精品一区二区三区四区久久| 久久中文看片网| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久国产a免费观看| 观看美女的网站| 日韩欧美精品免费久久 | 亚洲乱码一区二区免费版| 91久久精品电影网| 大型黄色视频在线免费观看| 日韩成人在线观看一区二区三区| 丁香欧美五月| 亚州av有码| 最近视频中文字幕2019在线8| 露出奶头的视频| 亚洲内射少妇av| 18禁裸乳无遮挡免费网站照片| 少妇裸体淫交视频免费看高清| 天天躁日日操中文字幕| 男女视频在线观看网站免费| 中文字幕熟女人妻在线| 国产三级黄色录像| 90打野战视频偷拍视频| 听说在线观看完整版免费高清| 免费搜索国产男女视频| 日韩人妻高清精品专区| 色5月婷婷丁香| av福利片在线观看| 又粗又爽又猛毛片免费看| 每晚都被弄得嗷嗷叫到高潮| 国产精品98久久久久久宅男小说| 欧美成狂野欧美在线观看| 国产精品美女特级片免费视频播放器| 高清毛片免费观看视频网站| 色在线成人网| 国产爱豆传媒在线观看| 国产色爽女视频免费观看| aaaaa片日本免费| 别揉我奶头~嗯~啊~动态视频| 亚洲精品影视一区二区三区av| 欧美在线黄色| 嫩草影视91久久| 九九在线视频观看精品| 成人国产综合亚洲| 亚洲中文字幕一区二区三区有码在线看| 在线观看av片永久免费下载| 亚洲国产精品999在线| 香蕉av资源在线| 俄罗斯特黄特色一大片| 老女人水多毛片| 国产一级毛片七仙女欲春2| 美女黄网站色视频| 久久午夜亚洲精品久久| 18+在线观看网站| 午夜免费成人在线视频| 免费看美女性在线毛片视频| 人妻久久中文字幕网| 变态另类成人亚洲欧美熟女| 香蕉av资源在线| 俺也久久电影网| 中文在线观看免费www的网站| 亚洲经典国产精华液单 | 18禁裸乳无遮挡免费网站照片| 精品午夜福利视频在线观看一区| 日本一本二区三区精品| 午夜免费男女啪啪视频观看 | 99久久成人亚洲精品观看| 国产成人av教育| 国产高清视频在线播放一区| 三级男女做爰猛烈吃奶摸视频| 老熟妇仑乱视频hdxx| 亚洲精品成人久久久久久| 亚州av有码| 深爱激情五月婷婷| 18禁裸乳无遮挡免费网站照片| 99热6这里只有精品| 淫妇啪啪啪对白视频| 精品欧美国产一区二区三| 一级作爱视频免费观看| 亚洲精品456在线播放app | 亚洲人成网站在线播放欧美日韩| 国产av在哪里看| 日本黄大片高清| 久久精品人妻少妇| eeuss影院久久| 久久这里只有精品中国| 宅男免费午夜| 国产高清有码在线观看视频| 最近中文字幕高清免费大全6 | 欧美一区二区精品小视频在线| 免费电影在线观看免费观看| 欧美性感艳星| 精品熟女少妇八av免费久了| 99久久无色码亚洲精品果冻| 十八禁人妻一区二区| 精品日产1卡2卡| 中文字幕免费在线视频6| 日本一本二区三区精品| 在线观看66精品国产| av在线观看视频网站免费| 亚洲激情在线av| 精品一区二区免费观看| 一区福利在线观看| 国产真实伦视频高清在线观看 | 婷婷亚洲欧美| 国产乱人视频| 国产精品av视频在线免费观看| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 久久国产乱子免费精品| 午夜老司机福利剧场| 久久久久精品国产欧美久久久| 又粗又爽又猛毛片免费看| 日韩欧美免费精品| 十八禁国产超污无遮挡网站| 国产主播在线观看一区二区| 精品熟女少妇八av免费久了| 老司机午夜十八禁免费视频| 亚洲成人久久性| 最近视频中文字幕2019在线8| 好男人在线观看高清免费视频| 99热6这里只有精品| 无人区码免费观看不卡| 久久伊人香网站| 看黄色毛片网站| av福利片在线观看| av在线观看视频网站免费| 天堂动漫精品| 日韩欧美免费精品| 欧美日韩乱码在线| 久久午夜亚洲精品久久| 国产精品久久电影中文字幕| 亚洲国产日韩欧美精品在线观看| 午夜福利高清视频| 男女床上黄色一级片免费看| 日本a在线网址| 性色avwww在线观看| 首页视频小说图片口味搜索| 亚洲欧美日韩高清在线视频| 久久国产精品影院| 精华霜和精华液先用哪个| 亚洲国产欧美人成| 中亚洲国语对白在线视频| 狂野欧美白嫩少妇大欣赏| 丰满人妻熟妇乱又伦精品不卡| a级一级毛片免费在线观看| 成人欧美大片| 不卡一级毛片| av天堂在线播放| 有码 亚洲区| 观看美女的网站| 99热6这里只有精品| 国产探花在线观看一区二区| 日韩精品中文字幕看吧| 精品福利观看| 精品久久久久久,| 舔av片在线| 日韩 亚洲 欧美在线| 欧美最黄视频在线播放免费| 午夜福利在线观看免费完整高清在 | 免费看日本二区| 欧美中文日本在线观看视频| 9191精品国产免费久久| 久久香蕉精品热| 此物有八面人人有两片| 中文字幕人成人乱码亚洲影| 久久婷婷人人爽人人干人人爱| 男人舔女人下体高潮全视频| 极品教师在线免费播放| 欧美乱妇无乱码| 免费在线观看成人毛片| 国产成人a区在线观看| 伦理电影大哥的女人| 国产毛片a区久久久久| 亚洲第一区二区三区不卡| av福利片在线观看| 精品国产亚洲在线| 国产一区二区三区视频了| 亚洲精品亚洲一区二区| 国产三级中文精品| 亚洲熟妇熟女久久| 在现免费观看毛片| 别揉我奶头 嗯啊视频| 国产精品不卡视频一区二区 | 国产成人av教育| 看十八女毛片水多多多| 国产高清有码在线观看视频| 少妇的逼水好多| 热99在线观看视频| 精品99又大又爽又粗少妇毛片 | 欧美日本亚洲视频在线播放| 色精品久久人妻99蜜桃| 91狼人影院| 哪里可以看免费的av片| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| bbb黄色大片| 成年版毛片免费区| 一个人免费在线观看的高清视频| 中文在线观看免费www的网站| 3wmmmm亚洲av在线观看| 18禁黄网站禁片午夜丰满| 日韩精品中文字幕看吧| 成人午夜高清在线视频| av专区在线播放| 欧美在线黄色| 极品教师在线视频| 日本免费一区二区三区高清不卡| 欧美zozozo另类| 国产精品一区二区免费欧美| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡免费网站照片| 欧美日本视频| or卡值多少钱| 久久久精品大字幕| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 亚洲电影在线观看av| 我要搜黄色片| 麻豆一二三区av精品| 天堂√8在线中文| 亚洲久久久久久中文字幕| 91久久精品电影网| 色播亚洲综合网| 欧美激情国产日韩精品一区| 久久精品综合一区二区三区| 一本精品99久久精品77| 精品一区二区免费观看| 精品午夜福利视频在线观看一区| 91字幕亚洲| 午夜精品在线福利| 变态另类成人亚洲欧美熟女| 日本a在线网址| 国内精品久久久久精免费| 欧美在线黄色| 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| 夜夜爽天天搞| 国内精品一区二区在线观看| 丰满乱子伦码专区| 国产精品人妻久久久久久| 在线免费观看的www视频| 国产单亲对白刺激| 欧美区成人在线视频| 亚洲精华国产精华精| 中文资源天堂在线| 天堂√8在线中文| 久久国产精品人妻蜜桃| 美女xxoo啪啪120秒动态图 | 国产私拍福利视频在线观看| 欧美成人免费av一区二区三区| av天堂在线播放| 国产精品嫩草影院av在线观看 | 日韩大尺度精品在线看网址| 国产免费av片在线观看野外av| x7x7x7水蜜桃| 此物有八面人人有两片| 精品一区二区三区视频在线| 国产精品亚洲一级av第二区| 国模一区二区三区四区视频| 国产精品一区二区三区四区免费观看 | 老司机福利观看| 久久国产乱子免费精品| 欧美极品一区二区三区四区| 色噜噜av男人的天堂激情| 国产v大片淫在线免费观看| 村上凉子中文字幕在线| 女人被狂操c到高潮| 国产三级在线视频| 日韩av在线大香蕉| av在线老鸭窝| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 亚洲av不卡在线观看| 动漫黄色视频在线观看| 国产一区二区亚洲精品在线观看| 国产视频内射| 在线天堂最新版资源| 国产一区二区在线av高清观看| aaaaa片日本免费| 国产精品一区二区三区四区免费观看 | 国产高清视频在线播放一区| 国产一区二区在线av高清观看| 在线免费观看不下载黄p国产 | 真实男女啪啪啪动态图| 1000部很黄的大片| 亚洲狠狠婷婷综合久久图片| 国产v大片淫在线免费观看| 精品不卡国产一区二区三区| 久久人人爽人人爽人人片va | 成年女人毛片免费观看观看9| 动漫黄色视频在线观看| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| ponron亚洲| 一区二区三区免费毛片| 亚洲午夜理论影院| 日本 av在线| 国产真实乱freesex| 免费看光身美女| 高清日韩中文字幕在线| 老司机午夜十八禁免费视频| 亚洲av五月六月丁香网| av中文乱码字幕在线| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 亚洲成人免费电影在线观看| 91麻豆精品激情在线观看国产| 麻豆成人午夜福利视频| 亚洲专区国产一区二区| 一区二区三区免费毛片| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区精品| 久久精品91蜜桃| 桃红色精品国产亚洲av| 国产老妇女一区| 国产精品精品国产色婷婷| 99久久精品一区二区三区| 欧美黄色片欧美黄色片| 亚洲久久久久久中文字幕| 久久人人精品亚洲av| 国产成人欧美在线观看| 自拍偷自拍亚洲精品老妇| 99精品久久久久人妻精品| 日本一本二区三区精品| 精品久久久久久久久av| 欧美潮喷喷水| 天堂√8在线中文| 成人美女网站在线观看视频| 精品乱码久久久久久99久播| 乱码一卡2卡4卡精品| 久久亚洲精品不卡| 精品人妻熟女av久视频| 国产一级毛片七仙女欲春2| 国产高清有码在线观看视频| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看电影| 黄色配什么色好看| 性色av乱码一区二区三区2| 午夜视频国产福利| 精品午夜福利在线看| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| 亚洲人成网站在线播| 国产91精品成人一区二区三区| 欧美高清性xxxxhd video| 18禁黄网站禁片免费观看直播| 久久久久性生活片| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 日本成人三级电影网站| 亚洲国产色片| 午夜福利高清视频| 国产成人av教育| 久久国产乱子伦精品免费另类| 最新在线观看一区二区三区| 久久国产乱子伦精品免费另类| 少妇人妻精品综合一区二区 | 成年女人看的毛片在线观看| 午夜福利视频1000在线观看| 在线天堂最新版资源| 国模一区二区三区四区视频| 精品不卡国产一区二区三区| 99精品久久久久人妻精品| 悠悠久久av| 国产淫片久久久久久久久 | 嫩草影院新地址| 在线观看舔阴道视频| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看| 免费大片18禁| .国产精品久久| 欧美成人a在线观看| 亚洲熟妇中文字幕五十中出| 精品人妻一区二区三区麻豆 | 蜜桃亚洲精品一区二区三区| 两个人的视频大全免费| xxxwww97欧美| 久久人人精品亚洲av| 首页视频小说图片口味搜索| 亚洲自拍偷在线| 性欧美人与动物交配| 久久国产乱子免费精品| 男人狂女人下面高潮的视频| 国产精品久久久久久精品电影| 三级毛片av免费| 神马国产精品三级电影在线观看| av女优亚洲男人天堂| 精品一区二区三区人妻视频| 一边摸一边抽搐一进一小说| 亚洲国产日韩欧美精品在线观看| 美女黄网站色视频| 91麻豆av在线| 悠悠久久av| 久久亚洲真实| 18+在线观看网站| 高清日韩中文字幕在线| 精品无人区乱码1区二区| 在线天堂最新版资源| 日韩欧美免费精品| 99热这里只有是精品50| 18禁黄网站禁片免费观看直播| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 国产精品精品国产色婷婷| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 男插女下体视频免费在线播放| 国产午夜精品论理片| 欧美黄色片欧美黄色片| 人妻久久中文字幕网| 亚洲成人久久性| 亚洲av熟女| 欧美最黄视频在线播放免费| 男女下面进入的视频免费午夜| 久久久色成人| 三级男女做爰猛烈吃奶摸视频| 18禁在线播放成人免费| 国产在线精品亚洲第一网站| 搡老岳熟女国产| 在线看三级毛片| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 日韩欧美三级三区| av专区在线播放| 九九热线精品视视频播放| 搞女人的毛片| 亚洲黑人精品在线| 全区人妻精品视频| 毛片女人毛片| 国产三级在线视频| 亚洲人成网站在线播| 国产av不卡久久| 9191精品国产免费久久| 亚洲av第一区精品v没综合| 在线观看免费视频日本深夜| 麻豆国产av国片精品| 国产爱豆传媒在线观看| 在线免费观看不下载黄p国产 | 午夜影院日韩av| 成年女人毛片免费观看观看9| 美女黄网站色视频| a级一级毛片免费在线观看| 偷拍熟女少妇极品色| 99久久精品一区二区三区| 丰满人妻一区二区三区视频av| 色视频www国产| 1000部很黄的大片| 啪啪无遮挡十八禁网站| 9191精品国产免费久久| 亚洲熟妇熟女久久| 又爽又黄a免费视频| www日本黄色视频网| 久久久久性生活片| ponron亚洲| 久久久色成人| 日本成人三级电影网站| 色播亚洲综合网| 国产在线男女| 露出奶头的视频| a级一级毛片免费在线观看| 我要看日韩黄色一级片| 熟妇人妻久久中文字幕3abv| 国产精品嫩草影院av在线观看 | 亚洲 欧美 日韩 在线 免费| 亚洲欧美日韩高清专用| 色噜噜av男人的天堂激情| 真实男女啪啪啪动态图| 九九热线精品视视频播放| 波野结衣二区三区在线| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av香蕉五月| 亚洲成av人片在线播放无| 69av精品久久久久久| 女同久久另类99精品国产91| 亚洲一区高清亚洲精品| 热99在线观看视频| 日本一本二区三区精品| 国产高清有码在线观看视频| 成人特级黄色片久久久久久久| 少妇人妻精品综合一区二区 | 国产av一区在线观看免费| 国产伦在线观看视频一区| 亚洲成av人片免费观看| 美女大奶头视频| 精品国内亚洲2022精品成人| 嫩草影院入口| 国产免费一级a男人的天堂| 99热这里只有是精品在线观看 | 成年女人永久免费观看视频| 99久久九九国产精品国产免费| 非洲黑人性xxxx精品又粗又长| 国产三级在线视频| 怎么达到女性高潮| 美女xxoo啪啪120秒动态图 | 在线免费观看不下载黄p国产 | 床上黄色一级片| 又黄又爽又免费观看的视频| 成人无遮挡网站| 亚洲自拍偷在线| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美免费精品| 精品不卡国产一区二区三区| 亚洲精品456在线播放app | а√天堂www在线а√下载| 麻豆成人av在线观看| 午夜精品久久久久久毛片777| 亚洲乱码一区二区免费版| 欧美国产日韩亚洲一区| 美女黄网站色视频| 国产毛片a区久久久久| 午夜精品在线福利| 国产三级在线视频| 色尼玛亚洲综合影院| 国产黄a三级三级三级人| 一本综合久久免费| 久久6这里有精品| 内射极品少妇av片p| 美女xxoo啪啪120秒动态图 | 欧美激情国产日韩精品一区|