李鵬飛,孟金柱,謝建山,朱芷葳,劉 巖,姜曉龍,陳建偉,姚曉磊,趙妙妙,呂麗華*
(1.山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,太谷 030801;2.山西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,太谷 030801)
牛卵泡ODF1與ODF2轉(zhuǎn)錄組發(fā)育相關(guān)基因篩選及表達(dá)差異分析
李鵬飛1,孟金柱2,謝建山2,朱芷葳1,劉 巖2,姜曉龍2,陳建偉2,姚曉磊2,趙妙妙2,呂麗華2*
(1.山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,太谷 030801;2.山西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,太谷 030801)
旨在從牛發(fā)情周期第一卵泡波中最大卵泡ODF1(The largest follicle at onset of deviation)和第二大卵泡ODF2(The second largest follicle at onset of deviation)轉(zhuǎn)錄組水平上篩選卵泡發(fā)育差異表達(dá)基因。采集牛發(fā)情周期第一卵泡波ODF1和ODF2,分別分離顆粒細(xì)胞并提取總RNA,構(gòu)建RNA文庫(kù),通過(guò)Illumina平臺(tái)對(duì)ODF1和ODF2測(cè)序;篩選出ODF1與ODF2兩個(gè)轉(zhuǎn)錄本之間比值大于2的差異表達(dá)基因,并采用qRT-PCR對(duì)篩選出的基因在牛發(fā)情周期內(nèi)第一卵泡波優(yōu)勢(shì)卵泡(Dominant follicles,DF)和從屬卵泡(Subordinate follicles,SF)顆粒細(xì)胞中功能驗(yàn)證。共獲得8個(gè)卵泡發(fā)育差異表達(dá)基因,其中7個(gè)基因篩選自O(shè)DF1/ODF2(BEX2、UBN1、SIK1、SPARCL1、LOC784256、LOC789231和LOC785462),1個(gè)篩選自O(shè)DF2/ODF1(SAFB2);qRT-PCR結(jié)果表明,BEX2、UBN1、LOC784256和LOC789231在DF中mRNA表達(dá)量極顯著高于SF(P<0.01),SAFB2在SF中mRNA表達(dá)量極顯著高于DF(P<0.01),SIK1和SPARCL1在SF中mRNA表達(dá)量顯著高于DF(P<0.05),雖然LOC785462在SF中mRNA表達(dá)量高于DF,但差異不顯著(P>0.05)。qRT-PCR檢測(cè)BEX2、UBN1、LOC784256、LOC789231和SAFB2的結(jié)果與高通量測(cè)序中該基因在ODF1和ODF2的RPKM的差異趨勢(shì)基本一致,而SIK1、SPARCL1和LOC785462不一致。
牛;ODF1;ODF2;轉(zhuǎn)錄本;卵泡發(fā)育;基因
J.C.Venter等[1]發(fā)布人類基因組全序列,標(biāo)志著生物研究進(jìn)入了后基因組時(shí)代。對(duì)基因組序列的利用,從不同水平進(jìn)行研究,例如基因組、轉(zhuǎn)錄組等。在卵泡發(fā)育的不同階段,轉(zhuǎn)錄、翻譯等在一系列特定基因順序表達(dá)基礎(chǔ)上進(jìn)行,卵泡發(fā)育相關(guān)基因的特定表達(dá)對(duì)卵泡的募集、選擇及凋亡發(fā)揮關(guān)鍵作用[2]。近年來(lái),在卵泡生長(zhǎng)和閉鎖規(guī)律方面進(jìn)行了大量研究,尤其是卵泡發(fā)育基因與內(nèi)分泌調(diào)控的關(guān)系方面取得了一定進(jìn)展[3-4]。姚曉磊等[3]通過(guò)GEO數(shù)據(jù)庫(kù)結(jié)合基因功能分析,篩選出6個(gè)候選基因。X.Li等[5]通過(guò)采用深度測(cè)序技術(shù),系統(tǒng)地篩選出與多種免疫通路(Toll通路、IMD通路和MAPK通路)相關(guān)的功能基因,并首次檢測(cè)到SAAT、FGF等基因的表達(dá)。本研究運(yùn)用新一代高通量測(cè)序技術(shù),以轉(zhuǎn)錄組為基礎(chǔ),在牛卵泡發(fā)育全基因組范圍內(nèi)規(guī)模化篩選與卵泡發(fā)育相關(guān)基因,結(jié)合基因功能分析,運(yùn)用qRT-PCR對(duì)篩選基因進(jìn)行功能驗(yàn)證,大大提高了卵泡發(fā)育基因篩選的準(zhǔn)確性。
1.1 試驗(yàn)動(dòng)物及樣品采集
選取8頭10月齡青年母牛,注射PGF2α(前列腺素F2α)同期發(fā)情,分別進(jìn)行為期11 d的飼養(yǎng)管理,此間每天用B超儀檢測(cè)并記錄卵泡的生長(zhǎng)情況。在第一卵泡波的偏差期啟動(dòng)時(shí),摘除卵巢并用眼科剪剪下出現(xiàn)偏差時(shí)的最大卵泡ODF1和第二大卵泡ODF2,放入滅菌的DPBS中準(zhǔn)備分離顆粒細(xì)胞。
1.2 主要試劑
Solexa測(cè)序芯片、TruSeq RNA Sample Prep Kit、QiaQuick PCR kit、TruSeq SBS kit、裂解緩沖液(Illumina,美國(guó))、PrimeScript?RT reagent Kit With gDNA Eraser、dNTP、DNA Marker DL2000、SYBR?Premix Ex TaqTM II(TaKaRa,大連),Trizol、DEPC(Invitrogen公司,美國(guó)),固相RNase清除劑(Andybio公司,美國(guó))。
1.3 卵泡發(fā)育相關(guān)基因的篩選
1.3.1 ODF1和ODF2顆粒細(xì)胞總RNA提取 將已經(jīng)處理好的卵泡用眼科剪剪開,放到盛有DPBS的表面皿上,用細(xì)胞刮刀刮取顆粒細(xì)胞,DPBS清洗數(shù)次,混合液置于無(wú)菌EP管,2 000 r·min-1離心10 min,棄上清并加入1 mL RNAiso Plus,提取總RNA。
1.3.2 牛ODF1和ODF2顆粒細(xì)胞RNA文庫(kù)構(gòu)建并測(cè)序 取ODF1和ODF2總RNA樣品各6 μL,Oligo(dT)磁珠富集后,加裂解緩沖液使其裂解為200 nt左右的片段;以此為模板,加入隨機(jī)引物六聚體合成cDNA第一鏈;再加入一系列緩沖液、RNase H和dNTPs,經(jīng)聚合酶I合成cDNA第二鏈;經(jīng)QiaQuick PCR kit純化,EB緩沖液洗脫,末端修復(fù),加Poly A尾巴,加5′和3′接頭;瓊脂糖凝膠電泳回收目的片段,PCR擴(kuò)增,完成整個(gè)cDNA文庫(kù)構(gòu)建;Illumina HiSeq 2000測(cè)序平臺(tái)進(jìn)行測(cè)序。
1.3.3 ODF1和ODF2兩個(gè)轉(zhuǎn)錄本中篩選牛卵泡差異表達(dá)基因 從Illumina平臺(tái)對(duì)ODF1和ODF2測(cè)序得到的兩個(gè)轉(zhuǎn)錄本中篩選卵泡發(fā)育差異表達(dá)基因,參照S.Audic等[6]方法,設(shè)定條件:ODF1 RPKM /ODF2 RPKM>2及ODF2 RPKM /ODF1 RPKM>2,結(jié)合Gene Ontology(GO)功能顯著性富集分析,使用FDR校正(P<0.05)的基因。
1.4 試驗(yàn)方法
1.4.1 總RNA提取及反轉(zhuǎn)錄 試驗(yàn)所用DF和SF顆粒細(xì)胞總RNA均為本課題組前期獲得,具體參照姚曉磊等[3]方法,分別對(duì)3頭牛DF和SF顆粒細(xì)胞總RNA分別進(jìn)行反轉(zhuǎn)錄,反應(yīng)條件稍作調(diào)整:7 ℃ 15 min,85 ℃ 5 s,-20 ℃保存。
1.4.2 引物合成 參考NCBI上的Bostaurus(Calve)的卵泡發(fā)育相關(guān)基因序列,設(shè)計(jì)候選基因引物,利用Primer 3.0軟件設(shè)計(jì)合成引物(表1);由上海生工生物工程股份有限公司合成。RPLP0為內(nèi)參基因。
表1 熒光定量引物
Table 1 Primers of quantitative PCR
基因名稱Genesymbol引物序列(5′?3′)PrimersequenceBEX2F:TTGCCTTATGCCTTGAATCC,R:GGTAATAGGAAACGCGCAAGUBN1F:ACCCGTTCTGGAGTGTATGC,R:TCACAGAGGTGCAGTTTTCGSIK1F:ACCTCAGTGGTTTCGAGGTG,R:GTAGGACAGACTGCCCCAAGSPARCL1F:TGTGCGAAGACAGGATTCAG,R:TGCTTGTGTCGGAATAGCACLOC784256F:AGACAACCAAAAGGGCATTG,R:TCACAGAGCACATTGGCTTCLOC789231F:TCGTGCTGTTTGTTTCTTCG,R:AGTCGGCAACTGCTAAATGGLOC785462F:AGACAACCAAAAGGGCATTG,R:TCACAGAGCACATTGGCTTCSAFB2F:TCCTGGAATCCCTTTGTGAG,R:ACAGCGTGTCCTGTGAACTGRPLP0F:CAACCCTGAAGTGCTTGACAT,R:AGGCAGATGGATCAGCCA
1.4.3 qRT-PCR 數(shù)據(jù)經(jīng)3方面校正:重復(fù)校正、物理校正和內(nèi)參基因校正,擴(kuò)增前先制作標(biāo)準(zhǔn)曲線。依據(jù)標(biāo)準(zhǔn)曲線和不同基因及不同的擴(kuò)增條件進(jìn)行qRT-PCR反應(yīng),反應(yīng)體系為20 μL,嚴(yán)格按照qRT-PCR試劑盒說(shuō)明書進(jìn)行;反應(yīng)條件:95 ℃變性10 s,95 ℃ 5 s,60 ℃ 25 s,40個(gè)循環(huán)。
1.5 統(tǒng)計(jì)分析
各目的基因的相對(duì)表達(dá)量采用△△CT法計(jì)算,目的基因的相對(duì)表達(dá)水平= 2-△△CT。結(jié)果均用“平均值±標(biāo)準(zhǔn)差”表示,其中各基因的表達(dá)量結(jié)果均應(yīng)經(jīng)內(nèi)參基因RPLP0表達(dá)量校正,數(shù)據(jù)采用SPSS 18.0統(tǒng)計(jì)軟件進(jìn)行t檢驗(yàn)分析。
2.1 從牛ODF1和ODF2轉(zhuǎn)錄本中篩選獲得的卵泡發(fā)育相關(guān)基因
從Illumina平臺(tái)對(duì)ODF1和ODF2測(cè)序得到的兩個(gè)轉(zhuǎn)錄本中篩選卵泡發(fā)育差異表達(dá)基因,經(jīng)過(guò)設(shè)定ODF1-RPKM/ODF2-RPKM>2或者ODF2-RPKM/ODF1-RPKM過(guò)濾,基因功能分析及FDR(P<0.05)校正后,得到8個(gè)卵泡發(fā)育相關(guān)基因(表2)。其中7個(gè)基因篩選自O(shè)DF1-RPKM/ODF2-RPKM(BEX2、UBN1、SIK1、SPARCL1、LOC784256、LOC789231和LOC785462),1個(gè)基因篩選自O(shè)DF2-RPKM/ODF1-RPKM(SAFB2)。
表2 ODF1/ODF2和ODF2/ODF1轉(zhuǎn)錄本中篩選得到卵泡發(fā)育相關(guān)基因
Table 2 Candidate genes associated with follicular development selected by ODF1/ODF2 and ODF2/ODF1 transcript analysis
FeatureIDODF1?RPKMODF2?RPKMODF1/ODF2ODF2/ODF1基因功能GenefunctionBEX2345.003141.0642.446-雌激素誘導(dǎo)下調(diào)控細(xì)胞凋亡UBN12.6641.2712.097-抑制促增殖基因表達(dá)SIK11.0910.2145.104-細(xì)胞信號(hào)通路和細(xì)胞分化SPARCL14.1460.7495.539-細(xì)胞增殖活性和細(xì)胞周期LOC7842562.5920.4515.742-調(diào)節(jié)雌二醇、睪酮的合成LOC7892312.8980.9802.955-調(diào)節(jié)垂體前葉促性腺激素的分泌LOC7854626.0891.4274.269-調(diào)節(jié)皮質(zhì)醇和性激素合成途徑SAFB21.0612.727-2.569細(xì)胞應(yīng)激、細(xì)胞增殖和凋亡過(guò)程
2.2 卵泡發(fā)育相關(guān)基因在第一卵泡波DF和SF顆粒細(xì)胞中表達(dá)差異
qRT-PCR結(jié)果顯示(圖1),BEX2、UBN1、LOC784256、LOC789231在DF中mRNA表達(dá)量極顯著高于SF(P<0.01),SAFB2在SF中mRNA表達(dá)量極顯著高于DF(P<0.01),SIK1和SPARCL1在SF中mRNA表達(dá)量顯著高于DF(P<0.05),雖然LOC785462在SF中mRNA表達(dá)量高于DF,但差異不顯著(P>0.05)。
**和*.分別表示在0.01和0.05顯著水平上的比較結(jié)果** and * indicate significant difference at the level of 0.01 and 0.05,respectively圖1 卵泡發(fā)育相關(guān)基因在牛DF與SF mRNA表達(dá)Fig.1 Real time PCR analysis of candidate genes in DF vs SF in follicular development
轉(zhuǎn)錄組是某一組織或細(xì)胞在不同狀態(tài)下所有RNA轉(zhuǎn)錄的集合。轉(zhuǎn)錄組水平的研究從組織或細(xì)胞全方位分析各基因功能及結(jié)構(gòu),是研究生物分子機(jī)理的一種高效方法。RNA-Seq即轉(zhuǎn)錄組測(cè)序技術(shù),和其他測(cè)序技術(shù)相比,顯著優(yōu)勢(shì)是測(cè)序通量高,可以深度挖掘組織或細(xì)胞中各基因差異表達(dá)的微小變化[7-8]。RNA-Seq技術(shù)不僅能夠全面快速得到基因表達(dá)圖譜,還可以精確分析長(zhǎng)鏈非編碼RNA[9]、可變剪接[10]等序列及結(jié)構(gòu)變異[11]。J.C.Marioni等[12]用相同肝和腎組織分別采用深度測(cè)序和芯片技術(shù)在檢測(cè)差異表達(dá)基因方面作對(duì)比研究,在相同F(xiàn)DR(False discovery rate)情況下,新一代測(cè)序技術(shù)比芯片多檢測(cè)出30%的差異表達(dá)基因。N.J.Croucher等[13]研究表明,Illumina技術(shù)具有高度重復(fù)性,技術(shù)誤差相對(duì)較小。本試驗(yàn)借助RNA-Seq技術(shù)對(duì)牛發(fā)情周期內(nèi)第一卵泡波中的ODF1和ODF2進(jìn)行深度測(cè)序,找出ODF1 RPKM/ODF2 RPKM>2或者ODF2 RPKM/ODF1 RPKM>2的差異表達(dá)基因,結(jié)合基因功能顯著性分析,F(xiàn)DR校正(P<0.05)后,共篩選出8個(gè)與卵泡發(fā)育相關(guān)的基因。DF和SF發(fā)育過(guò)程中,顆粒細(xì)胞具有明顯的增殖或凋亡趨勢(shì),因此,選用牛發(fā)情周期第一卵泡波中DF和SF為研究對(duì)象。采用qRT-PCR技術(shù)對(duì)篩選得到可能影響卵泡發(fā)育基因進(jìn)行功能驗(yàn)證。
BEX(Brain expressed X-linked gene)家族是X染色體連鎖基因家族,BEX2是BEX家族中主要成員。X.Zhou等[14]報(bào)道,BEX2通過(guò)介導(dǎo)JNK信號(hào)通路來(lái)促進(jìn)U251細(xì)胞的增殖,下調(diào)BEX2則促進(jìn)U251及U87細(xì)胞凋亡。A.Naderi等[15]研究表明,BEX2 基因表達(dá)水平下調(diào),引起線粒體凋亡,并使細(xì)胞周期阻滯于G1期。韓秋悅等[16]證實(shí)BEX2可通過(guò)調(diào)控細(xì)胞周期進(jìn)程來(lái)調(diào)控細(xì)胞增殖和凋亡。UBN1(Ubinuclein 1,泛核蛋白)是一種衰老調(diào)控子,參與衰老相關(guān)異染色質(zhì)凝集(SAHF)的形成,進(jìn)而抑制促增殖基因的表達(dá)。K9M-H3和HP1是SAHF的標(biāo)志性蛋白。M.Narita等[17]研究表明,衰老細(xì)胞中SAHF能夠抑制E2F與K9M-H3和HP1啟動(dòng)子的結(jié)合,從而使細(xì)胞衰老狀態(tài)保持穩(wěn)定。本研究表明,BEX2和UBN1在DF中mRNA 的表達(dá)量極顯著高于SF,推測(cè)BEX2是通過(guò)促進(jìn)顆粒細(xì)胞的增殖來(lái)促使卵泡隨即呈現(xiàn)優(yōu)勢(shì)發(fā)育,最終導(dǎo)致其他卵泡閉鎖,而UBN1在牛DF和SF中都有表達(dá),DF和SF中顆粒細(xì)胞是否都存在程序性的凋亡,還需要進(jìn)一步驗(yàn)證。
鹽誘導(dǎo)激酶(Salt inducible kinase,SIK)是一種絲氨酸/蘇氨酸激酶。研究表明,SIK1可以通過(guò)調(diào)控CREB來(lái)抑制相關(guān)基因的表達(dá)[18],而CREP與細(xì)胞增殖、類固醇激素的合成等有很大關(guān)系[19]。J.D.Feldman等[20]證實(shí),SIK1在大鼠的腎、腦、卵巢都有表達(dá),且卵泡的發(fā)育與類固醇激素密切相關(guān)。本研究表明SIK1在SF中mRNA的表達(dá)量顯著高于DF,這可能由于SIK1通過(guò)負(fù)調(diào)控CREB,進(jìn)而導(dǎo)致顆粒細(xì)胞凋亡和類固醇激素的缺失。SPARCL1(SPARC-like protein 1)是SPARC家族一員。SPARCL1缺失表達(dá)與細(xì)胞增殖和細(xì)胞周期相關(guān)[21]。A.Claeskens等[22]研究證實(shí),SPARCL1能夠阻止細(xì)胞從G1期到S期,進(jìn)而抑制細(xì)胞增殖。SPARCL1具有抗黏附功能,其在絕大多數(shù)腫瘤中表現(xiàn)為表達(dá)下調(diào),起著腫瘤抑制作用,原因可能是缺失/突變或者啟動(dòng)子甲基化[23]。A.Claeskens等[22]研究表明,SPARCL1在卵巢上表達(dá),且表現(xiàn)為下調(diào),在卵巢癌中誘導(dǎo)腫瘤細(xì)胞的凋亡。本研究結(jié)果顯示,SPARCL1在SF中mRNA表達(dá)量顯著高于DF,表明其在卵泡發(fā)育過(guò)程中為下調(diào)基因,進(jìn)而促進(jìn)卵泡閉鎖。SAFB(Scaffold attachment factor B,核基質(zhì)結(jié)合因子)是一種多功能蛋白,其中SAFB1和SAFB2都參與發(fā)育、細(xì)胞增殖和凋亡過(guò)程[24]。M.Ivanova等[25]研究表明,SAFB1的缺失導(dǎo)致小鼠生長(zhǎng)緩慢與胰島素生長(zhǎng)因子-1水平下降有關(guān),SAFB1的缺失導(dǎo)致雌鼠生育能力降低是由于雌二醇和黃體酮水平下降。同時(shí),SAFB1的過(guò)表達(dá)能夠縮短細(xì)胞周期的S期,進(jìn)而促使細(xì)胞凋亡[26],敲低SAFB1則促進(jìn)細(xì)胞增殖[27]。在牛卵泡發(fā)育過(guò)程中,SAFB2在SF中過(guò)表達(dá)可能抑制了顆粒細(xì)胞的增殖,這與S.M.Townson等[26]結(jié)論一致。
迄今對(duì)LOC784256、LOC789231和LOC785462功能研究不夠深入,還未對(duì)其命名。LOC789231為促性腺激素釋放激素Ⅱ受體樣物質(zhì),主要是通過(guò)調(diào)節(jié)垂體前葉分泌促性腺激素的分泌;LOC784256和LOC785462為類固醇17-α羥化酶的成員,二者的缺陷,能夠?qū)е缕べ|(zhì)醇、雌二醇和睪丸酮合成減少,進(jìn)而影響機(jī)體發(fā)育[28]。S.Arianne等[29]研究證實(shí),LOC784256與牛的CYP17A1相似度高達(dá)98%,而CYP17A1是細(xì)胞色素 P450 超家族蛋白之一,主要功能是催化雄激素生成雌激素。
本研究結(jié)果表明,通過(guò)qRT-PCR檢測(cè)BEX2、UBN1、LOC784256、LOC789231和SAFB2基因表達(dá)與高通量測(cè)序中該基因在ODF1和ODF2的RPKM的差異趨勢(shì)基本一致,而SIK1、SPARCL1和LOC785462不一致。同時(shí),BEX2、UBN1、LOC784256、LOC789231、SAFB2、SIK1、SPARCL1參與牛卵泡顆粒細(xì)胞的增殖或凋亡,進(jìn)而影響牛卵巢卵泡的發(fā)育。
[1] VENTER J C,ADAMS M D,MYERS E W,et al.The sequence of the human genome[J].Science,2001,291(5507):1304-1351.
[2] BEG M A,BERGFELT D R,KOT K,et al.Follicle selection in cattle:dynamics of follicular fluid factors during development of follicle dominance[J].BiolReprod,2002,66(1):120-126.
[3] 姚曉磊,李鵬飛,姜曉龍,等.卵泡發(fā)育相關(guān)基因在牛優(yōu)勢(shì)和從屬卵泡顆粒細(xì)胞中表達(dá)的研究[J].畜牧獸醫(yī)學(xué)報(bào),2014,45(12):1957-1963. YAO X L,LI P F,JIANG X L,et al.Research of the genes expression associated with follicular development in bovine dominant and subordinate follicle granulose cells[J].ActaVeterinariaetZootechnicaSinica, 2014,45(12):1957-1963.(in Chinese)
[4] 李鵬飛,岳文斌,黃 洋,等.可卡因-苯丙胺調(diào)控轉(zhuǎn)錄肽對(duì)綿羊卵巢卵泡顆粒細(xì)胞雌激素產(chǎn)生的影響[J].畜牧獸醫(yī)學(xué)報(bào),2013,44(6):853-857. LI P F,YUE W B,HUANG Y,et al.Effect of CART on estradiol productioninvitroin follicular granulose cells of sheep ovarian[J].ActaVeterinariaetZootechnicaSinica, 2013,44(6):853-857.(in Chinese)[5] LI X,CUI Z,LIU Y,et al.Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis[J].PLoSONE,2013,8(7):e68233.[6] AUDIC S,CLAVERIEJ M.The significance of digital gene expression profiles[J].GenomeRes,1997,7(10):986-995.
[7] WANG Z,GERSTEIN M,SNYDER M.RNA-Seq:a revolutionary tool for transcriptomics[J].NatRevGenet,2009,10(1):57-63.
[8] HAAS B J,ZODY M C.Advancing RNA-Seq analysis[J].NatBiol,2010,28(5):421-423.
[9] PENG X,GRALINSKI L,ARMOUR C D,et al.Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling[J].MBiol,2010,1(5):e00206-10.
[10] SHAO W,ZHAO Q Y,WANG X Y,et al.Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome[J].RNA,2012,18(7):1395-1407.
[11] CANOVAS A,RINCON G,ISLAS-TREJO A,et al.SNP discovery in the bovine milk transcriptome using RNA-Seq technology[J].MammGenome,2010,21(11-12):592-598.
[12] MARIONI J C,MASON C E,MANE S M,et al.RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays[J].GenomeRes,2008,18(9):1509-1517.
[13] CROUCHER N J,F(xiàn)OOKES M C,PERKINS T T,et al.A simple method for directional transcriptome sequencing using Illumina technology[J],NucleicAcidsRes,2009,37(22):e148.
[14] ZHOU X,MENG Q,XU X,et al.Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway[J].BiochemBiophysResCommun,2012,427(3):574-580.
[15] NADERI A,LIU J,BENNETT I C.BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer[J].IntJCancer,2010,126(7):1596-1610.
[16] 韓秋悅,范彥會(huì),王雅麗,等.BEX2 與INI1/hSNF5 蛋白的相互作用及其在細(xì)胞周期中的功能鑒定[J].遺傳,2012,34(6):711-718. HAN Q Y,F(xiàn)AN Y H,WANG Y L,et al.BEX2 regulates cell cycle through the interaction with INI1/hSNF5[J].Hereditas,2012,34(6):711-718.(in Chinese)[17] NARITA M,SABRINA N,EARD E H,et al.Rb-Mediated heterochromatin formatipon and silencing of E2F Target genes during cellular senescence[J].Cell,2003,113(6):703-716.
[18] LIN X,TAKEMOR I H,KATOH Y,et al.Salt inducible kinase is involved in the ACT H/ cAMP dependent protein kinase signaling in Y1 mouse adrenocortical tumor cells[J].MolEndocrinol,2001,15(8):1264-1276.
[19] LIU J,PARK E,GURNEY A,et al.Cyclic AMP induction of phosphoenolpyruvate carboxykinase(GTP) gene transcription is mediated by multiple promoter elements[J].JBiolChem,1991,266(28):19095-19102.[20] FELDMAN J D,VICIAN L,CRISPINO M,et al.The salt-inducible kinase,SIK,is induced by depolarization in brain[J].JNeurochem,2002,74(6):2227-2238.
[21] BREKKEN R A,SULLIVAN M,WORKMAN G,et al.Expression and characterization of murine hevin(SC1),a member of the SPARC family of matricellular proteins[J]JHistochemCytochem,2004,52(6):735-748.
[22] CLAESKENS A,ONGENAE N,NEEFS J M,et al.Hevin is down-regulated in many cancers and is a negative regulator of cell growth and proliferation[J].BrJCancer,2000,82(6):1123-1130.
[23] LAU C Y,POON R P,CHEUNG S T,et al.SPARC and Hevin expression correlate with tumour angiogenesis in hepatocellular carcinoma[J].JPathol,2006,210(4):459-468.
[24] OESTERREICH S.Scaffold attachment factors SAFB1 and SAFB2:innocent bystanders or critical players in breast tumorigenesis[J].JCellBiochem,2003,90(4):653-661.
[25] IVANOVA M,DOBRZYCKA K M.Scaffold attachment factor B1 functions in development,growth,and reproduction[J].MolCellBiol,2005,25(8):2995-3006.[26] TOWNSON S M,KANG K,LEE A V,et al.Structure-function analysis of the estrogen receptor alpha corepressor scaffold attachment factor-B1:identification of a potent transcriptional repression domain[J].BiolChem,2004,279(25):26074-26081.
[27] JASON P.SAFBl multiple functions in biological control-Lots still to be done[J].JCellBiochem,2010,109(2):312-319.
[28] BIGLIERI E G.17-hydroxylation deficiency in man[J].JClinInvest,1966,45(12):1946-1954.
[29] ARIANNE S,LAURA O,PILA R Z,et al.A false single nucleotide polymorphism generated by gene duplication compromises meat traceability[J].MeatSci, 2012,91(3):347-351.
(編輯 程金華)
Screening and Analyse Study of Genes Associated with Follicular Development in Bovine ODF1 and ODF2 Transcript
LI Peng-fei1,MENG Jin-zhu2,XIE Jian-shan2,ZHU Zhi-wei1,LIU Yan2,JIANG Xiao-long2,CHEN Jian-wei2,YAO Xiao-lei2,ZHAO Miao-miao2,Lü Li-hua2*
(1.CollegeofLifeScience,ShanxiAgriculturalUniversity,Taigu030801,China;2.CollegeofAnimalScienceandVeterinaryMedicine,ShanxiAgriculturalUniversity,Taigu030801,China)
This study was performed to screen genes associated with follicular development from ODF1(The largest follicle at onset of deviation)and ODF2(The second largest follicle at onset of deviation)in transcript levels of bovine.The largest and second largest follicle were collected from onset of deviation then separated granulosa cells from which extracted total RNA.High-throughput deep sequencing was carried out by sequencing platform of Illumina.According to the results of assessment analysis in significant enrichment analysis of Gene Ontology function and differential expression in gene screening.Further,screening differential expression gene by ODF1/ODF2 or ODF2/ODF1>2 as the candidate genes.By real-time fluorescent quantitative PCR(qRT-PCR) was performed to detect the gene expression pattern between DF and SF granulose cells of the first follicular wave during estrous cycle in bovine.Eight candidate genes related to follicular development were screened and 7 genes(BEX2,UBN1,SIK1,SPARCL1,LOC784256,LOC789231,LOC785462)from ODF1/ODF2 and one (SAFB2)from ODF2/ODF1,BEX2,UBN1,LOC784256,LOC789231 expressed in DF was extremely significantly higher than that in SF(P<0.01).But the expression levels ofSAFB2 was extremely significantly higher in SF than those in DF(P<0.01) andSIK1,SPARCL1 were significantly greater in SF compared with DF(P<0.05).This indifferences trends was consistent between qRT-PCR test results ofBEX2,UBN1,LOC784256,LOC789231,SAFB2 and high-throughput sequencing results of RPKM in ODF1 and ODF2.The qRT-PCR test results ofSIK1,SPARCL1 andLOC785462 was opposite with the high-throughput sequencing of the gene RPKM in ODF1 and ODF2.
bovine;ODF1;ODF2;transcript;follicle development;gene
10.11843/j.issn.0366-6964.2015.11.007
2015-02-02
國(guó)家自然科學(xué)基金(31172211);農(nóng)業(yè)部948項(xiàng)目(2010-Z43);山西省橫向協(xié)作與委托項(xiàng)目(2010HX54);山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(2014-重點(diǎn)5);山西省科技攻關(guān)項(xiàng)目(20130311027-2);山西省人事廳人才引進(jìn)項(xiàng)目;山西農(nóng)業(yè)大學(xué)引進(jìn)人才博士科研啟動(dòng)費(fèi)(2014ZZ04);科研管理費(fèi)資助重大項(xiàng)目;標(biāo)志性成果培育項(xiàng)目(71060003)
李鵬飛(1978-),男,山西偏關(guān)人,博士,副教授,主要從事動(dòng)物生殖生理方面的研究,E-mail:adamlpf@126.com
*通信作者:呂麗華,E-mail:lihualvsxau@126.com
S823.2
A
0366-6964(2015)11-1961-06