• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Resampling Procedure Based on Genetic Algorithm in Particle Filter

    2015-03-23 01:19:02ZHANGMinJIAHaitaoandSHENZhen
    關(guān)鍵詞:電子科技國家自然科學(xué)基金機(jī)動

    ZHANG Min, JIA Hai-tao, and SHEN Zhen

    (1. Library, University of Electronic Science and Technology of China Chengdu 611731;2. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China Chengdu 611731)

    Improved Resampling Procedure Based on Genetic Algorithm in Particle Filter

    ZHANG Min1, JIA Hai-tao2, and SHEN Zhen2

    (1. Library, University of Electronic Science and Technology of China Chengdu 611731;2. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China Chengdu 611731)

    Particle filtering is a nonlinear and non-Gaussian dynamical filtering system. It has found widespread applications in detection, navigation, and tracking problems. The strong maneuverability of target tracking brings heavy impact on particle attributes in resampling process of particle filters, such as, particle state, particle weights, and so on. This paper proposes a new particle filter algorithm based on genetic algorithm optimization. This algorithm combines the hereditability and aberrance of the genetic algorithm into the resampling procedure of particle filter to improve the adaptability of maneuvering target tracking.

    genetic algorithm; maneuvering target tracking; nonlinear filtering; particle filter; particle resampling

    Target tracking is used in many application areas, such as the defense system, radar system, sonar system, aeronautical system, satellite system, and autonomous robots[1]. For anyone target tracking system, it must solve two basic tasks. One is the accurate estimation procedure, which needs to infer the accurate estimation of target position from noise measurement data. The other is predicting the target position in the next time that can be used to control the tracker to catch the target[2]. So the kernel problem of target tracking is to estimate the states of the moving target, such as position, velocity, and acceleration. Most target tracking algorithms belong to Bayesian theoretic, such as Kalman filter and particle filter, which they are popular Bayesian filters for target tracking because of their probabilistic nature[3].

    The particle filter algorithm was first proposed in Ref.[4]. In recent years, the particle filter (PF), as an effective estimator for the nonlinear filtering problem, has been widely used in many fields, including signal processing, biostatistics, economics, and engineering.

    The kernel of particle filters is designing the posterior probability density functions based on a sample (or particle). This allows the filter to handle the nonlinearity of system, as well as the non-Gaussian nature of noise processes.

    PF can sufficiently estimate the system states when the number of particles (i.e., estimations of thestate vectors that evolve in parallel) is large. In Ref.[5], a particle filtering algorithm for tracking was introduced, which focuses on geometric properties of the sensor network configuration, and the algorithm was derived from geometry. In Ref.[6], a tracking method was proposed that first estimated the positions of a target in its most recent past and then fit them with a piece-wise trajectory. In Ref.[7], another method for distributed tracking in binary sensor networks was developed, which was derived by using hidden state estimation and the Viterbi algorithm.

    Up to today, particle is one of the most success non-liner filters. But there are some optimization researches in maneuvering target tracking. During tracking strong maneuvering targets, continuous or strong motor will take heavy impacts on the particle filter re-sampling process. Concisely to say, this strong mobility or continuous motor will make the particle weights that can correctly estimate target state turn smaller, or even be abandoned, and the particle weights which have not contribution even be increased infinitely, and this group of particles cannot correctly estimate the target state. So this paper proposes a new particle filter algorithm based on genetic algorithm optimization. This algorithm takes the descendiblity and aberrance of the genetic algorithm into particle filter resampling procedure, which seems to more adapt the maneuvering target tracking.

    1 Particle Filter Theory

    Considering a single target tracking problem, xkis the target motion state vector at time k:

    wherevk~N(μ,Σ)andN(μ,Σ)are noise sequence which have the Gaussian distribution with mean μ and covariance matrix Σ, ωkis observation noise sequence and is independent of vk, f(?)is nonlinear state function, zkis observation vector obtained at time k, and h(?)is nonlinear measurement function. Let X0:k={x0,x1,,xk} and Z0:k={z0,z1,,zk}denote the vectors of the motion states and the observation states of target from beginning to timek.

    In the following discussion, the notation p(?)is used to denote a probability density function (PDF), for exampleindicates that the particles are distributed according to the pdf of the true state[9].

    Using statistics theoretics, the system is completely described as follows[10]:

    1)p(xn|xn?1). The state transition probability density function. It desribes the evolution of the system from time n?1 to n. Alternatively, the same could be described with a state transition model of the formxn=Φ(xn?1,vn), where vnis a noise process.

    2)p(zn|xn). Observation likelihood density, describing the conditional likelihood of observation given state. As before, this relationship could be in the form of an observation model zn=h(xn)+nn, where nnis a noise process which is independent of vn.

    3)p(xn). The prior state probability atttime.

    It is assumed that the X0:n={x0,x1,,xn}is a homogeneous Markov chain, the conditional probability density of xngiven by the past states x0:n?1=(x0,x1,,xn?1) only depends on xn?1, through the transition densityp(xn|xn?1), and the conditional probability density of zngiven by the statesx0:tand the past observationsz0:n?1only depends on xtthrough the conditional likelihood p(zn|xn)[11].

    The objective of filtering is to estimate the posterior density of the state given by the past observationsp(xn|z1:n). As new observations arrive, a recursive update of the posterior density is given by the recursive Bayesian filter. It is defined as[12]:

    In most applications, the posterior density of the state vector p(xn|z1:n) is interested. In particle filtering, densities are approximated by a set of samples (particles)In the state space, their associated normalized probability weights satisfy

    Then the posterior density of the state vector can be approximated as[13]:

    where δ(?) is the Dirac Delta function centered atxn. The setis the weights of particle set that representthe posterior density at timen, and is estimated recursively fromThe initial particlesetobtained from sampling the prior densityπ0=p(x0)[14].

    In general, it is difficult to sample directly from the full posterior density. To overcome this difficulty, the method of importance sampling is used. The particlesare drawn from an easy sampling function q(?) called importance density. So the normalized weights is written as[15]:

    The importance density is factorized as follows[16]:

    So the weights can be updated sequentially as[17]:

    One of the most common particle-filtering algorithms is the sampling importance resampling (SIR) filter. It updates the sample sets that represent the posterior about the map and the trajectory of the vehicle. The process can be summarized by the following four steps[18].

    1) Sampling: The next generation of particlesis obtained from the generationsampling from the proposal distribution π. Usually, a probabilistic motion model is used as the proposal distribution.

    2) Importance weighting: According to the importance sampling principle, an individual importance weightis assigned to each particle. The weights account for the fact that the proposal distribution π is, in general, not equal to the target distribution of successor states.

    3) Resampling: Particles are drawn with the replacement proportional to their importance weight. This step is necessary, since only a finite number of particles are used to approximate a continuous distribution. Furthermore, resampling allows us to apply a particle filter in situations in which the target distribution differs from the proposal. After resampling, all the particles have the same weight[19].

    4) Map estimation: For each particle, based on the trajectoryof that sample and the history of observationsz0:n, the corresponding map estimation p(xn|z1:n) is computed[20].

    2 Improved Algorithm

    Without the resampling step, the basic particle filter would suffer from the sample depletion. This means that all particles not a few will have negligible weights after a while. The resampling step resolves the reduction of the effects of degeneracy. The basic idea of resampling is to drop particles that have small weights and to concentrate on those which have large weights. A new set of samples is generated by resampling the set of samples and taking out the particles that have small weights.rNsamples from the current set, proportionally to their weights. In this new set, for instance, the samples with the lowest probabilities will disappear. Next, the weights associated with the samples are scaled in order to represent the probability associated with each sample. In fact the resulting set of samples is an independency density sample from the discrete posterior probability functionp(xt|z0:t). Therefore, the weights can now be reset asFig. 1 shows the resampling procedure.

    The common resampling procedure would duplicate the old ones that have high weights, which might lead to a loss of diversity (named sample impoverishment). It is very severe and in a poor way that all particles may collapse at a single point with a few iterations if the process noise is very small. Especially there is some mutation in target state when it maneuvers. Without considering this mutation, the particles will not represent the posterior density of target state, and would generate degeneracy of particles.

    Aiming at the resampling step, this paper proposes an improved algorithm whose main idea is generatingsome aberrance particles in the resampling procedure. Once the target state has been maneuvered, some aberrance particles would work well and have high weights, which will increase the diversity and make the particle filter suit to maneuvering target tracking. Figure 2 shows the algorithm flow.

    The improved algorithm detail step is:

    1) Sorting particles into three types: the normal particle, aberrance particle, and best particle. The best particles would maintain its state in the resampling procedure, while the aberrance particle would randomly alter its state.

    2) Evaluating the maneuvering. Here a maneuvering parameter is used to evaluate the target maneuvering. The function of maneuvering parameter is:

    where βmis maneuvering parameter andis the mean value of n?1iterative loop weights.

    3) If the maneuvering parameter is beyond the evaluation threshold, there might have some target maneuvering. The resampling procedure would augment the weights of the aberrance particles. Whereas, resampling procedure would debase the weights of the aberrance particles.

    4) Recording the best particle’s state in every iterative loop. The resampling procedure would eliminate the best particle which is no longer the best in three iterative loops.

    5) If the maneuvering parameter is beyond the evaluation threshold, the resampling procedure would revive the best particle record in three iterative loops.

    The main idea of this improved algorithm is taking the aberrance and descendiblity of the genetic algorithm to increase the diversity of the resampling procedure in order to adapt to maneuvering target tracking.

    3 Simulation

    For validating the proposed algorithm, this paper takes a filter simulation for a maneuvering target tracking.

    Set the nonlinear state function as:

    and the observation function:

    where v(n),ω(n) is Gaussian distribution with mean 0 and variance4,0.01. The standard particle filter, weights choice resampling (WCR filter), linear optimal resampling (LOR filter), and the improved filter are used to estimate the target state. Fig. 3 shows the simulation results.

    The filter estimation error is shown as Fig. 4.

    At the same time, the Kalman filter is simulated. The performances of three filters are shown in Table 1.

    4 Conclusion

    This paper presents a new particle filter algorithm based on genetic algorithm optimization. This algorithm takes the descendiblity and aberrance of the genetic algorithm into particle filter resampling procedure, which seems to be more adaptive to the maneuvering target tracking. The simulation proves that the improved algorithm suits maneuvering target tracking.

    Reference

    [1] ARORA A. A line in the sand: a wireless sensor network for target detection, classification, and tracking[J]. Comput Netw, 2004, 46(5): 605-634.

    [2] BUGALLO M F, LU T, DJURI′C P M. Target tracking by multiple particle filtering[C]//Proceedings of IEEE Aerospace Conference. Big Sky, MO, USA: IEEE, 2007: 153-156.

    [3] DJURI′C P M, LU T, BUGALLO F. Multiple particle filtering[C]//Proceedings of the IEEE 32nd International Conference on Acoustics, Speech and Signal Processing (ICASSP’2007). Honolulu, Hawaii, USA: IEEE, 2007: 1181-1184.

    [4] ISARD M, BLAKE A. Condensation-conditional density propagation for visual tracking[J]. IJCV, 1998, 29(1): 5-28.

    [5] ASLAM J, BUTLER Z, CONSTANTIN F V, et al. Tracking a moving object with a binary sensor network[C]//Proc 1st Int Conf Embedded Networked Sensor Syst. Los Angeles, CA, USA: [s.n.], 2003:150-161.

    [6] KIM W, MECHITOV K, CHOI J Y, et al. On target tracking with binary proximity sensors[C]//Proc 4th Int Symp Inf Process Sensor Netw. Los Angeles, CA, USA: IPSN, 2005.

    [7] OH S, SASTRY S. Tracking on a graph[C]//Proc 4th Int Symp Inf Process Sensor Networks. Los Angeles, CA, USA: IPSN, 2005.

    [8] GRISETTI G, STACHNISS C, BURGARD W. Improvedtechniques for grid mapping with rao-blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46.

    [9] LASKA B N M, BOLIC M, GOUBRAN R A. Particle filter enhancement of speech spectral amplitudes[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010,18(8): 2155- 2167.

    [10] GUSTAFSSON F. Particle filter theory and practice with positioning applications[J]. IEEE A&E Systems Magazine. Part 2: Tutorlals-Gustafsson, 2010, 25(7): 53-81.

    [11] MARTINEZ-ESPLA J J, MARTINEZ-MARIN T, LOPEZ-SANCHEZ J M. A particle filter approach for insar phase filtering and unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1197-1211.

    [12] SANKARANARAYANAN A C, SRIVASTAVA A, CHELLAPPA R. Algorithmic and architectural optimizations for computationally efficient particle filtering[J]. IEEE Transactions on Image Processing, 2008, 17(5): 737-748.

    [13] CHENG Qi. An efficient two-stage sampling method in particle filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2666-2672.

    [14] WANG Ya-feng, ZHANG You-an, LIU Hua-ping, et al. Central difference particle filter applied to transfer alignment for sins on missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 375-387.

    [15] CLOSAS P, BUGALLO M F. Improving accuracy by iterated multiple particle filtering[J]. IEEE Signal Processing Letters, 2012, 19(8): 531-534.

    [16] HU Xiao-li, SCHON T B, LJUNG L. A basic convergence result for particle filtering[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1337-1348.

    [17] NICOLI M, MORELLI C, RAMPA V. A jump markov particle filter for localization of moving terminals in multipath indoor scenarios[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3801-3809.

    [18] SEONG-HOON P W, WAEL W M, FARID G. A kalman/particle filter-based position and orientation estimation method using a position sensor/ inertial measurement unit hybrid system[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1787-1798.

    [19] SUTHARSAN S, KIRUBARAJAN T, LANG T, et al. An optimization-based parallel particle filter for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1601-1618.

    [20] BRANKO R, SANJEEV A. Bernoulli particle filter with observer control for bearings-only tracking in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2405- 2415.

    編 輯 黃 莘

    基于遺傳算法改進(jìn)的粒子濾波重采樣模型

    張 民1,賈海濤2,沈 震2
    (1. 電子科技大學(xué)圖書館 成都 611731;2. 電子科技大學(xué)電子科學(xué)技術(shù)研究院 成都 611731)

    提出一種基于遺傳算法改進(jìn)的新粒子濾波算法,該算法對于每次迭代計(jì)算出的最差粒子并未簡單地進(jìn)行丟棄,而是將這些最差粒子利用生物遺傳中的遺傳性和變異性將其進(jìn)行修正。該算法利用最差粒子數(shù)據(jù)與種群中特殊數(shù)據(jù)進(jìn)行交叉變異方法來增強(qiáng)粒子種群中的多樣性,從而有利于粒子濾波對機(jī)動目標(biāo)的跟蹤;同時(shí)保留部分粒子在未來進(jìn)行喚醒也體現(xiàn)了多樣性。該算法更有利于實(shí)現(xiàn)粒子濾波在機(jī)動目標(biāo)跟蹤的適應(yīng)性,提高其跟蹤效果。

    遺傳算法; 機(jī)動目標(biāo)跟蹤; 非線性濾波器; 粒子濾波; 重采樣

    TN953

    A

    10.3969/j.issn.1001-0548.2015.03.005

    2014 ? 09 ? 02;

    2015 ? 04 ? 27

    國家自然科學(xué)基金(61172117)

    張民(1969 ? ),男,高級工程師,主要從事計(jì)算機(jī)網(wǎng)絡(luò)、智能計(jì)算等方面的研究.

    date:2014 ? 09 ? 02; Revised date: 2015 ? 04 ? 27

    Foundation:Support by the National Science Foundation of China(61172117)

    Biography:ZHANG Min was born in 1969, and his research interests include computer network and computational intelligence.

    猜你喜歡
    電子科技國家自然科學(xué)基金機(jī)動
    西安展天電子科技有限公司
    寶雞市普瑞思電子科技有限公司
    常見基金項(xiàng)目的英文名稱(一)
    裝載機(jī)動臂的疲勞壽命計(jì)算
    2S1廣州弘傲電子科技有限公司
    213B廣州市碼尼電子科技有限公司
    12萬畝機(jī)動地不再“流浪”
    機(jī)動三輪車的昨天、今天和明天
    我校喜獲五項(xiàng)2018年度國家自然科學(xué)基金項(xiàng)目立項(xiàng)
    2017 年新項(xiàng)目
    国产精品影院久久| 最新在线观看一区二区三区| 成人一区二区视频在线观看| 亚洲成人免费电影在线观看| 日韩欧美一区视频在线观看| 狠狠狠狠99中文字幕| av片东京热男人的天堂| 亚洲午夜理论影院| 久久精品人妻少妇| 啦啦啦 在线观看视频| 久久久久国内视频| 欧美另类亚洲清纯唯美| 又黄又粗又硬又大视频| 亚洲成人精品中文字幕电影| 欧美日韩乱码在线| 亚洲第一欧美日韩一区二区三区| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 久久精品影院6| 在线观看免费日韩欧美大片| 久久青草综合色| 亚洲熟女毛片儿| 久久精品aⅴ一区二区三区四区| 精品免费久久久久久久清纯| 夜夜夜夜夜久久久久| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 成在线人永久免费视频| 久久久国产成人精品二区| 9191精品国产免费久久| 色在线成人网| 91av网站免费观看| 性欧美人与动物交配| 9191精品国产免费久久| 丁香欧美五月| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 亚洲在线自拍视频| 激情在线观看视频在线高清| 国产精品免费视频内射| 夜夜看夜夜爽夜夜摸| 国产爱豆传媒在线观看 | 99国产精品一区二区三区| 又紧又爽又黄一区二区| 亚洲成人免费电影在线观看| 大型黄色视频在线免费观看| 午夜福利在线在线| 搡老岳熟女国产| 亚洲第一青青草原| 国产黄a三级三级三级人| 少妇裸体淫交视频免费看高清 | 免费高清视频大片| 搡老妇女老女人老熟妇| 婷婷丁香在线五月| 久热爱精品视频在线9| 一区福利在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国内视频| 最近在线观看免费完整版| 日本熟妇午夜| 日本黄色视频三级网站网址| 久久国产精品影院| 美女免费视频网站| 久久久久久久午夜电影| 国产成人精品久久二区二区91| 真人一进一出gif抽搐免费| 人妻久久中文字幕网| 国产av不卡久久| 欧美日韩中文字幕国产精品一区二区三区| 99国产综合亚洲精品| 精品久久久久久久末码| 后天国语完整版免费观看| 久久这里只有精品19| 国产国语露脸激情在线看| 高清毛片免费观看视频网站| 日本一区二区免费在线视频| 久久人妻av系列| 天堂影院成人在线观看| 久久青草综合色| 久久久久免费精品人妻一区二区 | 午夜免费观看网址| av福利片在线| 国产亚洲精品综合一区在线观看 | 丰满的人妻完整版| 琪琪午夜伦伦电影理论片6080| 精品熟女少妇八av免费久了| 国产亚洲精品一区二区www| 男女午夜视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产午夜福利久久久久久| 欧美黄色片欧美黄色片| 久久久久九九精品影院| 中文字幕av电影在线播放| 日韩欧美 国产精品| 国产一区二区在线av高清观看| av福利片在线| 日本熟妇午夜| 亚洲精品色激情综合| 午夜精品在线福利| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区| 一级片免费观看大全| 国产精品永久免费网站| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全电影3 | 午夜福利在线观看吧| 精品第一国产精品| 免费在线观看影片大全网站| 男女之事视频高清在线观看| 黑人欧美特级aaaaaa片| 久久久久久九九精品二区国产 | 亚洲成a人片在线一区二区| 99久久99久久久精品蜜桃| 亚洲五月色婷婷综合| 午夜影院日韩av| 国产成人精品无人区| 99热这里只有精品一区 | 成人18禁在线播放| 日韩中文字幕欧美一区二区| 啦啦啦 在线观看视频| 在线看三级毛片| 亚洲最大成人中文| 亚洲成av片中文字幕在线观看| 精品欧美国产一区二区三| 丁香六月欧美| 美女大奶头视频| 久久亚洲真实| 中文字幕久久专区| 亚洲国产精品sss在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产精品亚洲一级av第二区| 色综合站精品国产| 欧美中文综合在线视频| 亚洲全国av大片| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 不卡一级毛片| 久久久精品欧美日韩精品| 两人在一起打扑克的视频| 不卡av一区二区三区| 日韩欧美一区视频在线观看| 亚洲人成电影免费在线| 成人永久免费在线观看视频| 在线免费观看的www视频| 精品熟女少妇八av免费久了| 日韩国内少妇激情av| 国产高清激情床上av| 精品久久久久久久末码| 一区二区三区国产精品乱码| 日韩精品免费视频一区二区三区| 高清毛片免费观看视频网站| 香蕉久久夜色| 午夜免费观看网址| 国产97色在线日韩免费| 一级黄色大片毛片| 亚洲中文av在线| 性欧美人与动物交配| 精品少妇一区二区三区视频日本电影| av在线天堂中文字幕| 美女扒开内裤让男人捅视频| 国产爱豆传媒在线观看 | 成年女人毛片免费观看观看9| 国产精品一区二区精品视频观看| 亚洲无线在线观看| 色尼玛亚洲综合影院| 日韩欧美 国产精品| 国产黄色小视频在线观看| 黄色丝袜av网址大全| 亚洲成人久久性| 亚洲九九香蕉| 亚洲天堂国产精品一区在线| 国产亚洲精品第一综合不卡| 啪啪无遮挡十八禁网站| 免费看日本二区| 欧美日本视频| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 国产熟女xx| 久热这里只有精品99| 国产精华一区二区三区| 亚洲自偷自拍图片 自拍| 香蕉av资源在线| 国产国语露脸激情在线看| 成人国产综合亚洲| 露出奶头的视频| 99热这里只有精品一区 | 亚洲av中文字字幕乱码综合 | 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 在线观看舔阴道视频| 草草在线视频免费看| 欧美日韩一级在线毛片| 国产精品免费视频内射| 香蕉丝袜av| 精品第一国产精品| www日本黄色视频网| 在线观看免费日韩欧美大片| 亚洲午夜精品一区,二区,三区| 日本精品一区二区三区蜜桃| 97超级碰碰碰精品色视频在线观看| 国产精品99久久99久久久不卡| 亚洲av成人av| 亚洲男人的天堂狠狠| 亚洲国产欧美日韩在线播放| 日本 欧美在线| 久久 成人 亚洲| 黄色女人牲交| 亚洲成a人片在线一区二区| 日本成人三级电影网站| 国产亚洲精品久久久久5区| 九色国产91popny在线| 村上凉子中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 国产成+人综合+亚洲专区| 宅男免费午夜| 精品午夜福利视频在线观看一区| 韩国精品一区二区三区| 亚洲成av人片免费观看| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 午夜久久久久精精品| 日韩精品青青久久久久久| 欧美黑人巨大hd| 国产激情偷乱视频一区二区| 国产精品,欧美在线| 日本撒尿小便嘘嘘汇集6| 熟女电影av网| 国产成人精品久久二区二区91| 国产激情欧美一区二区| 18禁国产床啪视频网站| 欧美中文综合在线视频| 国产成人系列免费观看| 真人一进一出gif抽搐免费| 国产精品国产高清国产av| 19禁男女啪啪无遮挡网站| 午夜福利成人在线免费观看| av天堂在线播放| 嫁个100分男人电影在线观看| 国产亚洲精品一区二区www| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| av天堂在线播放| 91国产中文字幕| 女性被躁到高潮视频| 久久久久久国产a免费观看| 欧美中文综合在线视频| 久久国产精品男人的天堂亚洲| 免费在线观看黄色视频的| 国产精品99久久99久久久不卡| 国产一区二区三区在线臀色熟女| 免费在线观看日本一区| 国产91精品成人一区二区三区| 久久草成人影院| 日韩欧美 国产精品| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 亚洲熟妇中文字幕五十中出| 最近最新中文字幕大全电影3 | bbb黄色大片| 少妇 在线观看| 丝袜美腿诱惑在线| 黄色毛片三级朝国网站| 免费电影在线观看免费观看| 欧美中文综合在线视频| 美女午夜性视频免费| bbb黄色大片| 亚洲国产高清在线一区二区三 | 韩国av一区二区三区四区| 亚洲久久久国产精品| 一卡2卡三卡四卡精品乱码亚洲| 丝袜在线中文字幕| 99riav亚洲国产免费| 免费在线观看视频国产中文字幕亚洲| 91成年电影在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 国产麻豆成人av免费视频| 久久香蕉精品热| 久久久久久久精品吃奶| 欧美精品啪啪一区二区三区| or卡值多少钱| 久久 成人 亚洲| 岛国视频午夜一区免费看| 国产激情久久老熟女| 人人妻,人人澡人人爽秒播| 亚洲成av人片免费观看| 日本黄色视频三级网站网址| 99国产精品一区二区蜜桃av| www日本在线高清视频| 午夜福利免费观看在线| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 嫩草影视91久久| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 亚洲午夜精品一区,二区,三区| 国产精品av久久久久免费| 欧美最黄视频在线播放免费| 99在线人妻在线中文字幕| 国产av一区在线观看免费| www日本黄色视频网| av片东京热男人的天堂| 国产三级在线视频| 97超级碰碰碰精品色视频在线观看| 悠悠久久av| 国产亚洲av嫩草精品影院| 国产乱人伦免费视频| 亚洲精品中文字幕一二三四区| 91在线观看av| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频| av有码第一页| 99国产精品99久久久久| 91成年电影在线观看| 可以在线观看毛片的网站| 深夜精品福利| 国产又黄又爽又无遮挡在线| 一区二区日韩欧美中文字幕| 国产精品永久免费网站| 亚洲激情在线av| 欧洲精品卡2卡3卡4卡5卡区| 一区二区日韩欧美中文字幕| 亚洲第一电影网av| 少妇被粗大的猛进出69影院| 一本精品99久久精品77| 国产精品久久久久久精品电影 | 中文字幕人妻丝袜一区二区| 国内精品久久久久精免费| 黄片小视频在线播放| √禁漫天堂资源中文www| 亚洲国产看品久久| 欧美日韩亚洲国产一区二区在线观看| 国产又色又爽无遮挡免费看| 一卡2卡三卡四卡精品乱码亚洲| 丁香欧美五月| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| www国产在线视频色| 91字幕亚洲| 国产真实乱freesex| 国产午夜福利久久久久久| 桃红色精品国产亚洲av| 亚洲一区二区三区色噜噜| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 一本久久中文字幕| 999久久久精品免费观看国产| 久久久久国内视频| 久久久久久免费高清国产稀缺| 一本久久中文字幕| 亚洲精品国产区一区二| 免费在线观看黄色视频的| 欧美一区二区精品小视频在线| 国产熟女午夜一区二区三区| 午夜福利高清视频| 午夜老司机福利片| 村上凉子中文字幕在线| 精品日产1卡2卡| 村上凉子中文字幕在线| 精品欧美一区二区三区在线| 亚洲精品久久成人aⅴ小说| 可以免费在线观看a视频的电影网站| 无遮挡黄片免费观看| 在线看三级毛片| 亚洲精品一区av在线观看| 很黄的视频免费| 婷婷精品国产亚洲av在线| 99久久精品国产亚洲精品| 国产精品影院久久| 欧美黄色淫秽网站| 99re在线观看精品视频| 校园春色视频在线观看| 亚洲片人在线观看| 中文字幕最新亚洲高清| 国产成年人精品一区二区| 夜夜躁狠狠躁天天躁| 亚洲成av片中文字幕在线观看| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 久久久久免费精品人妻一区二区 | 中文字幕av电影在线播放| 日韩免费av在线播放| 午夜精品久久久久久毛片777| 久久久久久九九精品二区国产 | 韩国av一区二区三区四区| 国产精品av久久久久免费| 久久精品亚洲精品国产色婷小说| 国产高清有码在线观看视频 | 女同久久另类99精品国产91| 青草久久国产| 亚洲专区中文字幕在线| 在线看三级毛片| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 男女做爰动态图高潮gif福利片| 国产精品 欧美亚洲| 午夜免费观看网址| 成人一区二区视频在线观看| 黄色视频,在线免费观看| 一本大道久久a久久精品| 搡老妇女老女人老熟妇| 变态另类成人亚洲欧美熟女| 91国产中文字幕| 国产高清视频在线播放一区| 精品无人区乱码1区二区| 亚洲美女黄片视频| 少妇的丰满在线观看| 亚洲欧美日韩无卡精品| 国产精品 欧美亚洲| 国产精品免费一区二区三区在线| 免费在线观看日本一区| 成在线人永久免费视频| 婷婷亚洲欧美| 十八禁人妻一区二区| 黄色 视频免费看| 国产麻豆成人av免费视频| 91成人精品电影| 久久久久国产一级毛片高清牌| 日韩 欧美 亚洲 中文字幕| 国产精品永久免费网站| 天堂√8在线中文| 色综合婷婷激情| 丝袜美腿诱惑在线| 国产精品一区二区精品视频观看| 制服诱惑二区| 日韩欧美国产一区二区入口| 色av中文字幕| 欧美激情 高清一区二区三区| 精品国内亚洲2022精品成人| 国产成人精品无人区| 国产乱人伦免费视频| 午夜福利视频1000在线观看| 成人国产一区最新在线观看| 精品欧美一区二区三区在线| 国产私拍福利视频在线观看| 成人一区二区视频在线观看| 欧美日韩乱码在线| 日本成人三级电影网站| 亚洲人成电影免费在线| 成人三级黄色视频| 久久午夜综合久久蜜桃| 色综合站精品国产| 久久久久国产精品人妻aⅴ院| 久久天躁狠狠躁夜夜2o2o| 国产一区二区三区视频了| 久久这里只有精品19| 美女免费视频网站| 精品第一国产精品| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看 | 黄色a级毛片大全视频| 女性生殖器流出的白浆| 亚洲最大成人中文| 国产色视频综合| 97碰自拍视频| 精品日产1卡2卡| 精品乱码久久久久久99久播| 麻豆一二三区av精品| 欧美日韩乱码在线| 国产视频一区二区在线看| a级毛片在线看网站| 国产精品国产高清国产av| 老鸭窝网址在线观看| 久久精品91蜜桃| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 国产精华一区二区三区| 人人妻人人澡欧美一区二区| 伦理电影免费视频| 成人亚洲精品一区在线观看| 成年版毛片免费区| 午夜精品久久久久久毛片777| 亚洲美女黄片视频| 亚洲天堂国产精品一区在线| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 欧美日韩一级在线毛片| www日本黄色视频网| xxx96com| 听说在线观看完整版免费高清| 国产黄片美女视频| 午夜精品久久久久久毛片777| 无遮挡黄片免费观看| 中文字幕最新亚洲高清| 亚洲av电影在线进入| 亚洲国产精品合色在线| 久久九九热精品免费| 亚洲全国av大片| 色av中文字幕| 国产av不卡久久| 不卡av一区二区三区| 嫁个100分男人电影在线观看| 久久欧美精品欧美久久欧美| 亚洲国产中文字幕在线视频| 天堂√8在线中文| 亚洲va日本ⅴa欧美va伊人久久| 十八禁人妻一区二区| 欧美又色又爽又黄视频| 日本在线视频免费播放| 成人亚洲精品一区在线观看| 国产精品1区2区在线观看.| 久9热在线精品视频| 国产精品久久久av美女十八| 精品第一国产精品| 国内毛片毛片毛片毛片毛片| 夜夜看夜夜爽夜夜摸| av片东京热男人的天堂| 18禁国产床啪视频网站| 好看av亚洲va欧美ⅴa在| 久久久久国内视频| 女人高潮潮喷娇喘18禁视频| 成人18禁高潮啪啪吃奶动态图| 黑丝袜美女国产一区| 国产精品98久久久久久宅男小说| 18禁黄网站禁片午夜丰满| 午夜a级毛片| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一个人免费在线观看的高清视频| 国产精品98久久久久久宅男小说| 三级毛片av免费| 午夜福利一区二区在线看| 国产激情偷乱视频一区二区| 国产精品 国内视频| 成人国产一区最新在线观看| 亚洲第一电影网av| 天天添夜夜摸| 一区二区三区激情视频| 在线av久久热| 波多野结衣高清作品| 国产精品乱码一区二三区的特点| 欧美色视频一区免费| 美女午夜性视频免费| 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av| 日本免费一区二区三区高清不卡| 法律面前人人平等表现在哪些方面| 黄色视频不卡| 欧美精品亚洲一区二区| 亚洲人成伊人成综合网2020| 久久中文看片网| 国产免费男女视频| 久9热在线精品视频| 男女下面进入的视频免费午夜 | 日本精品一区二区三区蜜桃| 欧美国产精品va在线观看不卡| 制服诱惑二区| 男女下面进入的视频免费午夜 | 天堂动漫精品| 欧美国产精品va在线观看不卡| 欧美人与性动交α欧美精品济南到| 国产一区在线观看成人免费| 窝窝影院91人妻| 国产精品 国内视频| 午夜福利在线在线| 欧美久久黑人一区二区| 日本免费a在线| 亚洲成人久久性| 午夜成年电影在线免费观看| 天天添夜夜摸| 国产99白浆流出| 精品日产1卡2卡| 久久久久久久午夜电影| 国产精品亚洲一级av第二区| www国产在线视频色| 亚洲精品粉嫩美女一区| 777久久人妻少妇嫩草av网站| 免费在线观看成人毛片| 岛国视频午夜一区免费看| 亚洲国产精品合色在线| 热99re8久久精品国产| 国产精品,欧美在线| 国产精品乱码一区二三区的特点| 可以在线观看的亚洲视频| 国产免费av片在线观看野外av| 香蕉久久夜色| 国产真实乱freesex| 国产蜜桃级精品一区二区三区| 亚洲国产日韩欧美精品在线观看 | 此物有八面人人有两片| 午夜久久久久精精品| 一夜夜www| 好男人电影高清在线观看| 日本三级黄在线观看| 丝袜美腿诱惑在线| 一区二区三区高清视频在线| 日本三级黄在线观看| 久久中文字幕一级| 999精品在线视频| 欧美中文综合在线视频| 久久中文字幕人妻熟女| 12—13女人毛片做爰片一| 国产片内射在线| 午夜亚洲福利在线播放| 亚洲全国av大片| 两个人看的免费小视频| 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 久久国产精品人妻蜜桃| 欧美在线一区亚洲| 午夜福利在线在线| 中文字幕久久专区| 视频在线观看一区二区三区| 美女大奶头视频| 色播在线永久视频| 给我免费播放毛片高清在线观看| 亚洲精品久久成人aⅴ小说|