徐 孟 陳小玲 陳代文 余 冰 羅鈞秋 何 軍 毛湘冰虞 潔 鄭 萍 黃志清(四川農(nóng)業(yè)大學(xué)動(dòng)物營養(yǎng)研究所,動(dòng)物抗病營養(yǎng)教育部重點(diǎn)實(shí)驗(yàn)室,成都611130)
?
Six1對骨骼肌發(fā)育和肌纖維類型轉(zhuǎn)化的調(diào)控
徐 孟 陳小玲 陳代文 余 冰 羅鈞秋 何 軍 毛湘冰虞 潔 鄭 萍 黃志清?
(四川農(nóng)業(yè)大學(xué)動(dòng)物營養(yǎng)研究所,動(dòng)物抗病營養(yǎng)教育部重點(diǎn)實(shí)驗(yàn)室,成都611130)
摘 要:Six1是近年來發(fā)現(xiàn)的骨骼肌發(fā)育和肌纖維類型轉(zhuǎn)化的關(guān)鍵調(diào)控因子。Six1基因廣泛表達(dá)于各動(dòng)物不同組織中,尤其在骨骼肌中表達(dá)最豐富。Six1對骨骼肌的調(diào)控貫穿于動(dòng)物胚胎期到出生后整個(gè)過程,調(diào)控著骨骼肌的發(fā)育、肌肉損傷修復(fù)和肌纖維類型轉(zhuǎn)化。本文概述了Six1基因的發(fā)現(xiàn)、Six1蛋白的結(jié)構(gòu)、Six1在不同動(dòng)物中的表達(dá)譜以及Six1在骨骼肌發(fā)育、肌肉損傷修復(fù)、肌纖維類型轉(zhuǎn)化中的作用。
關(guān)鍵詞:Six1;骨骼肌發(fā)育;肌纖維類型轉(zhuǎn)化;表達(dá)譜
近年來,追求高產(chǎn)肉量和高瘦肉率使畜禽肉品質(zhì)大幅下降。肌纖維類型組成直接影響著肉品質(zhì)。動(dòng)物出生后肌纖維數(shù)量不再改變,其類型卻可以轉(zhuǎn)化。因此,調(diào)控肌肉發(fā)育和肌纖維類型轉(zhuǎn)化的關(guān)鍵基因被作為影響肉品質(zhì)的重要因素來研究。Six1是果蠅屬SO(Sine oculis)基因在脊椎動(dòng)物中的同源基因,是Six家族(Sine oculis ho?meobox family)成員之一,該家族是一類在進(jìn)化上高度保守的轉(zhuǎn)錄因子家族。Six家族包含Six1~6 共6個(gè)家族成員,根據(jù)氨基酸保守序列相似性,分為Six1/2、Six3/6和Six4/5 3個(gè)亞家族[1]。Six1缺失的小鼠出生時(shí)出現(xiàn)胸骨缺損和嚴(yán)重的肌肉發(fā)育不全,膈肌甚至完全缺失,導(dǎo)致小鼠出生后呼吸受到抑制而很快死亡[2]。另有研究表明,Six1和其輔助因子Eya1過表達(dá)使小鼠比目魚肌中慢肌纖維向快肌纖維轉(zhuǎn)變[3]。這些研究表明,Six1在脊椎動(dòng)物骨骼肌發(fā)育以及肌纖維類型轉(zhuǎn)化過程中起著重要作用。本文就Six1對骨骼肌發(fā)育和肌纖維類型轉(zhuǎn)化的調(diào)控作一綜述。
1.1 Six1基因的發(fā)現(xiàn)
Six1由SO基因進(jìn)化而來,最早于1994年在研究果蠅視覺系統(tǒng)形成過程中被發(fā)現(xiàn)和克?。?],隨后Six1在脊椎動(dòng)物鼠、人、雞、蟾蜍、斑馬魚、豬、鴨和無脊椎動(dòng)物水母中相繼被發(fā)現(xiàn)和克?。?],并發(fā)現(xiàn)Six1基因在生物感官系統(tǒng)[6]、骨骼?。?]、顱面器官[8-9]、腎臟[10]等組織器官發(fā)育過程中起著重要作用。
1.2 Six1蛋白的結(jié)構(gòu)
Six1蛋白同Six家族其他成員一樣,由2個(gè)保守的特征結(jié)構(gòu)域[同源異型結(jié)構(gòu)(homeodomain,HD)域和蛋白互作結(jié)構(gòu)(six domain,SD)域]、非保守的N端和C端組成。通常,HD域包含60個(gè)氨基酸,在這60個(gè)氨基酸殘基中包括1個(gè)DNA螺旋識別區(qū),能和下游靶基因的DNA序列特異性錨定結(jié)合,進(jìn)而對下游受控基因進(jìn)行激活或抑制[1]。SD域位于HD域的N端[11],通常包含110~115個(gè)氨基酸,其保守性僅次于HD域,主要功能是參與蛋白質(zhì)間的相互作用[1]。Six1蛋白N端只包含少數(shù)氨基酸殘基,這從側(cè)面預(yù)示N端對該蛋白質(zhì)功能影響不大[12]。Six1蛋白C端有幾個(gè)氨基酸殘基作為HD域的延伸,這些延伸的氨基酸可能與DNA綁定調(diào)節(jié)有關(guān),起到穩(wěn)定與目標(biāo)DNA序列結(jié)合的作用[1];此外,C端還具有調(diào)節(jié)Six1蛋白降解的功能[13]。
1.3 Six1在不同動(dòng)物中的表達(dá)譜
Six1具有特定時(shí)空表達(dá)模式,具有多組織表達(dá)特性,不同組織Six1的表達(dá)量存在明顯差異。Boucher等[14]等最初研究顯示Six1僅在人的成年骨骼肌中具有很高表達(dá)。Wang等[15]等采用實(shí)時(shí)熒光定量PCR技術(shù)對鴨不同組織Six1基因表達(dá)圖譜分析發(fā)現(xiàn),Six1在胸肌中表達(dá)水平最高,其次為腿肌,再次為脾臟、胰臟、肺。Wu等[16]利用半定量PCR研究豬不同組織Six1基因表達(dá)規(guī)律發(fā)現(xiàn),Six1基因在大多數(shù)組織中均有表達(dá),其中骨骼肌中表達(dá)最高,其次為睪丸和骨髓。我們采用Western blot檢測了豬不同組織Six1蛋白表達(dá)規(guī)律發(fā)現(xiàn),Six1蛋白在豬骨骼肌組織中最為豐富,且快?。ㄈ缰洪L伸肌和背最長?。┒嘤诼。ㄈ绫饶眶~肌和腰大肌)[17]。這些研究結(jié)果顯示,Six1基因在骨骼肌中的表達(dá)量都明顯高于其他組織,提示其與骨骼肌的發(fā)育和肌肉特異性有密切的關(guān)系。
2.1 Six1與骨骼肌發(fā)育
脊椎動(dòng)物骨骼肌發(fā)育是由一系列基因和調(diào)控因子共同協(xié)作下完成的復(fù)雜過程,Six1、Eya2、Dach、Pax3/7和MRFs等在這一過程中共同構(gòu)成了一個(gè)復(fù)雜精確的調(diào)控系統(tǒng)[5,18]。Six1在脊椎動(dòng)物肌肉發(fā)育過程中具有至關(guān)重要的作用。敲除Six1a或Six1b都會(huì)增加斑馬魚胚胎肌細(xì)胞的凋亡;Six1a能促進(jìn)斑馬魚胚胎快肌前體細(xì)胞增值和分化,其突變使胚胎肌纖維發(fā)生不規(guī)則排列,最終導(dǎo)致胚胎異常發(fā)育[19]。在雞的胚胎發(fā)育過程中,Six1在四肢遠(yuǎn)端后區(qū)域的結(jié)締組織中表達(dá)豐富,其缺失使肌細(xì)胞的分化受到抑制[20-21]。在人胚胎發(fā)育第4周的體節(jié)中能檢測到Six1的表達(dá)[22],豬胚胎發(fā)育第65天的背最長肌Six1的mRNA水平顯著高于出生后21 d[16],說明Six1與人體節(jié)生成和豬肌肉發(fā)育有著密切關(guān)系。
小鼠胚胎原位雜交試驗(yàn)發(fā)現(xiàn),Six1的表達(dá)基本限制在胚胎的生肌區(qū)域[23];在Six1和Six4雙突變的小鼠胚胎中,Pax3在軸下生皮肌節(jié)的表達(dá)不足,導(dǎo)致軸下生皮肌節(jié)生肌前體細(xì)胞不能向肢芽轉(zhuǎn)移[24]。Pax3是肌祖細(xì)胞形成必不可少的調(diào)控因子,Pax3調(diào)控著生皮肌節(jié)外側(cè)部分延伸,在Pax3缺失的小鼠胚胎中,軸下遷移的肌祖細(xì)胞嚴(yán)重缺少;在胚胎肢芽中,Six1和Six4可以通過調(diào)控Pax3的表達(dá)來控制體節(jié)肌細(xì)胞早期的分層和遷移[25]。這些研究表明,Six1和Six4不僅對肌肉的發(fā)生發(fā)育有著至關(guān)重要的作用,同時(shí)還是Pax3的上游基因。在Six1缺失的小鼠胚胎中,生肌前體細(xì)胞向肢芽轉(zhuǎn)移的能力減弱,分化的成肌細(xì)胞異常凋亡;Six1缺失的小鼠出生時(shí)出現(xiàn)廣泛的肌肉發(fā)育不全,胸骨缺損,膈肌甚至完全缺失,導(dǎo)致小鼠出生后呼吸受到抑制而很快死亡[2]。Six1/4基因雙敲除的小鼠胚胎比單獨(dú)Six1基因敲除的小鼠胚胎出現(xiàn)更為廣泛和嚴(yán)重的肌肉發(fā)育不全,并伴隨肋骨和顱面骨缺陷[26],而單獨(dú)缺失Six4的小鼠胚胎或成年小鼠都沒有出現(xiàn)骨骼肌發(fā)育畸形[27]。上述結(jié)果表明,Six4在胚胎發(fā)育中有重要的作用但其重要性不如Six1,Six4和Six1存在明顯的功能冗余。另有研究認(rèn)為,Six5同樣參與了肌肉發(fā)育進(jìn)程,Six5與肌肉萎縮有關(guān)[28],但缺失Six5的小鼠胚胎沒有出現(xiàn)肌肉發(fā)育不良或缺陷[29]。
2.2 Six1與生肌調(diào)節(jié)因子(MRFs)家族關(guān)系
MRFs是一類調(diào)控肌肉發(fā)生、發(fā)育及肌肉功能完善的調(diào)節(jié)因子家族,其作用貫穿于動(dòng)物胚胎期到出生后骨骼肌發(fā)育整個(gè)過程,該家族包含4個(gè)成員:MyoD、myogenin(MyoG)、Myf5和MRF4。Myf5和MyoD決定成肌細(xì)胞前體生成不同類型的成肌細(xì)胞,Myf5和MyoD基因表達(dá)是胚胎肌肉發(fā)生起始的標(biāo)志[30]。Six1對MRFs家族4個(gè)成員都有轉(zhuǎn)錄調(diào)控作用,Six1基因是MRFs家族的上游基因[2,22,26,31-32]。
Myf5在胚胎生肌決定、細(xì)胞增殖和肌纖維形成過程中有著重要作用,MyoD和MyoG位于肌分化基因的上游,調(diào)控著肌肉損傷修復(fù)進(jìn)程和胚胎中胚層細(xì)胞分化到形成肌纖維整個(gè)過程[26,33-34]。小鼠胚胎Myf5基因存在1個(gè)長145 bp的調(diào)控元件區(qū),在這一區(qū)域中存在與Six1特異識別的MEF3位點(diǎn),在MEF3位點(diǎn)附近還存在著Pax3的識別序列[35]。Six1通過與MEF3位點(diǎn)特異結(jié)合,在肢芽中活化啟動(dòng)并調(diào)控Myf5的轉(zhuǎn)錄[31]。在MEF3位點(diǎn)突變的小鼠胚胎中,Six1對Myf5的轉(zhuǎn)錄調(diào)控被阻遏,而Pax3仍然能與Myf5中Pax3位點(diǎn)有效結(jié)合,但Myf5的轉(zhuǎn)錄水平顯著下降,Pax3 與Myf5中Pax3位點(diǎn)的結(jié)合可以部分補(bǔ)償MEF3位點(diǎn)突變造成的生肌發(fā)育障礙[2,31,35]。原位雜交試驗(yàn)顯示,在Six1缺失的小鼠胚胎E10.5期,向四肢遷移的Pax3陽性肌祖細(xì)胞數(shù)量減少,在胚胎前肢中不能檢測到Myf5的表達(dá);在Six1缺失的胚胎E11.5期中,胚胎前肢中無法檢測到Pax3、MyoD 和MyoG陽性細(xì)胞,后肢能檢測到少量的Pax3和Myf5的表達(dá);Six1缺失的小鼠胚胎E12.5期前肢中可以檢測到Myf5的表達(dá),后肢腹側(cè)區(qū)有少量的表達(dá)MyoD和MyoG陽性細(xì)胞,而表達(dá)MyoD的陽性細(xì)胞主要集中在后肢背側(cè)[2,26];在Six1/4都缺失的胚胎E10.5期,Myf5在前肢中不能檢測,MyoG在背側(cè)肌節(jié)有極少量表達(dá);在Six1/4雙突變的小鼠胚胎中,軸下生肌節(jié)生肌前體細(xì)胞遷移異常,胚胎期早期肌節(jié)中不能檢測MyoD、Mrf4和MyoG的表達(dá),Myf5雖然可以少量的表達(dá)但被限制在體節(jié)的末端,Mrf4的表達(dá)受到抑制可能導(dǎo)致Six1和Six4基因雙敲除小鼠在出生后出現(xiàn)肋骨缺陷的原因[2,26]。當(dāng)Six1被敲除時(shí),Six4可以部分補(bǔ)償Six1缺失個(gè)體中Myf5的轉(zhuǎn)錄激活作用[26,31]。
Wang等[15]發(fā)現(xiàn)鴨Six1基因過表達(dá)促進(jìn)鴨成肌細(xì)胞增殖同時(shí)顯著提高M(jìn)yf5和MyoD的mRNA水平。在小鼠C2C12細(xì)胞分化過程中,隨著分化時(shí)間越長,Six1的mRNA水平越低,同時(shí)Myf5、MyoD和MyoG的mRNA水平隨著Six1降低而下降[36]。Six1過表達(dá)抑制小鼠成肌細(xì)胞MyoG及myosin的表達(dá),延遲細(xì)胞分化進(jìn)程[37-39]。Liu等[40]等利用小干擾RNA降低Six1基因表達(dá)后,發(fā)現(xiàn)小鼠成肌細(xì)胞中MyoD水平和MyoG活力下降,Six1通過與MyoD增強(qiáng)子核心區(qū)域中MEF3位點(diǎn)結(jié)合調(diào)控MyoD的表達(dá),這與Le Grand等[34]在對衛(wèi)星細(xì)胞體外研究的結(jié)果一致。在MyoG上184 bp增強(qiáng)子核心區(qū)域中同樣存在MEF3位點(diǎn),Six1與MEF3位點(diǎn)結(jié)合調(diào)控MyoG的表達(dá)[41]。當(dāng)阻斷Six1a表達(dá)時(shí),超過一半的斑馬魚胚胎快肌前體細(xì)胞為MyoG陰性細(xì)胞[42],快肌的分化進(jìn)程受到抑制[19]。過表達(dá)Six1上調(diào)MyoG的表達(dá)水平,Six4/5過表達(dá)則下調(diào)MyoG的表達(dá)水平[43]。有研究表明,Six1/4缺失時(shí),Six2可以部分代替Six1/4激活MyoD,另外Myf5可能是MyoD的上游基因[44]。
2.3 Six1與肌肉損傷修復(fù)
骨骼肌衛(wèi)星細(xì)胞是位于肌膜和基底膜之間的組織干細(xì)胞,當(dāng)肌肉受損時(shí),靜止的衛(wèi)星細(xì)胞被激活,形成成肌細(xì)胞后開始表達(dá)Myf5、MyoD、MyoG,最后分化融合形成肌纖維,最終修復(fù)受損肌肉[45]。Six1在肌肉損傷后衛(wèi)星細(xì)胞的激活、分化、修復(fù)損傷肌肉的過程中起著重要作用。研究表明,Six1在靜止?fàn)顟B(tài)和激活狀態(tài)的衛(wèi)星細(xì)胞中都有表達(dá),Six1基因敲除后對靜止衛(wèi)星細(xì)胞的激活、增殖沒有影響,而Pax7陽性細(xì)胞增多,其增殖不受影響可能是由于Pax7大量表達(dá)抵消了Six1缺失的作用[34,46]。Six1過表達(dá)抑制衛(wèi)星細(xì)胞增殖促進(jìn)其分化,Six1缺失后衛(wèi)星細(xì)胞分化能力顯著降低,分化進(jìn)程延遲,形成的肌管減少,再生的肌肉中肌纖維含量減少[34,43]。沉默Six1的斑馬魚胚胎中,分化的成肌細(xì)胞中MyoD和MyoG的表達(dá)減少,而MyoD和MyoG在成肌細(xì)胞分化最終形成肌纖維過程中有至關(guān)重要作用[40,47]。對人股四頭肌進(jìn)行延長或收縮刺激后發(fā)現(xiàn),在刺激后3~6 h內(nèi),Six1 的mRNA水平顯著降低,隨后逐漸恢復(fù)正常[48],說明Six1與肌肉收縮性能有著密切的關(guān)系。衛(wèi)星細(xì)胞通過一系列過程修復(fù)損傷肌肉后,其本身的自我更新過程同樣受到Six1調(diào)控,當(dāng)Six1缺失時(shí),衛(wèi)星細(xì)胞容量增大,其原有的微環(huán)境平衡被打破。另外,Six家族其他成員在骨骼肌損傷修復(fù)過程中有重要作用,如Six2/4/5在靜止衛(wèi)星細(xì)胞中有少量表達(dá),但其表達(dá)量比Six1低。敲除Six5促進(jìn)衛(wèi)星細(xì)胞增殖,而分別過表達(dá)Six4和Six5抑制MyoG的在衛(wèi)星細(xì)胞的表達(dá)導(dǎo)致其增殖和分化受到抑制[43]。
2.4 Six1與肌纖維類型轉(zhuǎn)化
最早在Grifone等[3]的研究中發(fā)現(xiàn),Six1/Eya1復(fù)合物可以使成年小鼠慢肌向快肌轉(zhuǎn)變,隨后越來越多關(guān)于Six1在骨骼肌纖維的形成和肌纖維類型轉(zhuǎn)化的作用相繼被報(bào)道。在骨骼肌醛縮酶A基因啟動(dòng)子中存在著MEF3結(jié)合位點(diǎn),此位點(diǎn)對骨骼肌快肌表型具有重要作用。研究表明,在快速型肌纖維中,MEF3位點(diǎn)的活性和Eya1的表達(dá)量明顯高于慢速型肌纖維,在ⅡB型肌纖維中,Six1 與MEF3位點(diǎn)結(jié)合能力明顯高于其他類型肌纖維。在比目魚肌中,單獨(dú)的Six1過表達(dá)不能使慢速型肌纖維向快速型肌纖維轉(zhuǎn)變,而當(dāng)Six1和Eya1同時(shí)過表達(dá)時(shí),比目魚肌中慢速氧化型肌纖維則向快速酵解型肌纖維轉(zhuǎn)變,說明即使在成年骨骼肌中Six1/Eya1復(fù)合物依然可以使慢速型肌纖維向快速型肌纖維轉(zhuǎn)化。Six1和Eya1協(xié)同作用于Six1基因的靶基因使骨骼肌的慢肌表型向快肌表型轉(zhuǎn)化。另外,Six4和Six5對骨骼肌中快肌基因的表達(dá)有一定的轉(zhuǎn)錄激活作用,當(dāng)Six1缺失時(shí),Six4和Six5可以部分代償性補(bǔ)償Six1缺失而轉(zhuǎn)錄激活下游快肌基因[3,49]。
Sakakibara等[32]等通過小干擾RNA技術(shù)降低成年小鼠脛骨前肌Six1基因表達(dá)后發(fā)現(xiàn),Ⅰ型和ⅡA型肌纖維所占比例顯著上升,而ⅡB型肌纖維所占比例顯著的下降,其肌肉抗疲勞性顯著增強(qiáng),同時(shí)快肌基因mRNA水平顯著下降而慢肌基因mRNA水平顯著上升。Hetzler等[50]對小鼠脛骨前肌Six1基因敲除后發(fā)現(xiàn),缺失Six1的肌肉與正常肌肉相比存在明顯的損傷,并且MyoG的mRNA水平顯著下降;肌肉中MyHC?ⅡB蛋白和ⅡB型肌纖維比例顯著下降,MyHC?ⅡA蛋白含量顯著上升,ⅡA型肌纖維比例有上升趨勢。在對C2C12成肌細(xì)胞分別進(jìn)行抑制Six1表達(dá)和過表達(dá)Six1處理,結(jié)果發(fā)現(xiàn),抑制Six1表達(dá)時(shí),My?HC?ⅡB和MyHC?ⅡX啟動(dòng)子活性顯著降低;Six1基因過表達(dá)時(shí),MyHC?ⅡB和MyHC?ⅡX啟動(dòng)子活性顯著上升[50]。這些研究提示,Six1可以調(diào)控成年骨骼肌肌纖維轉(zhuǎn)化從而改變骨骼肌中肌纖維類型比例。在Six1a基因敲除的斑馬魚胚胎中快肌基因和MyoG表達(dá)不足,快速型肌纖維的分化受到抑制,而慢速型肌纖維則不受影響[42]。此外,研究發(fā)現(xiàn)豬和鴨Six1在快肌中的表達(dá)明顯高于慢?。?5,17],側(cè)面提示Six1對骨骼肌快肌表型的維持具有重要作用。
Six1還可能通過其他途徑調(diào)控肌纖維類型之間的轉(zhuǎn)化。研究表明,Sox6在快速型肌纖維中大量存在而在慢速型肌纖維中較少,在Sox6突變的小鼠中,骨骼肌中大多數(shù)慢肌基因mRNA水平和Ⅰ型肌纖維比例顯著上升[51-52]。另外,linc?MYH在快肌中比慢肌有較多的表達(dá),在linc?MYH缺失的骨骼肌中快肌基因的表達(dá)顯著降低,而慢肌基因的表達(dá)顯著上升[32]。上述結(jié)果表明,Sox6和linc?MYH抑制慢肌基因表達(dá)而對快肌基因表達(dá)及快速型肌纖維的維持有促進(jìn)作用。另外,在Six1缺失的胚胎期的小鼠背肌中Sox6蛋白與對照組相比明顯減少[53];當(dāng)Six1缺失時(shí),小鼠骨骼肌中l(wèi)inc?MYH的mRNA水平顯著降低[32]。上述結(jié)果提示,Six1可能是Sox6和linc?MYH的上游基因,Six1可通過調(diào)控Sox6和linc?MYH的表達(dá)來調(diào)節(jié)肌肉發(fā)育和肌纖維類型的轉(zhuǎn)化。
影響畜禽肉品質(zhì)的因素有很多,如基因、營養(yǎng)、年齡及環(huán)境等,其中基因是影響肉質(zhì)性狀的內(nèi)因,包括RN-基因和氟烷敏感基因2個(gè)主效基因和多個(gè)微效基因。肉品質(zhì)性狀是由復(fù)雜的多基因網(wǎng)絡(luò)及信號轉(zhuǎn)導(dǎo)通路共同調(diào)控決定的,目前發(fā)現(xiàn)與肉質(zhì)性狀相關(guān)的候選基因主要有:1)參與脂肪形成及代謝的相關(guān)基因,如過氧化物酶體增殖物激活受體γ基因(PPARγ)、解偶聯(lián)蛋白基因(UCP)、脂肪細(xì)胞決定和分化因子1基因(ADD1)、CCAAT增強(qiáng)子結(jié)合蛋白基因(C/EBP)、脂肪酸結(jié)合蛋白基因(FABPs)、脂肪酸合成酶基因(FAS)及激素敏感脂酶基因(HSL)等;2)參與肌肉形成及代謝相關(guān)因子,如肌肉生長抑制素基因(MSTN)、鈣蛋白酶抑制蛋白基因(CAST)、MRFs等;3)其他基因,如黑色素皮質(zhì)素受體基因(MCR)、胰島素樣生長因子2基因(IGF2)等。
目前Six1在畜禽肉質(zhì)性狀和生產(chǎn)性能相關(guān)的研究還未見報(bào)道,但Six1調(diào)控骨骼肌細(xì)胞分化、肌纖維類型轉(zhuǎn)化等已在小鼠上得到充分的研究。由此可以推測Six1在畜禽肉質(zhì)性狀方面可能有著重要的調(diào)控作用,如通過調(diào)控生肌調(diào)節(jié)因子家族(MRFs)調(diào)控肌細(xì)胞分化方向直接影響畜禽肉質(zhì)性狀,或通過調(diào)控Myh2/4/7及相關(guān)快肌基因和慢肌基因影響肌纖維類型的決定及轉(zhuǎn)化間接影響畜禽肉品質(zhì)。但Six1基因能否作為畜禽肉質(zhì)性狀相關(guān)候選基因以及其具體的作用機(jī)制還有待于進(jìn)一步深入研究。
綜上所述,無論是在胚胎期還是動(dòng)物出生后Six1對骨骼肌的調(diào)控作用都伴隨始終,其調(diào)控著骨骼肌發(fā)育、肌肉損傷修復(fù)、肌纖維類型轉(zhuǎn)化。同時(shí),Six1還可能是畜禽肉質(zhì)性狀的候選基因。因此,深入研究該基因?qū)∪獍l(fā)育、肌纖維類型轉(zhuǎn)化的可能調(diào)控機(jī)制以及是否可作為畜禽肉質(zhì)性狀的候選基因,將為今后改善畜禽肉品質(zhì)提供新的思路。
參考文獻(xiàn):
[1] HU S Y,MAMEDOVA A,HEGDE R S.DNA?bind?ing and regulation mechanisms of the SIX family of retinal determination proteins[J].Biochemistry,2008,47(11):3586-3594.
[2] LACLEF C,HAMARD G,DEMIGNON J,et al.Al?tered myogenesis in Six1?deficient mice[J].Develop?ment,2003,130(10):2239-2252.
[3] GRIFONE R,LACLEF C,SPITZ F,et al.Six1 and Eya1 expression can reprogram adult muscle from the slow?twitch phenotype into the fast?twitch phenotype [J].Molecular and Cellular Biology,2004,24(14):6253-6267.
[4] CHEYETTE B N R,GREEN P J,MARTIN K,et al.The Drosophila sine oculis locus encodes a home?odomain?containing protein required for the develop?ment of the entire visual system[J].Neuron,1994,12 (5):977-996.
[5] WU W J,HUANG R H,WU Q H,et al.The role of Six1 in the genesis of muscle cell and skeletal muscle development[J].International Journal of Biological Sciences,2014,10(9):983-989.
[6] STIERWALD M,YANZE N,BAMERT R P,et al.The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes:development and eye regeneration[J].Developmental Biology,2004,274 (1):70-81.
[7] GORDON B S,ELGADO DíAZ D C,WHITE J P,et al.Six1 and Six1 cofactor expression is altered during early skeletal muscle overload in mice[J].The Journal of Physiological Sciences,2012,62(5):393-401.
[8] NONOMURA K,TAKAHASHI M,WAKAMATSU Y,et al.Dynamic expression of Six family genes in the dental mesenchyme and the epithelial ameloblast stem/progenitor cells during murine tooth develop?ment[J].Journal of Anatomy,2010,216(1):80-91.
[9] SATO S,IKEDA K,SHIOI G,et al.Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods[J].Developmental Biology,2012,368 (1):95-108.
[10] XU P X,ZHENG W M,HUANG L,et al.Six1 is re?quired for the early organogenesis of mammalian kid?ney[J].Development,2003,130(14):3085-3094.
[11] KAWAKAMI K,OHTO H,TAKIZAWA T,et al.I? dentification and expression of six family genes in mouse retina[J].FEBS Letters,1996,393(2/3):259-263.
[12] WEASNER B,SALZER C,KUMAR J P.Sine oculis,a member of the SIX family of transcription factors,di?rects eye formation[J].Developmental Biology,2007,303(2):756-771.
[13] CHRISTENSEN K L,BRENNAN J D G,AL?DRIDGE C S,et al.Cell cycle regulation of the human Six1 homeoprotein is mediated by APCCdh1[J].On?cogene,2006,26(23):3406-3414.
[14] BOUCHER C A,CAREY N,EDWARDS Y H,et al.Cloning of the human SIX1 gene and its assignment to chromosome 14[J].Genomics,1996,33(1):140-142.
[15] WANG H H,JINT H B,LIU H H,et al.Molecular cloning and expression pattern of duck Six1 and its preliminary functional analysis in myoblasts transfect?ed with eukaryotic expression vector[J].Indian Jour?nal of Biochemistry&Biophysics,2014,51(4):271-281.
[16] WU W J,REN Z Q,WANG Y,et al.Molecular char?acterization,expression patterns and polymorphism a?nalysis of porcine Six1 gene[J].Molecular Biology Reports,2011,38(4):2619-2632.
[17] XU M,CHEN X L,HUANG Z Q,et al.Prokaryotic expression,purification,and polyclonal antibody prep?aration,and tissue distribution of porcine Six1[J].Turkish Journal of Biology,2015,doi:10.3906/biy-1408-1466.
[18] BUCKINGHAM M,RIGBY P W J.Gene regulatory networks and transcriptional mechanisms that control myogenesis[J].Developmental Cell,2014,28(3):225-238.
[19] O’BRIEN J H,HERNANDEZ?LAGUNAS L,AR?TINGER K B,et al.MicroRNA?30a regulates zebrafish myogenesis through targeting the transcription factor Six1[J].Journal of Cell Science,2014,127(10):2291-2301.
[20] BONNIN M A,LACLEF C,BLAISE R,et al.Six1 is not involved in limb tendon development,but is ex?pressed in limb connective tissue under Shh regulation [J].Mechanisms of Development,2005,122(4):573-585.
[21] DELFINI M?C,DUPREZ D.Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addi?tion to inducing skeletal muscle differentiation,in thechick neural tube[J].Development,2004,131(4):713-723.
[22] FOUGEROUSSE F,DURAND M,LOPEZ S,et al.Six and Eya expression during human somitogenesis and MyoD gene family activation[J].Journal of Mus?cle Research&Cell Motility,2002,23(3):255-264.
[23] OLIVER G,MAILHOS A,WEHR R,et al.Six3,a murine homologue of the sine oculis gene,demarcates the most anterior border of the developing neural plate and is expressed during eye development[J].Develop?ment,1995,121(12):4045-4055.
[24] GRIFONE R,DEMIGNON J,GIORDANI J,et al.Eya1 and Eya2 proteins are required for hypaxial so?mitic myogenesis in the mouse embryo[J].Develop?mental Biology,2007,302(2):602-616.
[25] TREMBLAY P,DIETRICH S,MERICSKAY M,et al.A crucial role for Pax3 in the development of the hypaxial musculature and the long?range migration of muscle precursors[J].Developmental Biology,1998,203(1):49-61.
[26] GRIFONE R,DEMIGNON J,HOUBRON C,et al.Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo[J].Development,2005,132(9):2235-2249.
[27] OZAKI H,WATANABE Y,TAKAHASHI K,et al.Six4,a putative myogenin gene regulator,is not essen?tial for mouse embryonal development[J].Molecular and Cellular Biology,2001,21(10):3343-3350.
[28] KIRBY R,HAMILTON G M,F(xiàn)INNEGAN D J,et al.Drosophila homolog of the myotonic dystrophy?asso?ciated gene,SIX5,is required for muscle and gonad development[J].Current Biology,2001,11(13):1044-1049.
[29] KLESERT T R,CHO D H,CLARK J I,et al.Mice deficient in Six5 develop cataracts:implications for myotonic dystrophy[J].Nature Genetics,2000,25 (1):105-109.
[30] PARKER M H,SEALE P,RUDNICKI M A.Looking back to the embryo:defining transcriptional networks in adult myogenesis[J].Nature Reviews Genetics,2003,4(7):497-507.
[31] GIORDANI J,BAJARD L,DEMIGNON J,et al.Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs[J].Proceedings of the Na?tional Academy of Sciences,2007,104(27):11310-11315.
[32] SAKAKIBARA I,SANTOLINI M,F(xiàn)ERRY A,et al. Six homeoproteins and a linc?RNA at the fast MYH locus lock fast myofiber terminal phenotype[J].PLoS Genetics,2014,10(7):e1004538.
[33] WYZYKOWSKI J C,WINATA T I,MITIN N,et al.Identification of novel MyoD gene targets in prolifera?ting myogenic stem cells[J].Molecular and Cellular Biology,2002,22(17):6199-6208.
[34] LE GRAND F,GRIFONE R,MOURIKIS P,et al.Six1 regulates stem cell repair potential and self?re?newal during skeletal muscle regeneration[J].The Journal of Cell Biology,2012,198(5):815-832.
[35] DAUBAS P,BUCKINGHAM M E.Direct molecular regulation of the myogenic determination gene Myf5 by Pax3,with modulation by Six1/4 factors,is exem?plified by the?111 kb?Myf5 enhancer[J].Developmen?tal Biology,2013,376(2):236-244.
[36] WU W J,REN Z Q,CHEN C,et al.Subcellular locali?zation of different regions of porcine Six1 gene and its expression analysis in C2C12myoblasts[J].Molecular Biology Reports,2012,39(12):9995-10002.
[37] LI Z X,DENG D M,HUANG H C,et al.Overexpres?sion of Six1 leads to retardation of myogenic differen?tiation in C2C12myoblasts[J].Molecular Biology Re?ports,2013,40(1):217-223.
[38] WU W J,REN Z Q,ZHANG L,et al.Overexpression of Six1 gene suppresses proliferation and enhances ex?pression of fast?type muscle genes in C2C12myoblasts [J].Molecular and Cellular Biochemistry,2013,380 (1/2):23-32.
[39] WU W J,REN Z Q,LIU H L,et al.Core promoter a?nalysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation[J].Gene,2013,529(2):238-244.
[40] LIU Y B,CHAKROUN I,YANG D B,et al.Six1 Regulates MyoD expression in adult muscle progenitor cells[J].PloS One,2013,8(6):e67762.
[41] ZHANG H,STAVNEZER E.Ski regulates muscle ter?minal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3[J].Journal of Biological Chemistry,2009,284(5):2867-2879.
[42] BESSARAB D A,CHONG S W,SRINIVAS B P,et al.Six1a is required for the onset of fast muscle differ?entiation in zebrafish[J].Developmental Biology,2008,323(2):216-228.
[43] YAJIMA H,MOTOHASHI N,ONO Y,et al.Six fam?ily genes control the proliferation and differentiation of muscle satellite cells[J].Experimental Cell Research,2010,316(17):2932-2944.
[44] RELAIX F,DEMIGNON J,LACLEF C,et al.Six ho?meoproteins directly activate Myod expression in the gene regulatory networks that control early myogenesis [J].PLoS Genetics,2013,9(4):e1003425.
[45] FU X,WANG H T,HU P.Stem cell activation in skeletal muscle regeneration[J].Cellular and Molecu?lar Life Sciences,2015:1-15.
[46] NORD H,SKALMAN L N,VON HOFSTEN J.Six1 regulates proliferation of Pax7?positive muscle progen?itors in zebrafish[J].Journal of Cell Science,2013,126(8):1868-1880.
[47] NORD H,BURGUIERE A C,MUCK J,et al.Differ?ential regulation of myosin heavy chains defines new muscle domains in zebrafish[J].Molecular Biology of the Cell,2014,25(8):1384-1395.
[48] KOSTEK M C,CHEN Y W,CUTHBERTSON D J,et al.Gene expression responses over 24 h to lengthening and shortening contractions in human muscle:major changes in CSRP3,MUSTN1,SIX1,and FBXO32[J].Physiological Genomics,2007,31(1):42-52.
[49] NIRO C,DEMIGNON J,VINCENT S,et al.Six1 and Six4 gene expression is necessary to activate the fast? type muscle gene program in the mouse primary myo?tome[J].Developmental Biology,2010,338(2):168-182.
[50] HETZLER K L,COLLINS B C,SHANELY R A,et al.The homoeobox gene Six1 alters myosin heavy chain isoform expression in mouse skeletal muscle [J].Acta Physiologica,2014,210(2):415-428.
[51] QUIAT D,VOELKER K A,PEI J M,et al.Concerted regulation of myofiber?specific gene expression and muscle performance by the transcriptional repressor Sox6[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108 (25):10196-10201.
[52] AN C I,GANIO E,HAGIWARA N.Trip12,a HECT domain E3 ubiquitin ligase,targets Sox6 for proteaso?mal degradation and affects fiber type?specific gene expression in muscle cells[J].Skeletal Muscle,2013,3(1):11.
[53] RICHARD A F,DEMIGNON J,SAKAKIBARA I,et al.Genesis of muscle fiber?type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression [J].Developmental Biology,2011,359(2):303-320.
Regulation of Skeletal Muscle Development and Muscle Fiber?Type Transition by Six1
XU Meng CHEN Xiaoling CHEN Daiwen YU Bing LUO Junqiu HE Jun MAO Xiangbing YU Jie ZHENG Ping HUANG Zhiqing
?
(責(zé)任編輯 陳 燕)
(Key Laboratory for Animal Disease?Resistance Nutrition of China Ministry of Education,Institute of Animal Nutrition,Sichuan Agricultural University,Chengdu 611130,China)
Abstract:Six1 is a recently discovered key regulator of skeletal muscle development and muscle fiber?type transition.Six1 gene is widely expressed in a variety of different tissues.Notably,expression is most abundant in skeletal muscle.Six1 regulates skeletal muscle development,muscle injury repair,and muscle fiber?type transition from embryonic period to entire process of postnatal life of animals.This paper reviewed the discover?y of Six1 gene,structure of Six1 protein,expression profiling of Six1 gene in different kinds of animals,and role of Six1 in skeletal muscle development,muscle injury repair and muscle fiber?type transition.[Chinese Journal of Animal Nutrition,2015,27(7):2005?2011]
Key words:Six1;skeletal muscle development;muscle fiber?type transition;expression profiling
Corresponding author?,professor,E?mail:zqhuang@sicau.edu.cn
通信作者:?黃志清,研究員,博士生導(dǎo)師,E?mail:zqhuang@sicau.edu.cn
作者簡介:徐 孟(1991—),男,四川丹棱人,碩士研究生,從事動(dòng)物營養(yǎng)與飼料科學(xué)研究。E?mail:youhunyoulu@163.com
基金項(xiàng)目:國家自然科學(xué)基金面上項(xiàng)目(31472110)
收稿日期:2015-02-07
doi:10.3969/j.issn.1006?267x.2015.07.004
文章編號:1006?267X(2015)07?2005?07
文獻(xiàn)標(biāo)識碼:A
中圖分類號:S852.2