高蘭德, 張建輝, 冷艷麗, 王永成
(1. 蘭州資源環(huán)境職業(yè)技術(shù)學(xué)院, 蘭州 730021; 2. 西北師范大學(xué)化學(xué)化工學(xué)院, 蘭州 730070)
FeO+催化N2O與CO反應(yīng)的密度泛函理論研究
高蘭德1, 張建輝1, 冷艷麗1, 王永成2
(1. 蘭州資源環(huán)境職業(yè)技術(shù)學(xué)院, 蘭州 730021; 2. 西北師范大學(xué)化學(xué)化工學(xué)院, 蘭州 730070)
本文采用密度泛函理論DFT-B3LYP方法6-311+G(2d) 的基組, 計(jì)算研究了氣相中六重態(tài)和四重態(tài)FeO+離子催化N2O和CO生成N2和 CO2反應(yīng)的微觀機(jī)理, 通過(guò)計(jì)算兩種重態(tài)金屬離子親氧性(OA), 從熱力學(xué)方面說(shuō)明了主題反應(yīng)的可行性.分析反應(yīng)過(guò)程的熱力學(xué)性質(zhì)和動(dòng)力學(xué)因素得到FeO+與N2O復(fù)合生成反應(yīng)復(fù)合物, 之后繼續(xù)與CO復(fù)合成中間體是能量有利反應(yīng)路徑,所得結(jié)果與實(shí)驗(yàn)觀測(cè)相符.
FeO+; N2O和CO; 反應(yīng)機(jī)理; 密度泛函理論
一直以來(lái),對(duì)小分子的反應(yīng)研究在實(shí)驗(yàn)和理論上得到人們的廣泛關(guān)注,特別是對(duì)一些大氣污染物的消除在近年來(lái)引起了很多領(lǐng)域的重視[1-6], 此外, 金屬陽(yáng)離子或金屬氧化物陽(yáng)離子可在多相催化及均相催Z化體系中提供基本的催化作用, 在許多反應(yīng)中發(fā)揮了關(guān)鍵作用, 例如作為高效催化劑分解空氣污染物NxOy和CO, 以及催化轉(zhuǎn)化這些大氣污染物,無(wú)論在經(jīng)濟(jì)上還是環(huán)境保護(hù)上都具有重要的意義[7,8]. 從1981年Kappes和Staley[9]首次發(fā)現(xiàn)了過(guò)渡金屬離子催化消除N2O 和 CO的第一個(gè)催化循環(huán)反應(yīng)和前人工作的報(bào)道,到我們以前的工作,說(shuō)明一些金屬原子和離子與N2O 和NO2的反應(yīng)、金屬氧化物陽(yáng)離子充當(dāng)了NxOy與 CO 反應(yīng)的催化媒介, 催化NO2+ CO → NO + CO2、N2O + CO → N2+ CO2的反應(yīng)是減少污染氣體NO2、N2O和CO的有效途徑[10-17].
自2003年以來(lái),B?hme,Blagojevic等運(yùn)用ICP/SIFT技術(shù)對(duì)所有金屬離子轉(zhuǎn)化N2O、CO為N2、CO2的催化過(guò)程反應(yīng)進(jìn)行了系統(tǒng)深入的實(shí)驗(yàn)研究[7-9],對(duì)所有過(guò)渡金屬離子活化過(guò)程的熱力學(xué)和動(dòng)力學(xué)特征作了詳細(xì)的報(bào)道,注意到堿金屬離子催化N2O + CO → NO + CO2是一個(gè)減少污染氣體NO2和CO的有效途徑,對(duì)于N2O + H2→H2O + N2則反應(yīng)得到其他產(chǎn)物. 本文以B?hme等關(guān)于FeO+催化反應(yīng)N2O、CO的實(shí)驗(yàn)研究為依據(jù)[7],運(yùn)用密度泛函(DFT)理論對(duì)目標(biāo)反應(yīng)進(jìn)行了比較深入全面的計(jì)算研究,對(duì)二個(gè)重態(tài)勢(shì)能面進(jìn)行了計(jì)算,對(duì)催化中熱過(guò)程進(jìn)行了探討, 并通過(guò)對(duì)比Fe+催化反應(yīng)N2O、CO的實(shí)驗(yàn)和理論結(jié)果[12], 得到該催化過(guò)程的特點(diǎn).
先前研究[18-20]表明密度泛函理論 (DFT) 在對(duì)多電子體系勢(shì)能面描述, 電子結(jié)構(gòu)預(yù)測(cè)和熱化學(xué)特征表述有很好的可靠性. 由此, 為了獲得標(biāo)題反應(yīng)勢(shì)能面的結(jié)構(gòu)和能量信息, 本文采用UB3LYP方法在6-311+G(2d)[21-23]基組下, 對(duì)反應(yīng)勢(shì)能面上的反應(yīng)物, 中間體, 過(guò)渡態(tài)和產(chǎn)物的構(gòu)型進(jìn)行全參數(shù)優(yōu)化, 并通過(guò)頻率分析證實(shí)了各反應(yīng)物, 中間體和產(chǎn)物的能量是局部極小,各過(guò)渡態(tài)構(gòu)型有唯一振動(dòng)虛頻. 通過(guò)對(duì)每一個(gè)鞍點(diǎn)進(jìn)行內(nèi)稟反應(yīng)坐標(biāo) (IRC)[24]計(jì)算,證實(shí)了反應(yīng)坐標(biāo)分別生成產(chǎn)物和反應(yīng)物. 全部計(jì)算工作采用Gaussian03[25]程序完成,分子的幾何構(gòu)型全部由Gauss View程序從計(jì)算結(jié)構(gòu)直接轉(zhuǎn)換而來(lái).
對(duì)各反應(yīng)物、中間體、過(guò)渡態(tài)及產(chǎn)物的優(yōu)化結(jié)構(gòu)列于圖 1,其中過(guò)渡態(tài)結(jié)構(gòu)的振動(dòng)向量用箭頭表示, 六重態(tài)結(jié)構(gòu)參數(shù)用較大形式標(biāo)示.
圖1 反應(yīng)物、中間體、過(guò)渡態(tài)和產(chǎn)物的幾何構(gòu)型及過(guò)渡態(tài)虛振動(dòng)模式(鍵長(zhǎng)?, 鍵角°)Fig. 1 Geometries of the critical on the potential energy surface (bond length in angstrom, bond angle in degree)
3.1 計(jì)算親氧性(OA)
反應(yīng)N2O + CO → N2+ CO2放熱ΔHR=361.3 kJ·mol-1(文獻(xiàn)報(bào)道ΔHR= 362.8 kJ·mol-1[7]),但由于反應(yīng)勢(shì)壘較高,E≠ 為 197.5 kJ·mol-1[7], 在常溫下反應(yīng)很難進(jìn)行. 然而, 如果有合適的金屬氧化物陽(yáng)離子(MO+)參與此反應(yīng), 將會(huì)使反應(yīng)勢(shì)壘大大降低. 從熱力學(xué)角度分析, 具有這樣傳氧能力的過(guò)渡金屬氧化物陽(yáng)離子親氧性(OA)順序大小必須滿足OA (N2) < OA(MOn+) < OA(CO). 為了考察FeO+的親氧性是否滿足此條件, 本文計(jì)算了N2、CO的親氧性, 其數(shù)值為OA(N2)=128.0 kJ·mol-1, OA(CO)= 495.1 kJ·mol-1(實(shí)驗(yàn)值分別為167.4, 531.4 kJ·mol-1[6,7]).并根據(jù)MO+的親氧性定義[26]:OA(MO+) = IE(MO+) + D298(MO-O) - IE(MO2), 計(jì)算了六重態(tài)和四重態(tài)Fe+的親氧性,其結(jié)果是OA (6FeO+) = 205.7 kJ·mol-1, OA (4FeO+)= 204.4 kJ·mol-1, 這說(shuō)明要6FeO+和4FeO+滿足上述親氧性次序,能從N2O奪得O并傳給CO熱力學(xué)允許, 是良好的催化劑.
圖2 FeO+催化N2O與CO反應(yīng)的路徑示意圖Fig. 2 Diagram for the reaction of N2O with CO catalyzed by FeO+
3.2 FeO+催化反應(yīng)N2O + CO → N2+ CO2的機(jī)理
反應(yīng)N2O + FeO+→ N2+ FeO2+中FeO+的基態(tài)為六重態(tài),能量最低激發(fā)態(tài)為四重態(tài), 同時(shí)N2O具有兩個(gè)配位體的η2-NO, η2-NN和具有單配位體的η1-O,η1-N結(jié)構(gòu). 根據(jù)圖1和圖2所示該催化過(guò)程有兩種機(jī)理:其中機(jī)理一為;N2O與FeO+的反應(yīng)生成的FeO2+和CO繼續(xù)反應(yīng). 路徑為:6/4FeO+離子與N2O相互靠近時(shí), 因分子間相互作用, 形成兩種離子偶極復(fù)合物6IM1和4IM1. 作用過(guò)程是FeO+離子中的Fe與N2O分子中的η1-O原子發(fā)生耦合, 其中鍵角[N-N-OFeO]為177°左右,構(gòu)型均為平面結(jié)構(gòu)復(fù)合物, 電子態(tài)分別為6A′和4A′,兩反應(yīng)復(fù)合物能量分別比反應(yīng)物低119.4和128.3 kJ·mol-1. 沿著反應(yīng)路徑, 分別經(jīng)過(guò)過(guò)渡態(tài)6TS12 和4TS12中間體轉(zhuǎn)變成反應(yīng)復(fù)合物6IM2和4IM2,兩過(guò)渡態(tài)都是C1構(gòu)型,6A和4A電子態(tài). 兩者的能量都高于反應(yīng)物能量, 其中6TS12與4TS12相比能量低12.8 kJ·mol-1, 該過(guò)程出現(xiàn)兩次勢(shì)能面交叉現(xiàn)象. 由圖 1 和圖 2還可以看出, 起始反應(yīng)物FeO2+進(jìn)攻CO形成相應(yīng)的反應(yīng)復(fù)合物:6IM3和4IM3. 對(duì)于2IM3,經(jīng)過(guò)具有相應(yīng)形成[OFeO-CO]+鍵振動(dòng)向量的過(guò)渡態(tài)6TS34和4TS34, 重整生成6IM4和4IM4, 之后伴隨[OFe-OCO]+鍵的拉長(zhǎng), 反應(yīng)生成6FeO++ CO2和4FeO++ CO2.
反應(yīng)過(guò)程還存在另外一種機(jī)理,從圖2中我們可以看出經(jīng)過(guò)中間體6IM1 (4IM1), 反應(yīng)路徑還生成中間體6IM5 (4IM5), 該中間體是由6IM1(4IM1)中的Fe和CO中C原子作用得到. 從熱力學(xué)角度考慮,6IM5 (4IM5)的生成較的6TS12 (4TS12)更為有利些, 之后中間體6IM5 (4IM5) 吸收98.9 (153.7) kJ·mol-1生成過(guò)渡態(tài)6TS56 (4TS56). 沿著反應(yīng)路徑過(guò)渡態(tài)生成線性中間體6IM5 (4IM5). 伴隨著6IM5 (4IM5)中NN-Fe鍵和OCO-Fe鍵的斷裂, 反應(yīng)進(jìn)一步生成產(chǎn)物6FeO+(4FeO+), N2和CO2. 從熱力學(xué)角度分析, 在反應(yīng)過(guò)程中, 形成過(guò)渡態(tài)TS12和N2+FeO2+的生成, 較生成TS56困難, 因此, 能量最有利的反應(yīng)途徑為FeO++N2+CO →IM1+CO →IM5 →TS56 →IM6 →IM4+CO2→FeO++ N2+CO2.
3.3 FeO+催化N2O與CO反應(yīng)過(guò)程的特點(diǎn)
陳東平等人[12]采用DFT-UB3LYP方法, 6-311+G(2d)基組水平上研究了Fe+催化反應(yīng)N2O+CO→N2+CO2的微觀機(jī)理. 對(duì)比發(fā)現(xiàn)Fe+和FeO+催化N2O與CO反應(yīng)過(guò)程有以下特點(diǎn):(1) 在活化N2O分子中N-O鍵的過(guò)程中, 都是金屬離子與N2O分子中η1-O作用,形成反應(yīng)復(fù)合物, 在之后的路徑中, Fe+體系生成FeO+和N2, FeO+進(jìn)而與CO反應(yīng)生成Fe+和CO2反應(yīng)過(guò)程出現(xiàn)兩次勢(shì)能面的交叉, 有效降低了反應(yīng)的活化能, 該過(guò)程為催化反應(yīng)機(jī)理; 而FeO+體系中能量最有利反應(yīng)路徑是FeO+與N2O生成反應(yīng)復(fù)合物之后繼續(xù)與CO復(fù)合成中間體, 經(jīng)過(guò)一系列反應(yīng)過(guò)程生成FeO+, N2和CO2, 該過(guò)程無(wú)需為體系提供能量以克服活化能, 所得結(jié)論與實(shí)驗(yàn)觀測(cè)一致.
采用密度泛函DFT-UB3LY方法, 6-311+G(2d)基組, 從基態(tài)和能量最低激發(fā)態(tài)研究了FeO+離子催化反應(yīng)N2O+CO反應(yīng)的微觀機(jī)理, 得出以下結(jié)論: 通過(guò)計(jì)算親氧性得到,6FeO+和4FeO+滿足OA (N2) [1] Armentrout P B. Chemistry of excited electronic states [J].Science, 1991, 251 (11): 175. [2] Delabie A, Vinckier C, Flock M,etal. Evaluating the activation barriers for transition metal N2O reactions [J].J.Phys.Chem. A, 2001, 105: 5479. [3] Stirling A. Oxygen-transfer reactions between 3d transition metals and N2O and NO2[J].J.Am.Chem.Soc., 2002, 124: 4058. [4] Lavrov V V, Blagojevic V, Koyanagi G K,etal. Gas-phase oxidation and nitration of first-, second-, and third-row atomic cations in reactions with nitrous oxide: periodicities in reactivity [J].J.Phys.Chem. A, 2004, 108: 5610. [7] B?hme D K, Schwarz H. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts [J].Angew.Chem.Int.Ed.Engl., 2005, 44: 2336. [8] Blagojevic V, Oriova G, B?hme D K. O-atom transport catalysis by atomic cations in the gas phase: reduction of N2O by CO [J].J.Am.Chem.Soc., 2005, 127: 3545. [9] Kappes M M, Staley R H. Gas-phase oxidation catalysis by transition-metal cations [J].J.Am.Chem.Soc., 1981, 103: 1286. [10] Yang X Y, Wang Y C, Geng Z Y,etal. Theoretical study of the reactivity of 4d transition metal ions with N2O [J].Chem.Phys.Lett., 2006, 430: 265. [11] Wang Y C, Zhang J H, Geng Z Y,etal. Theoretical investigation for the reaction of NO2with CO catalyzed by Sc+[J].Chem.Phys.Lett., 2007, 446: 8. [12] Chen D P, Kong C, Han Y Xia,etal. Theoretical study of catalytic oxidation cycles of CO with N2O by Fe+in gas phase [J].J.At.Mol.Phys., 2013, 30(4): 517(in Chinese) [陳東平, 孔超, 韓艷霞, 等. 氣相中Fe+催化CO與N2O循環(huán)反應(yīng)的理論計(jì)算研究 [J]. 原子與分子物理學(xué)報(bào), 2013, 30(4): 517] [13] Zhang J H, Leng Y L, Wang Y C. Theoretical study for the reduction of N2O with CO mediated by alkaline-earth metal oxide cations2MO+(M=Ca, Sr, Ba) [J].J.At.Mol.Phys., 2013, 30(4): 525(in Chinese) [張建輝, 冷艷麗, 王永成. 堿土金屬氧化物陽(yáng)離子2MO+(M=Ca,Sr,Ba)參與N2O與CO反應(yīng)理論研究[J]. 原子與分子物理學(xué)報(bào), 2013, 30(4): 525] [14] Leng Y L,Zhang J H,Wu X M,etal. Theoretical study for the reaction of N2O with H2mediated by2Sr+and2Ba+in the gas[J].J.At.Mol.Phys., 2013, 30(3): 379(in Chinese) [冷艷麗, 張建輝, 吳曉鳴, 等.氣相中2Sr+,2Ba+介入N2O與H2反應(yīng)的理論研究[J]. 原子與分子物理學(xué)報(bào), 2013, 30(3): 379] [15] Wang Y C, Wang Q Y, Geng Z Y,etal. DFT study of the spin-forbidden reaction of N2O and CO catalyzed by Pt+[J].Chem.Phys.Lett., 2008, 460: 13. [16] DasicA, Zhao X, B?hme D K. Exploration of the catalytic oxidation of ethylene with N2O mediated by atomic alkaline-earth metal cations[J].Int.J.MassSpectrom, 2006, 254: 155. [17] B?hme D K, Blagojevic V, Jarvis M J Y,etal. Gas-phase reduction of oxides of nitrogen with CO catalyzed by atomic transition-metal cations[J].Angew.Chem.Int.Ed., 2003, 42: 4923. [18] Wang Y C, Wang Q, Geng Z Y,etal. CH4activation by W atom in the gas phase: a case of two-state reactivity process [J].J.Phys.Chem. A, 2009, 113: 13808. [19] Su M D, Chu S Y. Density functional study of some germylene insertion reactions [J].J.Am.Chem.Soc., 1999, 121: 4229. [20] Wu X M, Zhang J H, Feng G Y. DFT study for the reduction of N2O and CO, N2O and H2mediated by Ca+[J].J.At.Mol.Phys., 2011, 28(4): 611(in Chinese) [吳曉鳴, 張建輝, 馮國(guó)勇. 氣相中2Ca+介入N2O與CO, N2O與H2反應(yīng)的計(jì)算研究[J]. 原子與分子物理學(xué)報(bào), 2011, 28(4): 611] [21] Becke A D. Density-functional thermochemistry. III. the role of exact exchange [J].J.Chem.Phys., 1993, 98: 5648. [22] Stephens P J, Devlin F J, Chablowski C F,etal. Ab initiocalculation of vibrational absorption and circular dichroism spectra using density functional force fields [J].J.Phys.Chem., 1994, 98(45): 11623. [23] Gronert S. The need for additional diffuse functions in calculations on small anions: the G2(DD) approach [J].Chem.Phys.Lett., 1996, 252: 415. [24] Gonzalez C, Schlegel H B. Reaction path following in mass-weighted internal coordinates [J].J.Phys.Chem., 1990, 94: 5523. [25] Frisch M J, Trucks G W, Schegel H B,etal. Gaussian 03, Gaussian Inc., Pittsburgh PA, 2003. [26] Blagojevic V, Koyanagi G K, Lavrov V V,etal. Ion-molecule reactions of W+and WO+: new and improved values for IE(WO), D298(W+-O), D298(W-O) and ΔfH0298(WO) [J].Chem.Phy.Lett., 2004, 389: 303. DFT study for the reaction of N2O and CO catalyzed by FeO+ GAO Lan-De1, ZHANG Jian-Hui1, LENG Yan-Li1, WANG Yong-Cheng2 (1.Lanzhou Resources & Environment Voc-Tech College, Lanzhou 730021, China;2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China) The mechanism of the reaction N2O and CO catalyzed by FeO+to N2and CO2has been investigated on sextet and quartet energy surfaces. The reactions are studied by using the UB3LYP density functional theory and the standard 6-311+G(2d) basis sets. The O-atom affinities testified that the argumentation is thermodynamically allowed. It is kinetically and thermodynamically feasible that the N2O interact with the FeO+and CO to form intermediate. Our calculated results show the title reactions are basically consistent with the experimental postulate. FeO+; N2O and CO; Reaction mechanism; Density functional theory (DFT) 2015-01-25 甘肅省高等學(xué)??蒲许?xiàng)目(2014B-136) 高蘭德(1978—),男,甘肅平?jīng)鋈耍T士,副教授,主要從事計(jì)算化學(xué)研究.E-mail: 5878874@qq.com 張建輝.E-mail: gszhangjh@126.com 103969/j.issn.1000-0364.2015.10.006 O643.12 A 1000-0364(2015)05-0749-05