王 磊,彭家建,白 贏,厲嘉云,肖文軍,徐藝凇,陳 峰
(杭州師范大學(xué)有機(jī)硅化學(xué)及材料技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,浙江杭州311121)
19 世紀(jì)末20 世紀(jì)初,Betti 首先報道了1-(α-氨基芐基)-2-萘酚化合物的合成方法,開啟了人們研究Betti 堿的大門[1].通過改進(jìn)曼尼希反應(yīng)制備Betti 堿衍生物是一種很重要的方法,該反應(yīng)條件溫和[2]. 在過去的幾十年里,人們對Betti 堿類化合物的研究越來越重視,其中一個重要原因在于手性Betti 堿類衍生物可作為有效的手性催化劑或手性輔助劑[3-12]. 此外,由于氨基和酚羥基可以被轉(zhuǎn)化成各種各樣的化合物,Betti 堿類衍生物在有機(jī)合成的許多領(lǐng)域都扮演著重要角色[14-15].
Betti 最先報道了醛類和碘甲烷的烷基化反應(yīng),在合適的手性Betti 堿存在下,有機(jī)鋰和有機(jī)鎂試劑都能和羰基類化合物發(fā)生具有立體選擇性的烷基化反應(yīng)[16-18].最近關(guān)于羰基類化合物的立體選擇性烷基化的研究有了重大發(fā)現(xiàn),發(fā)現(xiàn)在一定的手性配體存在下,有機(jī)鋅試劑也能很好的和羰基類化合物發(fā)生具有立體選擇性的烷基化反應(yīng).
正是由于上述手性Betti 堿在羰基類化合物烷基化中表現(xiàn)出的高立體選擇性,我們嘗試?yán)檬中訠etti堿作為配體,考察其和金屬配位后催化羰基化合物的不對稱硅氫加成反應(yīng)的催化性能.
四氫呋喃用鈉絲處理后蒸餾,三乙氧基硅烷蒸餾收集134 -135 ℃餾份.
產(chǎn)物用GC9800 型氣相色譜儀分析,填充柱的規(guī)格是SE-30.2 m×2.5 mm×0.25 μm,氫氣為載氣,流速:1 mL/min;柱升溫程序:初溫70 ℃,維持1 min,以10 ℃/min 升至100 ℃,然后以25 ℃/min 升至250℃,進(jìn)樣口溫度為250 ℃.分析結(jié)果由2010 型色譜數(shù)據(jù)處理軟件按面積歸一化法計算.
圖1 手性Betti 堿結(jié)構(gòu)Fig. 1 Structure of chiral Betti base
以配體1 為例:將2-萘酚(0.29 g,2.0 mmol),苯甲醛(0.26 g,2.4 mmol),(S)-1-苯乙胺(0.26 g,2.1 mmol)三者混合均勻,氮?dú)獗Wo(hù)下80 ℃攪拌10 h.用TLC 檢測當(dāng)反應(yīng)結(jié)束后,停止加熱.等混合物冷卻至室溫加入5 mL 乙醇,這時會有產(chǎn)物(白色晶體)析出.收集白色晶體用無水乙醇洗滌3 次(3 mL×3),再用正己烷/乙酸乙酯重結(jié)晶,得到無色晶體1,產(chǎn)率90%.
圖2 手性Betti 堿合成Fig. 2 Synthesis of chiral Betti base
配體1:colorless crystals:90% yield.1H NMR (400 MHz,CDCl3)δ 13.83 (s,1H),7.87-7.73 (m,2H),7.54-7.35 (m,4H),7.35-7.16 (m,10H),5.53 (s,1H),3.95 (q,J =6.3 Hz,1H),2.37 (s,1H),1.55 (d,J=6.3 Hz,3H).13C NMR (101 MHz,CDCl3)δ 157.53,143.23,141.64,132.81,129.96,129.26,129.13,128.99,128.87,128.17,128.07,127.92,126.86,126.62,122.62,121.29,120.29,113.30,60.43,56.73,23.15.
配體2:white crystals:85% yield.1H NMR(400 MHz,CDCl3)δ 14.03 (s,1H),7.89-7.09 (m,15H),5.62 (s,1H),4.03 (d,J =6.3 Hz,1H),2.37 (s,4H),1.60 (d,J =6.3 Hz,3H).13C NMR (101 MHz,CDCl3)δ 157.59,143.30,141.74,138.96,132.91,129.97,129.21,129.15,129.05,128.93,128.53,128.10,126.93,126.67,125.08,122.66,121.42,120.38,113.48,60.57,56.77,23.19,21.69.
配體3:white crystals:85% yield.1H NMR (400 MHz,CDCl3)δ 13.97 (s,1H),7.84 (dd,J =8.0,13.5 Hz,2H),7.52-7.01 (m,13H),5.80 (s,1H),3.98 (d,J =6.3 Hz,1H),2.04 (s,4H),1.61(d,J=6.3 Hz,3H).13C NMR (101 MHz,CDCl3)δ 158.04,142.62,138.94,135.03,132.79,131.03,129.89,129.12,129.07,129.00,128.92,128.29,128.19,127.39,127.03,126.78,122.67,121.02,120.27,114.01,56.77,21.73,18.32.
配體4:white crystals:85% yield.1H NMR (400 MHz,CDCl3)δ 13.88 (s,1H),7.86-7.75 (m,2H),7.42-7.35 (m,4H),7.31-7.18 (m,6H),6.97 (dd,J=7.7,1.5 Hz,1H),6.86 (d,J=8.4 Hz,1H),6.74 (t,J=7.5 Hz,1H),5.89 (s,1H),3.93 (d,J=6.5 Hz,1H),3.75 (s,3H),2.58 (s,1H),1.52 (d,J=6.9 Hz,3H).13C NMR (101 MHz,CDCl3)δ 158.27,156.62,143.00,132.93,129.79,129.54,129.32,128.79,128.78,128.46,128.28,127.75,127.37,126.52,122.53,121.48,121.15,120.04,113.26,110.44,56.84,55.10,54.39,22.61.
配體5:white crystals:80% yield.1H NMR (400 MHz,CDCl3)δ 13.82 (s,1H),7.81-7.71 (m,2H),7.49-7.37 (m,5H),7.31-7.14 (m,10H),5.47 (s,1H),3.92 (d,J =6.3 Hz,1H),2.34 (s,1H),1.52 (d,J=6.3 Hz,3H),1.26 (s,9H).13C NMR (101 MHz,CDCl3)δ 157.53,150.94,143.36,138.73,132.88,129.86,129.12,129.00,128.89,128.04,127.57,126.89,126.58,126.16,122.60,121.42,120.35,113.66,60.03,56.70,34.63,31.47,23.21.
氮?dú)獗Wo(hù)下,25 mL 燒瓶中加入0.08 mol 的手性Betti 堿配體(1,2,3,4 或5),5 mL 四氫呋喃,攪拌溶解后,再加入0.28 mL 二乙基鋅(3.5equiv),攪拌4 h 后,在室溫條件下,加入1 mmol 潛手性酮和5 mmol的三乙氧基硅烷,反應(yīng)20 h 后,向混合溶液中加入5 mL 質(zhì)量分?jǐn)?shù)為15%的KOH 溶液水解4 h.加入少量二氯甲烷,收集有機(jī)層,無水硫酸鈉干燥,過濾,用旋轉(zhuǎn)蒸發(fā)儀旋干得到粗產(chǎn)物,過柱子得到純產(chǎn)物.
表1 苯乙酮與三乙氧基硅烷不對稱硅氫加成Tab. 1 Asymmetric hydrosilylation of acetophenone with HSi(OEt)3
表2 溶劑及硅烷對硅氫加成反應(yīng)影響Tab. 2 Solvent and silane screening for the asymmetric hydrosilylation
室溫條件下,我們分別用Betti 堿1-5作配體,測試ZnEt2/不同配體催化劑對苯乙酮和三乙氧基硅烷不對稱加成反應(yīng)的影響,結(jié)果列于表1. 實(shí)驗(yàn)表明,制備配體的原料芳香族醛的苯環(huán)上帶有不同取代基時,對于催化劑的立體選擇性有較大影響.即使是相同的取代基但是在苯環(huán)上的位置不同時,其催化效果也不盡相同.
為了研究不同溶劑對Betti 堿/ZnEt2體系催化劑催化性能的影響,在室溫下,三乙氧基硅烷作氫源,在不同溶劑中用Betti堿2/ZnEt2做催化劑,催化苯乙酮的硅氫加成反應(yīng),結(jié)果列于表2.實(shí)驗(yàn)表明不同溶劑對于Betti 堿2/ZnEt2催化劑體系催化活性沒有太大影響,在幾種常見的溶劑中,該催化體系均能很好的催化硅氫加成反應(yīng)的進(jìn)行,但是不同溶劑對于該催化體系的立體選擇性還是有不同影響的,這可能和溶劑的極性有關(guān).當(dāng)選用四氫呋喃做溶劑時,該催化體系立體選擇性最好.實(shí)驗(yàn)還證實(shí)只有當(dāng)三乙氧基硅烷當(dāng)氫源時效果最好,這可能是由于三乙氧基容易使Si 上的H 解離出來以及空間位阻較大造成的.
在四氫呋喃作溶劑的條件下,我們在不同溫度下以Betti 堿2/ZnEt2作催化劑催化苯乙酮和三乙氧基硅烷的硅氫加成反應(yīng),結(jié)果列于表3,實(shí)驗(yàn)表明溫度對催化劑的活性和立體選擇性均沒什么影響.接下來我們又研究了共溶劑法對該催化劑的影響,數(shù)據(jù)表明催化劑的活性和立體選擇性和t-BuOH 的量有著密切的關(guān)系.隨著t-BuOH 用量的不斷增加,催化劑的活性和立體選擇性明顯降低.
表3 四氫呋喃/叔丁醇體積比及反應(yīng)溫度對不對稱硅氫加成反應(yīng)的影響Tab. 3 The volume rate of THF/tert-butanol and the reaction temperature screening for the asymmetric hydrosilylation
室溫條件下,四氫呋喃作溶劑,選用Betti 堿2/ZnEt2作催化劑催化多種潛手性芳香酮和三乙氧基硅烷的硅氫加成反應(yīng),結(jié)果列于表4.該催化體系對于不同芳香族酮的催化活性都很好,但立體選擇性相對來說還不能令人滿意.
表4 不同芳基酮不對稱硅氫加成Tab. 4 The asymmetric hydrosilylation of different aryl ketones
合成了5 個手性Betti 堿化合物,將其作為手性配體用于二乙基鋅催化潛手性酮的不對稱硅氫加成反應(yīng).Betti 堿/ZnEt2催化劑體系均可以得到較高的酮轉(zhuǎn)化率,但其不對稱選擇性ee 值最高僅達(dá)到49%.反應(yīng)溫度和溶劑對轉(zhuǎn)化率影響較小,但不同溶劑對其立體選擇性有影響.所考察的不同硅烷中,使用三乙氧基硅烷作氫源,所得到的收率及立體選擇性優(yōu)于三甲氧基硅烷及三乙基硅烷作氫源時的結(jié)果.
[1]Betti M. ɑ-Naphthol phenylaminomethane[J]. Org Synth Colloid,1941,1:381-383.
[2]Szatmári I,F(xiàn)ueloep F. Synthesis and transformations of 1-(a-aminobenzyl)-2-naphthol derivatives[J].Curr Org Synth,2004,1(1):155-165.
[3]Cardellichio C,Ciccarella G,Naso F,et al.The Betti base:absolute configuration and routes to a family of related chiral nonracemic bases[J].Tetrahedron:Asymmetry,1998,9(20):3667-3675.
[4]Cardellicchio C,Ciccarella G,Naso F,et al. Use of readily available chiral compounds related to the Betti base in the enantioselective addition of diethylzinc to aryl aldehydes[J]. Tetrahedron,1999,55(51):14685-14692.
[5]Cimarelli C,Mazzanti A,Palmieri G,et al. Solvent-free asymmetric aminoalkylation of electron-rich aromatic compounds:stereoselective synthesis of aminoalkylnaphthols by crystallization-induced asymmetric transformation[J]. J Org Chem,2001,66(14):4759-4765.
[6]Liu D X,Zhang L C,Wang Q C S,et al.The application of chiral aminonaphthols in the enantioselective addition of diethylzinc to aryl aldehydes[J]. Org Lett,2001,3(17):2733-2735.
[7]Cimarelli C,Palmieri G,Volpini E. A practical stereoselective synthesis of secondary and tertiary aminonaphthols:chiral ligands for enantioselective catalysts in the addition of diethylzinc to benzaldehyde[J]. Tetrahedron:Asymmetry,2002,13(22):2417-2426.
[8]Lu J,Xu X,Wang S,et al. Novel preparation of nonracemic 1-[a-(1-azacycloalkyl)benzyl]-2-naphthols from Betti base and their application as chiral ligands in the asymmetric addition of diethylzinc to aryl aldehydes[J]. J Chem Soc Perkin Trans 1,2002(24),2900-2903.
[9]Lu J,Xu X,Wang S,et al.Synthesis of chiral ligands derived from the Betti base and their use in the enantioselective addition of diethylzinc to aromatic aldehydes[J]. Tetrahedron Lett,2002,43(46):8367-8369.
[10]Ji J X,Qui L Q,Yip C W,et al.A convenient,one-step synthesis of optically active tertiary aminonaphthol and its applications in the highly enantioselective alkenylations of aldehydes[J]. J Org Chem,2003,68(4):1589-1590.
[11]Ji J X,Wu J,Au-Yeung T T L,et al.Highly enantioselective phenyl transfer to aryl aldehydes catalyzed by easily accessible chiral tertiary aminonaphthol[J]. J Org Chem,2005,70(3):1093-1095.
[12]Dong Y,Li R,Lu J,et al. An efficient kinetic resolution of racemic Betti base based on an enantioselective N,O-deketalization[J]. J Org Chem,2005,70(21):8617-8620.
[13]Wang X,Dong Y,Sun J,et al.Nonracemic Betti base as a new chiral auxiliary:application to total syntheses of enantiopure (2S,6R)-dihydropinidine and (2S,6R)-isosolenopsins[J]. J Org Chem,2005,70(5):1897-1900.
[14]Szatmári I,Hetényi A,Lázár L,et al.Transformation reactions of the Betti base analog aminonaphthols[J]. J Heterocyclic Chem,2004,41(3):367-373.
[15]Heydenreich M,Koch A,Klod S,et al. Synthesis and conformational analysis of naphth[1’,2’:5,6][1,3]oxazino[3,2-c][1,3]benzoxazine and naphth[1’,2’:5,6][1,3]oxazino[3,4-c][1,3]benzoxazine derivatives[J]. Tetrahedron,2006,62(48):11081-11089.
[16]Noyori R,Kitamura M. Enantioselective addition of organometallic reagents to carbonyl compounds:chirality transfer,multiplication,and amplification[J]. Angew Chem,1991,30(1):49-69.
[17]Noyori R,Tokunaga M,Kitamura M. Stereoselective organic synthesis via dynamic kineti resolution[J]. Bull Chem Soc Jpn,1995,68(1):36-36.
[18]Tarbell D S,Paulson M C. Attempted asymmetric syntheses involving the Grignard reagent in optically active solvents[J]. J Am Chem Soc,1942,64(12):2842-2844.