• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    細粒棘球絳蟲三磷酸甘油醛脫氫酶基因的克隆、表達及其分子特征的生物信息學分析

    2015-03-22 08:46:36王家海胡丹丹鐘秀琴宋星桔古小彬楊光友
    畜牧獸醫(yī)學報 2015年9期
    關鍵詞:棘球絳蟲細粒

    王家海,王 凝,胡丹丹,鐘秀琴,宋星桔,古小彬,汪 濤,楊光友*

    (1.四川農(nóng)業(yè)大學動物醫(yī)學院,雅安 625014;2.四川省渠縣動物疫病預防控制中心,渠縣 635200)

    細粒棘球絳蟲三磷酸甘油醛脫氫酶基因的克隆、表達及其分子特征的生物信息學分析

    王家海1,2,王 凝1,胡丹丹1,鐘秀琴1,宋星桔1,古小彬1,汪 濤1,楊光友1*

    (1.四川農(nóng)業(yè)大學動物醫(yī)學院,雅安 625014;2.四川省渠縣動物疫病預防控制中心,渠縣 635200)

    三磷酸甘油醛脫氫酶(GAPDH)是糖酵解途徑中的關鍵酶,現(xiàn)已發(fā)現(xiàn)該酶可作為一些寄生蟲的疫苗候選分子和藥物靶標。然而,有關絳蟲三磷酸甘油醛脫氫酶的研究報道較少。為探究細粒棘球絳蟲GAPDH(EgGAPDH)的分子特征與應用價值,克隆細粒棘球絳蟲的GAPDH基因,并以生物信息學方法對其進行系統(tǒng)的分析。結(jié)果顯示:EgGAPDH基因全長1 011 bp,編碼336個氨基酸。EgGAPDH是由4個結(jié)構(gòu)相同的單體蛋白(O、P、Q、R)組成的一個同源四聚體,每個單體蛋白質(zhì)含有3個活性中心,即NAD+綁定區(qū)域(aa 4-151 和aa 315-336)、催化結(jié)合區(qū)域(aa 156-314)和一個酶活性位點(aa 149-156)。通過對EgGAPDH的氨基酸序列的抗原表位預測得到了16個B細胞抗原表位和9個T細胞結(jié)合位點;Western blot顯示原核表達的重組EgGAPDH能與感染細粒棘球蚴的小鼠血清發(fā)生特異性結(jié)合;以純化的重組EgGAPDH蛋白為抗原通過ELISA法檢測17份細粒棘球蚴小鼠陽性血清,陽性檢出率為100%。試驗結(jié)果表明:成功克隆并表達細粒棘球絳蟲的EgGAPDH基因,EgGAPDH蛋白具有3個酶功能區(qū)域和多個免疫結(jié)合位點,Western blot和ELISA結(jié)果顯示,該蛋白質(zhì)可能具有作為抗細粒棘球蚴的藥物靶標和疫苗候選分子的潛力。

    細粒棘球絳蟲;3-磷酸甘油醛脫氫酶(GAPDH);分子特征

    細粒棘球絳蟲(Echinococcusgranulosus)的中絳期幼蟲——細粒棘球蚴寄生于動物(綿羊、山羊、牦牛、黃牛和水牛等)和人的肝、肺及其他器官內(nèi)而引起細粒棘球蚴病/囊型包蟲病(cystic hydatid disease/ cystic echinococcosis)[1-4]。本病是一種呈世界性分布的人獸共患寄生蟲病[5],已被列為我國《國家中長期動物疫病防治規(guī)劃》(2012—2020年)優(yōu)先防治和重點防范的動物疫病。

    手術(shù)是被認為根除包蟲病較為有效的手段,然而,由于經(jīng)濟因素和環(huán)境條件等的限制,藥物治療是針對大多數(shù)動物包蟲病較為合理的方式[6]?,F(xiàn)有研究資料表明,抗蠕蟲藥物對細粒棘球蚴的作用效果較低[1],因此,尋找針對細粒棘球蚴的新藥物靶標是包蟲病防治研究中的一個重要方向。同時,疫苗的研發(fā)和應用被認為是控制囊型包蟲病最有效的策略之一。到目前為止,細粒棘球絳蟲僅有六鉤蚴抗原Eg95被成功開發(fā)為進入生產(chǎn)應用的疫苗[7]。同時,有研究表明, Eg95疫苗對不同基因型和不同地區(qū)的細粒棘球絳蟲的免疫效果存在一定的差異[8-9]。因此,篩選對不同地理株和不同基因型的細粒棘球絳蟲均具有優(yōu)良免疫效果的疫苗候選分子也是非常必要的。

    三磷酸甘油醛脫氫酶(GAPDH)是糖酵解途徑中的一個關鍵酶,催化3-磷酸甘油醛轉(zhuǎn)變?yōu)?,3-二磷酸甘油醛,同時以NAD+為受氫體生成NADH。棘球?qū)俳{蟲同其他寄生蟲一樣,糖酵解是其獲得能量的主要方式[10-11]。目前對細粒棘球絳蟲的糖酵解途徑和EgGAPDH尚無研究報道。在本研究中作者進行了細粒棘球絳蟲GAPDH基因的克隆與原核表達,通過生物信息學分析、Western blot和ELISA等探討了細粒棘球絳蟲GAPDH蛋白作為包蟲病疫苗候選抗原及藥物靶標的可能性,同時研究結(jié)果將有助于深入了解細粒棘球絳蟲的生長發(fā)育機理,并為包蟲病疫苗候選抗原及藥物靶標的深入研究奠定基礎。

    1 材料與方法

    1.1 RNA提取及逆轉(zhuǎn)錄

    采用RNA試劑盒(Thermo公司 K-002200-C1-100)提取細粒棘球蚴包囊中的原頭蚴(獲自四川省包蟲病患者經(jīng)手術(shù)切除的包囊)的總RNA,按Fermentss反轉(zhuǎn)錄試劑盒(Thermo公司 K1621)操作步驟將RNA逆轉(zhuǎn)錄成cDNA。保存于-70 ℃冰箱備用。

    1.2EgGAPDH基因克隆及序列分析

    以細粒棘球絳蟲基因組的GAPDH基因(www.genedb.org)為模板,設計一對特異性引物,P1(5′-CGCGGATCCATGAAGCCCCAGGTCGG-3′)和P2(5′-AAGCTTTCAAGCAGTAATTACTTGACAGGG-3′),上游引物添加酶切位點BamHⅠ,下游引物添加酶切位點HindⅢ。

    以原頭蚴cDNA為模板,采用25 μL體系進行PCR擴增,條件:95 ℃ 5 min,35個擴增循環(huán)(95 ℃ 45 s,50 ℃ 50 s,72 ℃ 50 s), 72 ℃ 10 min。PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳回收,按pMD-T19載體試劑盒說明書(TaKaRa)的方法進行連接,且轉(zhuǎn)化入DH5α感受態(tài)細胞,經(jīng)培養(yǎng)后將菌液涂布于含0.1 mg·mL-1氨芐青霉素的LB固體培養(yǎng)基,37 ℃培養(yǎng)14~16 h;以上述P1、P2為引物經(jīng)PCR篩選出陽性克隆菌,將陽性單克隆菌送往英濰捷基生物技術(shù)有限公司測序,測序正確的菌命名為pMD-T19-GAPDH。

    將測序得到的核苷酸序列翻譯成氨基酸序列后,應用NCBI中的BlastP (http://www.ncbi.nlm.nih.gov/BLAST)搜尋氨基酸同源序列,并運用Clustal X 2.0[12]進行序列同源聯(lián)配,用DNAStar軟件中的MegAlign程序進行氨基酸序列相似性分析。運用PhyML3.1[13]軟件分析NCBI搜索得到的同源氨基酸序列且構(gòu)建ML系統(tǒng)發(fā)育樹。運用ProtParam (http://ca.expasy.org/tools/protparam/html)軟件預測EgGAPDH的相對分子質(zhì)量、等電點和穩(wěn)定性;MotifScan (http://myhits.isb-sib.ch/cgi-bin/motif_scan)分析翻譯后的修飾位點;InterPro Scan (http://www.ebi.ac.uk/InterProScan/)預測酶的功能區(qū)域和活性位點;TMpred (http://www.ch.embnet.org/software/TMPRED_form.html)預測跨膜區(qū)域。采用DNAStar 和 BepiPred 1.0 Server (http://www.cbs.dtu.dk/services/BepiPred/)軟件預測EgGAPDH的線性B細胞表位;應用NetCTL 1.2 Server (http://www.cbs.dtu.dk/services/NetCTL/)軟件分析EgGAPDH的T細胞結(jié)合位點。采用Predictprotein (http://www.predictprotein.org/)預測EgGAPDH的二級結(jié)構(gòu)。采用Swiss-Model Workspace[14]對EgGAPDH進行同源性分子建模,并采用PROCHECK[15]軟件對3維模型進行檢驗。

    1.3 重組質(zhì)粒的構(gòu)建及鑒定

    用BamHⅠ和HindⅢ分別酶切PMD-T19-GAPDH陽性質(zhì)粒和pET32a(+)載體質(zhì)粒,將酶切后的片段經(jīng)膠回收后,按《分子克隆實驗指南》的方法連接且轉(zhuǎn)化大腸桿菌BL21。采用BamHⅠ和HindⅢ雙酶切鑒定出陽性克隆菌,并將鑒定正確的菌株送往英濰捷基生物技術(shù)有限公司測序,測序正確的菌命名為pET32a-GAPDH。

    1.4 EgGAPDH重組蛋白質(zhì)的誘導表達及純化

    將pET32a-GAPDH重組菌接種于含0.1 mg·mL-1氨芐青霉素的 LB液體培養(yǎng)基中,37 ℃培養(yǎng)過夜。按1%的比例接種于100 mL LB液體培養(yǎng)基中,于37 ℃振蕩培養(yǎng)至菌液OD600 nm=0.5~1.0,加入IPTG至終濃度為1 mmol·L-1,繼續(xù)振蕩培養(yǎng)4 h后,4 ℃ 10 000 r·min-1離心10 min,棄上清,收集細菌沉淀。用Tris-HCl(50 mmol·L-1,pH8.5)懸菌,對誘導后收集的菌懸液進行超聲處理,離心后分別取上清和沉淀進行SDS-PAGE確定重組蛋白質(zhì)的表達形式。將大量表達的蛋白質(zhì)按照BIORAD公司的ProfinityTMIMAC Resins純化蛋白質(zhì)說明書對蛋白質(zhì)進行Ni2+親和層析(FPLC)過柱純化,純化后的蛋白質(zhì)用SDS-PAGE進行檢測。

    1.5 小鼠血清的制備

    陽性血清:取4~5周齡的健康雄性昆明小白鼠17只,按5 000原頭蚴·只-1的劑量給小鼠腹腔攻蟲。9個月后,解剖收集包囊確認陽性后采血制備血清。

    陰性血清:采集13只4~5周齡的健康雄性昆明小白鼠血液,制備血清。

    1.6 rEgGAPDH的Western blot分析

    Western blot分析參考H.Towbin等的方法進行[16]。純化的rEgGAPDH經(jīng)SDS-AGE分離并電轉(zhuǎn)移至硝酸纖維素膜。以5%脫脂奶粉封閉2 h,以1.5制備的小鼠陽性血清(1∶500稀釋)室溫孵化2 h,PBST洗3次,以1∶3 000稀釋羊抗鼠IgG-HRP(BIORAD公司)室溫孵化1 h,經(jīng)PBST洗滌3次,加底物4-氯-1-萘酚顯色并拍照。

    1.7 rEgGAPDH的ELISA分析

    用0.05 mol·L-1pH 9.6 碳酸鹽緩沖液將“1.4”純化的蛋白質(zhì)稀釋作為包被抗原,稀釋質(zhì)量濃度為0.16、0.08、0.04和0.02 μg·μL-1個梯度。向96孔的ELISA板滴加包被抗原100 μL·孔-1,37 ℃溫箱孵育2 h后,4 ℃過夜包被;次日將ELISA板甩干,用PBST洗滌3次,5 min·次-1,每孔加入100 μL含5% 脫脂奶粉的封閉液37 ℃封閉2 h,甩干;用PBST洗滌3次,將1.5制備的標準陰性、陽性小鼠血清用PBS依次作1∶50、1∶100、1∶200、1∶400共4個梯度做ELISA方陣滴定,100 μL·孔-1,37 ℃作用1 h;甩干,用PBST洗滌3次后加入1∶3 000稀釋羊抗鼠IgG-HRP (BIORAD),100 μL·孔-1,37 ℃ 1 h ;同上甩干后用PBST洗滌3次,每孔加入100 μL的TMB底物顯色液,37 ℃避光反應20 min,每孔加入2 mol·L-1H2SO4100 μL終止反應,用酶標儀(Thermo公司)于450 nm處測定OD450 nm。P/N值最大時的抗原包被量和血清稀釋倍數(shù)為最佳工作濃度。

    2 結(jié) 果

    2.1 EgGAPDH序列分析

    從細粒棘球絳蟲的原頭蚴cDNA中經(jīng)RT-PCR擴增得到約1 011bp的基因片段(圖1)。測序得到的序列長度為1 011bp(GenBankNo.KF894802),該基因編碼1個336個氨基酸的多肽,蛋白質(zhì)理論相對分子質(zhì)量為36.15ku,PI為8.44。通過BLAST搜索和ClustalX序列對比顯示,EgGAPDH氨基酸序列與多房棘球絳蟲、豬帶絳蟲、膜殼絳蟲、猬迭宮絳蟲、人、綿羊、牦牛的GAPDH相似性分別為97%、92%、72%、82%、75%、74%、74%。其中,與多房棘球絳蟲的相似性最高。

    1~3.EgGAPDH的PCR產(chǎn)物;4.DL2000 DNA相對分子質(zhì)量標準1-3.PCR product of EgGAPDH;4.DL2000 DNA marker圖1 EgGAPDH基因PCR擴增Fig.1 PCR products of EgGAPDH gene

    以不同種屬寄生蟲和哺乳動物(宿主)的GAPDH氨基酸序列為參考序列,采用最大似然法構(gòu)建的ML系統(tǒng)發(fā)育樹顯示(圖2),吸蟲、絳蟲、線蟲各聚集成獨立的分支,然后集合成一簇,哺乳動物聚集在另一簇上,而原蟲并沒有聚集成一支,分布較散。

    2.2 EgGAPDH生物信息學分析

    分析預測顯示,EgGAPDH的不穩(wěn)定指數(shù)、脂溶性指數(shù)和親水性指數(shù)分別為21.5、87.05、0.018,說明EgGAPDH為一個穩(wěn)定的疏水蛋白。采用Motifscan預測發(fā)現(xiàn)了4個N-糖基化位點(aa 101-104、aa 148-151、aa 238-241和 aa 304-307),2個酪蛋白激酶Ⅱ磷酸化位點 (aa 102-105 和 aa 240-243),4個N-肉豆蔻酰化位點(aa 99-104、aa 168-173、aa 211-216和 aa 300-305),6個蛋白激酶C磷酸化位點(aa 70-72、aa 142-144、aa 183-185、aa 191-193、aa 245-247和 aa 321-323),和1個酪氨酸激酶磷酸化位點(aa 323-330)。InterPro軟件顯示EgGAPDH的NAD+綁定區(qū)域位于aa 4-151和aa 315-336,甘油醛-3磷酸結(jié)合區(qū)位于aa 156-314,3-磷酸甘油全脫氫酶活性位點位于aa 149-156。經(jīng)TMpred未檢測到EgGAPDH存在跨膜區(qū)域。該蛋白質(zhì)有16個B細胞線性結(jié)合位點和9個T細胞結(jié)合位點。該蛋白質(zhì)的氨基酸序列和特征位點見圖3。

    采用人的GAPDH(PDB ID:1u8f)、家兔GAPDH(PDB ID:1j0x)和馬來絲蟲的GAPDH (PDB ID:4k9d)作為主要的模型,構(gòu)建出的EgGAPDH 3維模型,如圖4所示。該模型由4個同源單體蛋白O、P、Q、R構(gòu)成的呈222對稱四聚體。

    2.3 EgGAPDH重組蛋白表達純化及鑒定

    pET32a-GAPDH重組菌轉(zhuǎn)入BL21大腸桿菌中誘導表達,重組融合蛋白質(zhì)經(jīng)過柱純化后,SDS-PAGE電泳分析得到1條大約55 ku的蛋白質(zhì)條帶(圖5a)。

    Western blot鑒定出現(xiàn)了一條明顯的特異性條帶(圖5b),說明EgGAPDH能與染細粒棘球蚴的小鼠血清發(fā)生特異性結(jié)合,揭示該蛋白質(zhì)具有良好的免疫原性。

    2.4 EgGAPDH重組蛋白質(zhì)ELISA分析

    ELISA方陣試驗結(jié)果確定EgGAPDH的最佳包被量為0.02 μg·μL-1,血清最佳稀釋倍數(shù)為1∶200時,P/N=7.380最大(標準陽性血清OD450 nm/標準陰性血清OD450 nm>2.1,陽性血清OD450 nm為1.203,陰性血清OD450 nm為0.163)。

    3 討 論

    3.1EgGAPDH的特征

    我們從細粒棘球絳蟲原頭蚴的cDNA中克隆得到了一條1 011bp的基因片段,該片段長度與GAPDH基因的長度相近,編碼336個氨基酸,且預測相對分子質(zhì)量為36.15ku,與GAPDH的相對分子質(zhì)量相近,說明該基因為EgGAPDH基因。其氨基酸序列與帶科絳蟲(多房棘球絳蟲、豬帶絳蟲)的GAPDH序列相似性都在90%以上,而與脊椎動物(人、綿羊、牦牛)的相似性為70%左右,提示所克隆的GAPDH基因并未受到宿主的組織污染。利用最大似然法,對GAPDH氨基酸序列構(gòu)建系統(tǒng)發(fā)育樹,結(jié)果顯示,細粒棘球絳蟲與多房棘球絳蟲的親緣關系最近,與它們?yōu)橥粚俚慕{蟲相吻合。且ML樹顯示,各個物種按其種屬進行聚集,說明GAPDH較強的穩(wěn)定性,保守性較高。SDS-PAGE電泳分析顯示,融合蛋白質(zhì)相對分子質(zhì)量約為55 ku,減去His-Tag,得到EgGAPDH分子大小約為37 ku,這與其他學者對GAPDH相對分子質(zhì)量的研究[19-20]相吻合。

    圖2 GAPDH系統(tǒng)進化樹(ML樹)Fig.2 Phylogram tree analysis of GAPDH (ML tree)

    3.2 EgGAPDH作為藥物靶標潛能

    近年來,研究表明參與寄生蟲代謝途徑中的重要蛋白質(zhì)可作為抗寄生蟲的藥物靶標[21-24]。通過同源性建模和一系列的生物信息學分析,我們發(fā)現(xiàn)EgGAPDH具有廣泛的功能區(qū)域,即NAD+綁定區(qū)(aa 4-151、aa 315-336)、甘油醛-3-磷酸結(jié)合區(qū)(aa 156-314)和酶活性位點(aa 149-156),且在NAD+綁定區(qū)與甘油醛-3-磷酸結(jié)合區(qū)的序列與宿主序列存在較大的差異。利用EgGAPDH的功能區(qū)域設計開發(fā)一類新的特異性的藥物,能選擇性地抑制EgGAPDH的活性,導致其代謝異常,最終達到殺滅該寄生蟲的目的。目前,GAPDH作為抗寄生蟲的藥物靶標已經(jīng)在瘧原蟲屬(Plasmodiumspp.)[25]、克氏錐蟲(Trypanosomacruzi)[26-27]、布氏錐蟲(Trypanosomabrucei)[28]、組織阿米巴原蟲(Entamoebahistolytica)[29]和利什曼蟲(Leishmania)[30]得到了證實。為此,我們推測EgGAPDH可作為抗細粒棘球絳蟲的藥物靶標。

    Eg.細粒棘球絳蟲;Sp.綿羊;Hm.人類;框.活性位點;黃色下劃線.T細胞結(jié)合位點;紅色下劃線.線性B細胞結(jié)合為點Eg.Echinococcus granulosus; Sp.Sheep (Ovis aries);Hm.Human (Homo sapiens).Frame.Active site; Yellow underlining.Cytotoxic T lymphocyte epitopes;Red underlining.Linear B cell epitopes圖3 EgGAPDH基因編碼區(qū)的特征Fig.3 Characteristics of Coding region in EgGAPDH

    圖4 EgGAPDH的三維模型Fig.4 Three-dimensional model of EgGAPDH

    M.蛋白質(zhì)相對分子質(zhì)量標準;1.加IPTG的 pET-32a(+)空載體;2.未加IPTG的pET-32a(+)-EgGAPDH表達載體;3.未純化的表達產(chǎn)物;4.純化后的表達蛋白質(zhì);A.純化蛋白質(zhì)加陰性血清;B.純化蛋白質(zhì)加陽性血清;C.空載加陽性血清;D.蛋白質(zhì)預染相對分子質(zhì)量標準M.Protein molecular marker;1.pET-32a(+) expression with IPTG;2.pET-32a(+)-EgGAPDH expression without IPTG; 3.pET-32a(+)-EgGAPDH expression with IPTG;4.Purified of EgGAPDH;A.EgGAPDH probed with healthy mice sera;B.EgGAPDH probed with infected mice sera; C.pET-32a(+) expressionprobed with infected mice sera;D.Protein molecular marker圖5 EgGAPDH蛋白及純化產(chǎn)物的SDS-PAGE鑒定(a)及Western blot分析(b)Fig.5 SDS-PAGE (a) and Western blot (b) of EgGAPDH

    圖6 重組蛋白EgGAPDH的ELISA分析Fig.6 ELISA analysis of recombinant EgGAPDH protein

    3.3 EgGAPDH的候選疫苗潛能

    研究表明,GAPDH是化膿性鏈球菌(Streptococcuspyogenes)、肺炎鏈球菌(S.pneumoniae)和無乳鏈球菌(S.agalactiae)等細菌的表面蛋白[31-33],是這些鏈球菌主要的致病抗原[34-35]。當血吸蟲受到宿主免疫攻擊時,GAPDH大量集聚在該蟲的表面,提示GAPDH可以作為抗血吸蟲的候選疫苗[36-38]。此外,GAPDH也是陰道毛滴蟲的一個表面抗原,在其致病性上起到了重要的作用[39]。V.Müller-Schollenberger等以多房棘球絳蟲的GAPDH免疫小鼠后,檢測到小鼠產(chǎn)生了T細胞免疫應答[40]。這些研究表明,GAPDH廣泛存在于病原微生物的表面,可作為抗病原的一個候選疫苗抗原。我們預測得到了16個線性B細胞結(jié)合位點和9個T細胞免疫位點,且這些免疫位點多存在于細粒棘球絳蟲三磷酸甘油醛脫氫酶氨基酸序列與宿主序列差異較大的區(qū)域,因此推測EgGAPDH可以引發(fā)宿主的體液免疫和細胞免疫應答。同時,重組EgGAPDH能與人工感染細粒棘球蚴的小鼠血清發(fā)生特異性結(jié)合,且以EgGAPDH重組蛋白質(zhì)為抗原對人工感染細粒棘球蚴的小鼠血清ELISA檢測結(jié)果也說明EgGAPDH具有較好的免疫原性,可能具備作為抗細粒棘球蚴候選疫苗分子的潛力。

    4 結(jié) 論

    成功克隆表達細粒棘球絳蟲三磷酸甘油醛脫氫酶基因,并對其生物特征進行生物信息學分析。EgGAPDH具有三個活性中心,即NAD+綁定區(qū)、甘油醛-3-磷酸結(jié)合區(qū)和酶活性位點,同時具有16個線性B細胞結(jié)合位點和9個T細胞免疫位點。生物信息學分析推測該蛋白質(zhì)可作為抗細粒棘球蚴的藥物靶標,Western blot和ELISA結(jié)果亦顯示該蛋白質(zhì)可能具有作為抗細粒棘球蚴疫苗候選分子的潛力。

    [1] CRAIG P S,MCMANUS D P,LIGHTOWLERS M W,et al.Prevention and control of cystic echinococcosis[J].LancetInfectDis,2007,7(6):385-394.

    [2] MCMANUS D P,ZHANG W,LI J,et al.Echinococcosis[J].Lancet,2003,362(9392):1295-1304.

    [3] ECKERT J,DEPLAZES P.Biological,epidemiological,and clinical aspects of echinococcosis,a zoonosis of increasing concern[J].ClinMicrobiolRev,2004,17(1):107-135.

    [4] ZHENG H,ZHANG W,ZHANG L,et al.The genome of the hydatid tapewormEchinococcusgranulosus[J].NatGenet,2013,45(10):1168-1175.

    [5] MORO P,SCHANTZ P M.Echinococcosis:a review[J].IntJInfectDis,2009,13(2):125-133.

    [6] LI Y,XU H,CHEN J,et al.Gene cloning,expression,and localization of antigen 5 in the life cycle ofEchinococcusgranulosus[J].ParasitolRes,2012,110(6):2315-2323.

    [7] LIGHTOWLERS M W.Cestode vaccines:origins,current status and future prospects[J].Parasitology,2006,133(Suppl):S27-S42.

    [8] HAAG K L,GOTTSTEIN B,AYALA F J.The EG95 antigen ofEchinococcusspp.contains positively selected amino acids,which may influence host specificity and vaccine efficacy[J].PLoSOne,2009,4(4):e5362.

    [9] ALVAREZ ROJAS C A,GAUCI C G,LIGHTOWLERS M W.Antigenic differences between the EG95-related proteins fromEchinococcusgranulosusG1 and G6 genotypes:implications for vaccination[J].ParasiteImmunol,2013,35(2):99-102.

    [10] MCMANUS D,SMYTH J D.Intermediary carbohydrate metabolism in protoscoleces ofEchinococcusgranulosus(horse and sheep strains) andE.multilocularis[J].Parasitology,1982,84(2):351-366.

    [11] MATSUMOTO J,SAKAMOTO K,SHINJYO N,et al.Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain ofEchinococcusmultilocularis,providing a novel target for the chemotherapy of alveolar echinococcosis[J].AntimicrobAgentsChemother,2008,52(1):164-170.

    [12] LARKIN M A,BLACKSHIELDS G,BROWN N P,et al.Clustal W and Clustal X version 2.0[J].Bioinformatics,2007,23(21):2947-2948.

    [13] GUINDON S,DUFAYARD J F,LEFORT V,et al.New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0[J].SystBiol,2010,59(3):307-321.

    [14] ARNOLD K,BORDOLI L,KOPP J,et al.The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling[J].Bioinformatics,2006,22(2):195-201.

    [15] LASKOWSKI R A,MACARTHUR M W,MOSS D S,et al.PROCHECK:a program to check the stereochemical quality of protein structures[J].JAppCrystallogr,1993,26(2):283-291.

    [16] TOWBIN H,STAEHELIN T,GORDON J.Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:procedure and some applications[J].ProcNatlAcadSciUSA,1979,76(9):4350-4354.

    [17] NORUSIS M.SPSS 16.0 guide to data analysis[M].Prentice Hall Press,2008.

    [18] JIN Y,ANVAROV K,KHAJIBAEV A,et al.Serodiagnosis of echinococcosis by ELISA using cystic fluid from Uzbekistan sheep[J].KoreanJParasitol,2013,51(3):313-317.

    [19] ENGEL M,SEIFERT M,THEISINGER B,et al.Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A.Two old enzymes combine for the novel Nm23 protein phosphotransferase function[J].JBiolChem,1998,273(32):20058-20065.

    [20] ROITEL O,VACHETTE P,AZZA S,et al.P but not R-axis interface is involved in cooperative binding of NAD on tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase fromBacillusstearothermophilus[J].JMolBiol,2003,326(5):1513-1522.

    [21] KUNTZ A N,DAVIOUD-CHARVET E,SAYED A A,et al.Thioredoxin glutathione reductase fromSchistosomamansoni:an essential parasite enzyme and a key drug target[J].PLoSMed,2007,4(6):e206.

    [22] PRICE H P,MENON M R,PANETHYMITAKI C,et al.Myristoyl-CoA:protein N-myristoyltransferase,an essential enzyme and potential drug target in kinetoplastid parasites[J].JBiolChem,2003,278(9):7206-7214.

    [23] HARWALDT P,RAHLFS S,BECKER K.Glutathione S-transferase of the malarial parasite Plasmodium falciparum:characterization of a potential drug target[J].BiolChem,2002,383(5):821-830.

    [24] KHALAF N B,DE MUYLDER G,LOUZIR H,et al.Leishmaniamajor protein disulfide isomerase as a drug target:enzymatic and functional characterization[J].ParasitolRes,2012,110(5):1911-1917.

    [25] AKINYI S,GAONA J,MEYER E V,et al.Phylogenetic and structural information on glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in Plasmodium provides functional insights[J].InfectGenetEvol,2008,8(2):205-212.

    [27] FREITAS R F,PROKOPCZYK I M,ZOTTIS A,et al.Discovery of novelTrypanosomacruziglyceraldehyde-3-phosphate dehydrogenase inhibitors[J].BioorgMedChem,2009,17(6):2476-2482.

    [28] VERLINDE C L,CALLENS M,VAN CALENBERGH S,et al.Selective inhibition of trypanosomal glyceraldehyde-3-phosphate dehydrogenase by protein structure-based design:toward new drugs for the treatment of sleeping sickness[J].JMedChem,1994,37(21):3605-3613.

    [29] SINGH S,MALIK B K,SHARMA D K.Molecular modeling and docking analysis of Entamoeba histolytica glyceraldehyde-3 phosphate dehydrogenase,a potential target enzyme for anti-protozoal drug development[J].ChemBioDrugDes,2008,71(6):554-562.

    [30] SURESH S,BRESSI J C,KENNEDY K J,et al.Conformational changes inLeishmaniamexicanaglyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors[J].JMolBiol,2001,309(2):423-435.

    [31] BERGMANN S,ROHDE M,HAMMERSCHMIDT S.Glyceraldehyde-3-phosphate dehydrogenase ofStreptococcuspneumoniaeis a surface-displayed plasminogen-binding protein[J].InfectImmun,2004,72(4):2416-2419.

    [32] MADUREIRA P,BAPTISTA M,VIEIRA M,et al.StreptococcusagalactiaeGAPDH is a virulence-associated immunomodulatory protein[J].JImmunol,2007,178(3):1379-1387.

    [33] MOLINARI G,TALAY S R,VALENTIN-WEIGAND P,et al.The fibronectin-binding protein ofStreptococcuspyogenes,SfbI,is involved in the internalization of group A streptococci by epithelial cells[J].InfectImmun,1997,65(4):1357-1363.

    [34] EGEA L,AGUILERA L,GIMé NEZ R,et al.Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli:Interaction of the extracellular enzyme with human plasminogen and fibrinogen[J].IntJBiochemCellBiol,2007,39(6):1190-1203.

    [35] GOZALBO D,GIL-NAVARRO I,AZORN I,et al.The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein[J].InfectImmun,1998,66(5):2052-2059.

    [36] MARTIN W,BRINKMANN H,SAVONNA C,et al.Evidence for a chimeric nature of nuclear genomes:eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes[J].ProcNatlAcadSciUSA,1993,90(18):8692-8696.

    [37] WAINE G J,BECKER M,YANG W,et al.Cloning,molecular characterization,and functional activity ofSchistosomajaponicumglyceraldehyde-3-phosphate dehydrogenase,a putative vaccine candidate against schistosomiasis japonica[J].InfectImmun,1993,61(11):4716-4723.

    [38] WAINE G J,YANG W,SCOTT J C,et al.DNA-based vaccination usingSchistosomajaponicum(Asian blood-fluke) genes[J].Vaccine,1997,15(8):846-848.

    [39] LAMA A,KUCKNOOR A,MUNDODI V,et al.Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated,fibronectin-binding protein ofTrichomonasvaginalis[J].InfectImmun,2009,77(7):2703-2711.

    [40] MüLLER-SCHOLLENBERGER V,BEYER W,SCHNITZLER P,et al.Immunisation with Salmonella typhimurium-delivered glyceraldehyde-3-phosphate dehydrogenase protects mice against challenge infection withEchinococcusmultiloculariseggs[J].IntJParasitol,2001,31(13):1441-1449.

    (編輯 白永平)

    Cloning,Expression and Bioinformatical Analysis ofEchinococcusgranulosusGlyceraldehyde-3-phosphate Dehydrogenase Gene

    WANG Jia-hai1,2,WANG Ning1,HU Dan-dan1,ZHONG Xiu-qin1,SONG Xing-ju1, GU Xiao-bin1,WANG Tao1,YANG Guang-you1*

    (1.CollegeofVeterinaryMedicine,SichuanAgriculturalUniversity,Ya′an625014,China; 2.PreventiveandControlCentreofQuCountyofSichuanProvine,QuCounty635200,China)

    As a key enzyme in the glycolytic pathway,glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has wide applications (vaccine candidate and drug target) against some parasites,but until now,few studies have been carried out in tapeworms.In order to determine its molecular character and practical value,EchinococcusgranulosusGAPDH(EgGAPDH) was cloned,expressed and analyzed.TheEgGAPDHgene isolated fromE.granulosuscDNA was 1 011 bp in length,encoding 336 amino acids.The quaternary structure of this protein consisted of four chemically identical subunits,O,P,Q,and R.Each subunit consisted of an NAD+-binding domain (residues 4-151 and 315-336),a catalytic domain (residues 156-314) and one enzymeactivesite (residues 149-156).Recombinant EgGAPDH was expressed and purified fromEscherichiacoli.Specific immunogenicity of EgGAPDH was shown by Western blot,ELISA analysis,and epitope prediction (16 B cell epitopes and 9 cytotoxic T lymphocyte epitopes).EgGAPDHgene was successfully amplified,cloned and expressed,EgGAPDH has three functional areas and a number of epitope prediction,combing with the results of Western blot and ELISA,it may be serve as a vaccine candidate and drug target against larval ofE.granulosus.

    Echinococcusgranulosus;glyceraldehyde-3-phosphate dehydrogenase (GAPDH);molecular characterization

    10.11843/j.issn.0366-6964.2015.09.019

    2014-12-19

    四川農(nóng)業(yè)大學學科建設雙支計劃項目(Sc-0357);四川省支撐計劃項目(2015NZ0041)

    王家海(1989-),四川達州人,碩士,主要從事動物寄生蟲病學研究,E-mail:wangjiahai1989@163.com

    *通信作者:楊光友,教授,博士生導師,主要從事動物寄生蟲病學研究,E-mail:guangyou1963@aliyun.com

    S852.734

    A

    0366-6964(2015)09-1629-09

    猜你喜歡
    棘球絳蟲細粒
    鯽成魚絳蟲病治療一例
    MG-9#捕收劑在極細粒煤泥浮選中的應用
    細粒級尾砂高濃度膠結(jié)充填試驗研究與工業(yè)應用
    羊絳蟲病的流行病學、臨床癥狀、診斷方法及其防治
    間充質(zhì)干細胞與細粒棘球絳蟲原頭節(jié)共培養(yǎng)對細粒棘球絳蟲原頭節(jié)活性的影響
    棘球?qū)俳{蟲線粒體基因組全序列生物信息學分析
    牛絳蟲病的診斷與防治
    濟陽陸相斷陷湖盆泥頁巖細粒沉積層序初探
    微細粒磁鐵礦提鐵降硫試驗研究
    基于cox1基因?qū)χ袊嗖馗咴貐^(qū)細粒棘球絳蟲遺傳多態(tài)性的研究
    会昌县| 微山县| 贡觉县| 武陟县| 长沙县| 中方县| 陇西县| 寻乌县| 监利县| 修水县| 绥江县| 名山县| 碌曲县| 瑞昌市| 涟源市| 陆良县| 连平县| 湖南省| 贵阳市| 黑龙江省| 梅河口市| 通州区| 诸暨市| 福泉市| 含山县| 阿图什市| 仙桃市| 鸡泽县| 宁国市| 横峰县| 台湾省| 伊宁县| 托里县| 石屏县| 沧源| 广河县| 彭泽县| 甘德县| 广南县| 丹寨县| 扎兰屯市|