郝愛語(yǔ)
(蘇州工業(yè)職業(yè)技術(shù)學(xué)院軟件與服務(wù)外包學(xué)院,江蘇 蘇州 215104)
礦井視頻監(jiān)控圖像改進(jìn)非局部均值濾波算法
郝愛語(yǔ)
(蘇州工業(yè)職業(yè)技術(shù)學(xué)院軟件與服務(wù)外包學(xué)院,江蘇 蘇州 215104)
礦井成像條件較為復(fù)雜,導(dǎo)致視頻監(jiān)控系統(tǒng)所獲取的圖像往往具有對(duì)比度低、且參雜大量隨機(jī)噪聲的特點(diǎn),給實(shí)時(shí)監(jiān)控礦井生產(chǎn)狀況帶來(lái)了不便。為此,采用灰色關(guān)聯(lián)度法改進(jìn)非局部均值濾波算法,提出了一種礦井視頻監(jiān)控圖像改進(jìn)非局部均值濾波算法。該算法首先對(duì)原始礦井視頻監(jiān)控圖像采用均值濾波算法進(jìn)行預(yù)處理,得到預(yù)濾波圖像,分別對(duì)原始礦井視頻監(jiān)控圖像和預(yù)濾波圖像劃分為5×5大小的圖像塊,將該2幅圖像中對(duì)應(yīng)位置圖像塊的像素點(diǎn)灰度值集合分別記為待比較序列和參考序列,計(jì)算其灰色關(guān)聯(lián)度值,將較小的灰色關(guān)聯(lián)度值對(duì)應(yīng)的原始礦井視頻監(jiān)控圖像中的圖像塊標(biāo)記為疑似噪聲圖像塊;其次對(duì)每個(gè)疑似噪聲圖像塊分別統(tǒng)計(jì)其像素灰度極大、極小值,并將該類像素點(diǎn)標(biāo)記為噪聲點(diǎn);然后以每個(gè)噪聲點(diǎn)為中心取大小為3×3的圖像塊,進(jìn)行非局部均值濾波;最后對(duì)濾波后的礦井視頻監(jiān)控圖像采用直方圖均衡化方法進(jìn)行對(duì)比度拉伸,改善圖像的視覺效果。試驗(yàn)結(jié)果表明:本研究算法無(wú)需對(duì)圖像中每個(gè)像素點(diǎn)灰度值進(jìn)行逐一濾波,提高了圖像處理效率,有助于實(shí)現(xiàn)礦井視頻監(jiān)控圖像的高效處理。
礦井視頻監(jiān)控系統(tǒng) 灰色關(guān)聯(lián)度 非局部均值濾波 均值濾波 圖像塊 直方圖均衡化
近年來(lái),隨著礦山數(shù)字化建設(shè)進(jìn)程加快,各類礦山視頻監(jiān)控系統(tǒng)得到了廣泛應(yīng)用,對(duì)于實(shí)時(shí)了解生產(chǎn)進(jìn)度、及時(shí)發(fā)現(xiàn)并排除安全隱患具有重要作用[1-5]。實(shí)現(xiàn)對(duì)礦山各生產(chǎn)環(huán)節(jié)實(shí)時(shí)、有效監(jiān)控的前提是獲取清晰度較高的圖像,然而礦井成像環(huán)境較為復(fù)雜,井下特別是開采工作面光線不足、照度低,粉塵較多,導(dǎo)致監(jiān)控?cái)z像頭鏡面容易不同程度地被粉塵覆蓋,因此有必要對(duì)該類圖像進(jìn)行處理,盡可能恢復(fù)圖像所反映的礦井實(shí)際狀況信息。學(xué)者們對(duì)于該類圖像的處理研究,大體上有2種思路:①圖像去噪。李文峰等[6-7]通過(guò)對(duì)比分析小波硬、軟閾值去噪模型的性能,選用小波軟閾值模型進(jìn)行井下圖像去噪,取得了較好的效果;針對(duì)煤礦監(jiān)控圖像小波去噪過(guò)程中小波基函數(shù)的選擇問(wèn)題,孫華東[8]對(duì)Daubechines族小波基函數(shù)的去噪效果進(jìn)行了詳細(xì)分析;馮衛(wèi)兵等[9]對(duì)脈沖耦合神經(jīng)網(wǎng)絡(luò)進(jìn)行適當(dāng)改進(jìn),并應(yīng)用于去除煤礦井下圖像中的噪聲,效果優(yōu)于中值濾波、均值濾波等傳統(tǒng)方法。②圖像增強(qiáng)。劉曉陽(yáng)等[10]對(duì)傳統(tǒng)脈沖耦合模型的鏈接強(qiáng)度、閾值進(jìn)行了改進(jìn),并應(yīng)用于增強(qiáng)礦工圖像,提高了圖像視覺效果;劉毅等[11]對(duì)井下光照不均勻情況下獲得的圖像采用同態(tài)濾波算法進(jìn)行了對(duì)比度拉伸;王利娟等[12]將模糊熵理論與相似度測(cè)量方法相結(jié)合,有效提高了礦井圖像的清晰度。由此可見,現(xiàn)有的研究成果大都具有側(cè)重性,即側(cè)重于去噪或者增強(qiáng),但事實(shí)上,礦井視頻監(jiān)控圖像往往含有大量隨機(jī)噪聲、且圖像對(duì)比度不高,如果單獨(dú)對(duì)其進(jìn)行去噪或者增強(qiáng),會(huì)使得圖像處理效果大打折扣。
非局部均值濾波作為一種圖像整體濾波算法,通過(guò)在整個(gè)圖像區(qū)域內(nèi)尋找與待濾波點(diǎn)相關(guān)性較強(qiáng)的像素點(diǎn)灰度值參與濾波,使得濾波結(jié)果與圖像中的結(jié)構(gòu)信息較為符合,相對(duì)于傳統(tǒng)濾波算法而言,該算法能夠更為有效地保持圖像中結(jié)構(gòu)信息的完整性[13]。但該算法對(duì)圖像中的每個(gè)像素點(diǎn)灰度值逐個(gè)進(jìn)行濾波,計(jì)算量巨大,算法耗時(shí)較多,不適合于實(shí)時(shí)化處理批量的礦井視頻監(jiān)控圖像。為此,采用了灰色關(guān)聯(lián)度方法[14-15]對(duì)其進(jìn)行改進(jìn),通過(guò)預(yù)先檢測(cè)出圖像中受到噪聲污染的像素點(diǎn)并加以標(biāo)記,從而提高濾波的針對(duì)性。對(duì)于去噪后的圖像,采用直方圖均衡化方法[16]進(jìn)行增強(qiáng),從而達(dá)到去除噪聲和提高圖像清晰度的目的。
1.1 算法原理1.1.1 灰色關(guān)聯(lián)度法
灰色關(guān)聯(lián)度法是一種衡量參考序列與待比較序列間所含信息的相似程度、發(fā)展變化趨勢(shì)的方法[14-15]。將一幅圖像中的像素點(diǎn)灰度值作為比較序列,將與該圖像內(nèi)容完全一致的另外一幅圖像(或圖像中的局部區(qū)域)中的像素點(diǎn)灰度值作為參考序列,若假定后一幅圖像清晰度較高且沒(méi)有任何噪聲,要衡量前一幅圖像的質(zhì)量,則轉(zhuǎn)變?yōu)楹饬糠謩e由上述2幅圖像中像素點(diǎn)灰度值構(gòu)成的待比較序列和參考序列的關(guān)聯(lián)程度。若關(guān)聯(lián)度較小,則說(shuō)明圖像質(zhì)量較差,反之則較高。基于這一思路,可將灰色關(guān)聯(lián)度分析法應(yīng)用于對(duì)實(shí)地獲得的礦井視頻監(jiān)控圖像的質(zhì)量進(jìn)行評(píng)估,記一幅礦井視頻監(jiān)控圖像(較為模糊,且含有大量噪聲)大小為M×M(M為奇數(shù))為待比較圖像,與之類內(nèi)容完全一致且大小相同的礦井視頻監(jiān)控圖像(清晰度較高,且無(wú)噪聲)記為參考圖像,由該2幅圖像中每個(gè)像素點(diǎn)灰度值可分別構(gòu)成待比較序列和參考序列,兩者灰色關(guān)聯(lián)度值的計(jì)算公式為
(1)
式中,r(i,j)∈(0,1];ξ(i,j)為待比較序列和參考序列的灰色關(guān)聯(lián)度系數(shù);(i,j)為圖像中任意像素點(diǎn)的坐標(biāo)值。
r(i,j)值越小則說(shuō)明待比較圖像與參考圖像相似度越低,待比較圖像質(zhì)量越差,但究竟r(i,j)小到何種程度才說(shuō)明待比較圖像質(zhì)量不佳,有必要設(shè)定必要的閾值t,若r(i,j) 1.1.2 非局部均值濾波算法 任意一幅礦井視頻監(jiān)控圖像中任意一像素點(diǎn)A的非局部均值濾波結(jié)果為 (2) 式中,I表示圖像的坐標(biāo)域;φ(A')為圖像中A'點(diǎn)的灰度值;W(A,A')為權(quán)重值,W(A,A')∈[0,1],其作用在于衡量圖中像素點(diǎn)A'與待濾波點(diǎn)A的相似程度。該2點(diǎn)的相似程度分別由以各自為中心的圖像方形區(qū)域的灰度值矩陣NA'和NA的相似程度決定,于是,權(quán)重值W(A,A')可進(jìn)行如下計(jì)算: (3) 其中,D(A,A')為NA'和NA的灰度值向量的歐氏距離;h稱為調(diào)節(jié)因子,用于調(diào)節(jié)權(quán)重值W(A,A')相對(duì)于D(A,A')的衰減度; 非局部均值濾波算法從圖像整體的角度進(jìn)行濾波,能夠有效去除圖像中的噪聲點(diǎn),但是,圖像即便質(zhì)量不高,也并非圖像中所有的像素點(diǎn)均被噪聲污染,如果逐個(gè)像素點(diǎn)進(jìn)行濾波,則算法效率大大降低。為此,有必要預(yù)先對(duì)圖像進(jìn)行噪聲的判別,對(duì)于被鑒別出的噪聲點(diǎn)進(jìn)行非局部均值濾波,有助于提高算法的執(zhí)行效率。 1.2 算法實(shí)現(xiàn)步驟 (1)采用模板尺寸為3×3的均值濾波算法對(duì)含有噪聲的礦井視頻監(jiān)控圖像(大小為M×M)進(jìn)行濾波,將濾波后的圖像作為參考圖像,將含有噪聲的礦井視頻監(jiān)控圖像作為待比較圖像。 (2)分別將待比較圖像和參考圖像劃分成大小為5×5的圖像塊,從而得到待比較圖像塊L1,L2,L3,...,Lx(x=M/5)和參考圖像塊L'1,L'2,L'3,...,L'x(x=M/5),(如M不能完全被5整除,余數(shù)為y,則剩余的圖像區(qū)域可劃分成大小為y×y的圖像塊)。 (3)計(jì)算圖像塊L1,L'1、L2,L'2、L3,L'3,...,Lx,L'x的r(i,j)值,得到序列{r(i,j)1,...,r(i,j)m,...,r(i,j)x}。 (4)對(duì){r(i,j)}x中的每個(gè)r(i,j)值設(shè)定閾值0.3,若r(i,j)m(1≤m≤x)<0.3則認(rèn)為第m個(gè)圖像塊是疑似噪聲圖像塊,并加以標(biāo)記,重復(fù)執(zhí)行該步驟將整幅圖像中的疑似噪聲圖像塊均標(biāo)記出來(lái)。 (5)分別統(tǒng)計(jì)(4)中每個(gè)質(zhì)量欠佳的圖像塊中像素點(diǎn)灰度極大值和極小值,并加以標(biāo)記。 (6)以每個(gè)被標(biāo)記的像素點(diǎn)為中心,分別取各自3×3大小的鄰域進(jìn)行非局部均值濾波,對(duì)每個(gè)被標(biāo)記的像素點(diǎn)逐個(gè)進(jìn)行濾波。 (7)對(duì)濾波后的礦井視頻監(jiān)控圖像采用直方圖均衡化方法進(jìn)行增強(qiáng),改善圖像的視覺效果。 對(duì)本研究算法采用C++語(yǔ)言進(jìn)行編程實(shí)現(xiàn),分別采用文獻(xiàn)[6]、文獻(xiàn)[9]、文獻(xiàn)[11]以及本研究算法(分別記為算法1、算法2、算法3、算法4)對(duì)一幅山西潞安王莊煤礦某綜采工作面視頻監(jiān)控圖像進(jìn)行試驗(yàn)。為了進(jìn)一步測(cè)驗(yàn)文中各類算法對(duì)于模糊度較高的礦井視頻監(jiān)控圖像的處理效果,對(duì)該試驗(yàn)圖像加入了10%顆粒噪聲進(jìn)行試驗(yàn)(添加噪聲后的圖像記為模糊圖像)。相關(guān)試驗(yàn)結(jié)果分別如圖1、圖2所示。 圖1 原始圖像去噪結(jié)果比較 由圖1、圖2可知:圖1(c)、圖2(c)清晰度優(yōu)于圖1(b)、圖2(b),表明文獻(xiàn)[9]所提出的改進(jìn)的簡(jiǎn)化脈沖耦合神經(jīng)網(wǎng)絡(luò)(算法2)對(duì)于不同模糊程度的礦井視頻監(jiān)控圖像去噪效果優(yōu)于文獻(xiàn)[6]所提出的小波閾值去噪算法(算法1);單純對(duì)礦井視頻監(jiān)控圖像采用同態(tài)濾波算法(算法3)進(jìn)行增強(qiáng)處理,盡管圖像對(duì)比度得到提高,但圖像中的噪聲也被不同程度地放大,圖像處理效果不理想;圖1(e)、圖2(e)中綜采設(shè)備、礦工輪廓較為清晰,甚至礦工頭燈也能夠清晰辨認(rèn),其視覺效果優(yōu)于其余3類算法。這表明,本研究算法(算法4)相對(duì)于其余算法而言,具有一定的優(yōu)勢(shì)。 為了定量描述文中各類算法的去噪性能,采用峰值信噪比(Peak noise to ratio,PSNR)(PSNR值越大,則對(duì)應(yīng)算法的去噪效果越佳)[17]和均方根誤差(Root mean square error,RMSE)(RMSE值越小,則對(duì)應(yīng)算法的去噪效果越佳)[18]等指標(biāo)對(duì)上述各類算法的去噪效果進(jìn)行評(píng)估,結(jié)果見表1。 圖2 模糊圖像去噪結(jié)果比較 Table 1 Objective evaluation results of algorithms dB 由表1可知:本研究算法(算法4)的PSNR值明顯高于其余算法,RMSE值小于其余算法,這表明,對(duì)不同模糊程度礦井視頻圖像首先進(jìn)行去噪然后進(jìn)行對(duì)比度拉伸的處理思路優(yōu)于單純性的去噪和增強(qiáng),這與上述分析結(jié)果基本一致。 采用灰色關(guān)聯(lián)度方法改進(jìn)非局部均值濾波算法,提出了一種礦井視頻監(jiān)控圖像改進(jìn)非局部均值濾波算法,該算法通過(guò)將圖像濾波與圖像增強(qiáng)的處理思路相結(jié)合,對(duì)去噪后的圖像采用直方圖均衡化方法改善視覺效果,試驗(yàn)結(jié)果表明,該算法有助于實(shí)現(xiàn)對(duì)礦井視頻監(jiān)控圖像的高效處理。 [1] 吳立新,殷作如,鄧志毅,等.論21世紀(jì)的礦山——數(shù)字礦山[J].煤炭學(xué)報(bào),2000,25(4):337-342. Wu Lixin,Yin Zuoru,Deng Zhiyi,et al.Research on the mine in the 21st century:digital mine[J].Journal of China Coal Society,2000,25(4):337-342. [2] 吳立新,殷作如,鐘亞平.再論數(shù)字礦山:特征、框架與關(guān)鍵技術(shù)[J].煤炭學(xué)報(bào),2003,28(1):1-7. Wu Lixin,Yin Zuoru,Zhong Yaping.Restudy on digital mine:characteristics,framework and key technologies[J].Journal of China Coal Society,2003,28(1):1-7. [3] 吳立新,汪云甲,丁恩杰,等.三論數(shù)字礦山——接力物聯(lián)網(wǎng)保障礦山安全與智能采礦[J].煤炭學(xué)報(bào),2012,37(3):357-365. Wu Lixin,Wang Yunjia,Ding Enjie,et al.Thirdly study on digital mine:serve for mine safety and intellimine with support for IoT[J].Journal of China Coal Society,2012,37(3):357-365. [4] 孫繼平,田子健.礦井圖像視頻監(jiān)視系統(tǒng)與關(guān)鍵技術(shù)[J].煤炭科學(xué)技術(shù),2014,42(1):65-68. Sun Jiping,Tian Zijian.Image monitoring system and key technology in underground mine[J].Coal Science and Technology,2014,42(1):65-68. [5] 馬 兄,連民杰,盧才武,等.數(shù)字礦山信息集成概念模型[J].金屬礦山,2014(7):135-140. Ma Xiong,Lian Minjie,Lu Caiwu,et al.Conceptual model of digital mine information integration[J].Metal Mine,2014(7):135-140. [6] 李文峰,趙 健,李志忠.井下視頻圖像的小波消噪加強(qiáng)方法[J].西北大學(xué)學(xué)報(bào):自然科學(xué)版,2006,36(6):882-886. Li Wenfeng,Zhao Jian,Li Zhizhong.Research on noise reduction and image intensification of mine-underground video picture based on wavelet transform[J].Journal of Northwest University:Natural Science Edition,2006,36(6):882-886. [7] 李文峰,姜敏霞,徐克強(qiáng),等.井下圖像增強(qiáng)的一種方法[J].現(xiàn)代礦業(yè),2012(1):42-44. Li Wenfeng,Jiang Minxia,Xu Keqiang,et al.A method to enhance the underground image[J].Modern Mining,2012(1):42-44. [8] 孫華東.煤礦監(jiān)測(cè)圖像去噪算法中小波基的選取[J].煤礦機(jī)械,2014,35(11):271-272. Sun Huadong.Wavelet core selection to mine monitoring image denoising algorithm[J].Coal Mine Machinery,2014,35(11):271-272. [9] 馮衛(wèi)兵,胡俊梅,曹根牛.基于改進(jìn)的簡(jiǎn)化脈沖耦合神經(jīng)網(wǎng)絡(luò)的煤礦井下圖像去噪方法[J].工礦自動(dòng)化,2014,40(5):54-58. Feng Weibing,Hu Junmei,Cao Genniu.Underground image denoising method based on improved simplified pulse neural network[J].Industry and Automation,2014,40(5):54-58. [10] 劉曉陽(yáng),劉 毅.改進(jìn)的脈沖耦合神經(jīng)網(wǎng)絡(luò)礦工圖像增強(qiáng)方法[J].煤炭學(xué)報(bào),2011(S):207-210. Liu Xiaoyang,Liu Yi.Method of Miners image enhancement based on improved pulse coupled neural network[J].Journal of China Coal Society,2011(S):207-210. [11] 劉 毅,賈旭芬,田子建.一種基于同態(tài)濾波原理的井下光照不均勻圖像處理方法[J].工礦自動(dòng)化,2013,39(1):9-12. Liu Yi,Jia Xufen,Tian Zijian.A processing method for underground image of uneven illumination based on homomorphic filtering therory[J].Industry and Automation,2013,39(1):9-12. [12] 王利娟.基于相似度測(cè)量和模糊熵的礦井圖像增強(qiáng)方法[J].計(jì)算機(jī)工程與設(shè)計(jì),2012,33(7):2696-2700. Wang Lijuan.Image enhancement algorithm of underground mine image based on homogeneity measurement[J].Computer Engineering and Design,2012,33(7):2696-2700. [13] 張 宇,王向陽(yáng).頻域小波矩的非局部均值圖像去噪[J].小型微型計(jì)算機(jī)系統(tǒng),2012(9):2079-2082. Zhang Yu,Wang Xiangyang.Non-local means algorithm for image denoising based on wavelet moment in domain[J].Journal of Chinese Computer System,2012(9):2079-2082. [14] 吳安兵,郭 科,柳炳利.基于灰色-模糊理論的礦產(chǎn)資源地質(zhì)勘查評(píng)價(jià)——以藏中地區(qū)為例[J].金屬礦山,2015(3):133-137. Wu Anbing,Guo Ke,Liu Bingli.Evaluation of geological exploration of mineral resources based on grey-fuzzy theory:a case study in central Tibet[J].Metal Mine,2015(3):133-137. [15] 趙蒙生,周 敏,代永新,等.基于灰色關(guān)聯(lián)分析法的采礦方法優(yōu)選[J].金屬礦山,2012(10):130-133. Zhao Mengsheng,Zhou Min,Dai Yongxin,et al.Prediction and analysis of slope stability by grey correlation[J].Metal Mine,2012(10):130-133. [16] 王小兵,姚雪晴,邱銀國(guó),等.一種新型煤礦視頻監(jiān)控圖像濾波算法[J].工礦自動(dòng)化,2014,40(11):76-80. Wang Xiaobing,Yao Xueqing,Qiu Yinguo,et al.A new filtering algorithm for video monitoring image of coal mine[J].Industry and Automation,2014,40(11):76-80. [17] 南 棟,畢篤彥,馬時(shí)平,等.一種基于參數(shù)估計(jì)的自適應(yīng)雙邊濾波算法[J].中南大學(xué)學(xué)報(bào):自然科學(xué)版,2014,45(11):3840-3845. Nan Dong,Bi Duyan,Ma Shiping,et al.An adaptive bilateral filtering method based on parameter estimation[J].Journal of Central South University:Science and Technology Edition,2014,45(11):3840-3845. [18] 王智文,李紹滋.基于多元統(tǒng)計(jì)模型的分形小波自適應(yīng)圖像去噪[J].計(jì)算機(jī)學(xué)報(bào),2014,37(6):1380-1389. Wang Zhiwen,Li Shaozi.Adaptive fractal-wavelet image denoising based on multivariate statistical model[J].Chinese Journal of Computers,2014,37(6):1380-1389. (責(zé)任編輯 王小兵) Improved Non-local Means Filtering Algorithm of Mine Video Monitoring Image Hao Aiyu (SchoolofSoftwareandServiceOutsourcing,SuzhouInstituteofIndustrialTechnology,Suzhou215104,China) The mine imaging condition is relatively complex,which results that the images obtained by the video monitoring system has the characteristics of low contrast and mixed with large number of random noise,which brought inconvenience to monitoring the mine production conditions in real-time.So,the grey correlation method is adopted to improve the non-local means filtering algorithm,and an improved non-local means filtering algorithm of mine video monitoring image is proposed.Firstly,the original mine video monitoring image is processed by the average filtering algorithm to obtain the filtering image,and the original mine video monitoring image and filtering image are divided into images blocks with the size of 5×5,the grey value collections of the pixies in the image bocks with the corresponding position in the above two images are regarded as the compare sequence and reference sequence respectively to calculate the grey correlation value of the compare sequence and reference sequence,and the image blocks with smaller grey correlation values in the original mine video monitoring image can be marked with suspected noise image blocks;secondly,the maximum and minimum grey values of the pixels in the suspected noise image blocks are marked as noise pixels;then,the image blocks with the size of 3×3 centered with the noise pixels are processed with the non-local means filtering algorithm;finally,the contrast of mine video monitoring image after filtering can be stretched by using the histogram equalization method to improve the image visual effects.The experimental results show that the algorithm proposed in this paper dose not need to filter the noise pixels one by one,therefore,the filtering efficiency of image processing is improved.It contributes to realize the goal of processing the mine video monitoring image with high efficiency. Mine video monitoring system,Grey correlation,Non-local means filtering,Average filtering,Image block,Histogram equalization 2015-06-02 蘇州工業(yè)職業(yè)技術(shù)學(xué)院基金項(xiàng)目(編號(hào):SGKB201411)。 郝愛語(yǔ)(1980—),女,講師,碩士。 TD672,TP391.41 A 1001-1250(2015)-10-135-052 算法試驗(yàn)
3 結(jié) 語(yǔ)