韓淑萍河北省新樂市職業(yè)技術教育中心
高中學生數(shù)學思維障礙的成因及分析
韓淑萍
河北省新樂市職業(yè)技術教育中心
如何減輕學生學習數(shù)學的負擔?如何提高我們高中數(shù)學教學的實效性?本文通過對高中學生數(shù)學思維障礙的成因及突破方法的分析,以起到拋磚引玉的作用。
數(shù)學思維;數(shù)學;思維障礙
所謂高中學生數(shù)學思維,是指學生在對高中數(shù)學感性認識的基礎上,運用比較、分析、綜合、歸納、演繹等思維的基本方法,理解并掌握高中數(shù)學內容而且能對具體的數(shù)學問題進行推論與判斷,從而獲得對高中數(shù)學知識本質和規(guī)律的認識能力。然而,在學習高中數(shù)學過程中,我們經常聽到學生反映上課聽老師講課,聽得很“明白”,但到自己解題時,總感到困難重重,無從入手;有時,在課堂上待我們把某一問題分析完時,常??吹綄W生拍腦袋:“唉,我怎么會想不到這樣做呢?”事實上,有不少問題的解答,同學發(fā)生困難,并不是因為這些問題的解答太難以致學生無法解決,而是其思維形式或結果與具體問題的解決存在著差異。因此,研究高中學生的數(shù)學思維障礙對于增強高中學生數(shù)學教學的針對性和實效性有十分重要的意義。
如果在教學過程中,教師不顧學生的實際情況(即基礎)或不能覺察到學生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學,則到學生自己去解決問題時往往會感到無所適從;另一方面,當新的知識與學生原有的知識結構不相符時或者新舊知識中間缺乏必要的“媒介點”時,這些新知識就會被排斥或經“校正”后吸收。因此,如果教師的教學脫離學生的實際;如果學生在學習高中數(shù)學過程中,其新舊數(shù)學知識不能順利“交接”,那么這時就勢必會造成學生對所學知識認知上的不足、理解上的偏頗,從而在解決具體問題時就會產生思維障礙,影響學生解題能力的提高。
于高中數(shù)學思維障礙產生的原因不盡相同,作為主體的學生的思維習慣、方法也都有所區(qū)別,所以,高中數(shù)學思維障礙的表現(xiàn)各異,具體的可以概括為:
(1)數(shù)學思維的膚淺性:由于學生在學習數(shù)學的過程中,對一些數(shù)學概念或數(shù)學原理的發(fā)生、發(fā)展過程沒有深刻的去理解,一般的學生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實的片面性而把握事物的本質。
(2)數(shù)學思維的差異性:由于每個學生的數(shù)學基礎不盡相同,其思維方式也各有特點,因此不同的學生對于同一數(shù)學問題的認識、感受也不會完全相同,從而導致學生對數(shù)學知識理解的偏頗。這樣,學生在解決數(shù)學問題時,一方面不大注意挖掘所研究問題中的隱含條件,抓不住問題中的確定條件,影響問題的解決。如非負實數(shù)x,y滿足x+2y=1,求x2+y2的最大、最小值。在解決這個問題時,如對x、y的范圍沒有足夠的認識(0≤x≤1,0≤y≤1/2),那么就容易產生錯誤。另一方面學生不知道用所學的數(shù)學概念、方法為依據(jù)進行分析推理,對一些問題中的結論缺乏多角度的分析和判斷,缺乏對自我思維進程的調控,從而造成障礙。如函數(shù)y=?f?(x)滿足f(2+x)=f(2-x)對任意實數(shù)x都成立,證明函數(shù)y=f(x)的圖象關于直線x=2對稱.對于這個問題,一些基礎好的同學都不大會做(主要反映寫不清楚),我就動員學生看書,在函數(shù)這一章節(jié)中找相關的內容看,待看完奇、偶函數(shù)、反函數(shù)與原函數(shù)的圖象對稱性之后,學生也就能較順利的解決這一問題了。
在高中數(shù)學起始教學中,教師可以幫助學生明確學習的目的性,針對不同學生的實際情況,因材施教,分別給他們提出新的更高的奮斗目標,使學生有一種“跳一跳,就能摸到桃”的感覺,提高學生學好高中數(shù)學的信心。
例:高一年級學生剛進校時,一般我們都要復習一下二次函數(shù)的內容,而二次函數(shù)中最大、最小值尤其是含參數(shù)的二次函數(shù)的最大、小值的求法學生普遍感到比較困難,為此我作了如下題型設計,對突破學生的這個難點問題有很大的幫助,而且在整個操作過程中,學生普遍(包括基礎差的學生)情緒亢奮,思維始終保持活躍。設計如下:
(1)求出下列函數(shù)在x∈[0,3]時的最大、最小值:(1)y=(x-1)2+1,(2)y=(x+1)2+1,(3)y=(x-4)2+1
(2)求函數(shù)y=x2-2ax+a2+2,x∈[0,3]時的最小值。
(3)求函數(shù)y=x2-2x+2,x∈[t,t+1]的最小值。
上述設計層層遞進,每做完一題,適時指出解決這類問題的要點,大大地調動了學生學習的積極性,提高了課堂效率。
誘導學生暴露其原有的思維框架,消除思維定勢的消極作用。在高中數(shù)學教學中,我們不僅僅是傳授數(shù)學知識,培養(yǎng)學生的思維能力也應是我們的教學活動中相當重要的一部分。而誘導學生暴露其原有的思維框架,包括結論、例證、推論等對于突破學生的數(shù)學思維障礙會起到極其重要的作用。
例如:在學習了“函數(shù)的奇偶性”后,學生在判斷函數(shù)的奇偶性時常忽視定義域問題,為此我們可設計如下問題:判斷函數(shù)?f(x)=x3在區(qū)間[2-3a,a2]上的奇偶性。不少學生由f(―x)=―f (x)立即得到f(x)為奇函數(shù)。教師設問:①區(qū)間[2-3a,a2]有什么意義?②y=x3一定是奇函數(shù)嗎?通過對這兩個問題的思考學生意識到函數(shù)?只有在a=2或a=1即定義域關于原點對稱時才是奇函數(shù)。
使學生暴露觀點的方法很多。例如,教師可以與學生談心的方法,可以用精心設計的診斷性題目,事先了解學生可能產生的錯誤想法,要運用延遲評價的原則,即待所有學生的觀點充分暴露后,再提出矛盾,以免暴露不完全,解決不徹底。有時也可以設置疑難,展開討論,疑難問題引人深思,選擇學生不易理解的概念,不能正確運用的知識或容易混淆的問題讓學生討論,從錯誤中引出正確的結論,這樣學生的印象特別深刻。
當前,素質教育已經向我們傳統(tǒng)的高中數(shù)學教學提出了更高的要求。但只要我們堅持以學生為主體,以培養(yǎng)學生的思維發(fā)展為己任,則勢必會提高高中學生數(shù)學教學質量,擺脫題海戰(zhàn)術,真正減輕學生學習數(shù)學的負擔,從而為提高高中學生的整體素質作出我們數(shù)學教師應有的貢獻。