湯小朋 方熱軍
(湖南農(nóng)業(yè)大學(xué)動物科學(xué)技術(shù)學(xué)院,長沙 410128)
仔豬早期斷奶是規(guī)?;?、集約化養(yǎng)豬生產(chǎn)中關(guān)鍵技術(shù)之一。仔豬早期斷奶不僅可以最大限度發(fā)揮母豬的繁殖性能,提高母豬年產(chǎn)胎數(shù),還能減少病原體從母豬向仔豬傳遞[1]。但是,早期斷奶可能會因?yàn)榄h(huán)境及飲食成分的改變引發(fā)斷奶應(yīng)激,影響仔豬的生產(chǎn)性能及腸道健康。因此提高斷奶仔豬采食量及保持仔豬腸道健康是保證仔豬正常生長的關(guān)鍵。大量研究表明表皮生長因子(epidermal grow th factor,EGF)對早期斷奶哺乳動物的生長性能、腸道發(fā)育、營養(yǎng)物質(zhì)轉(zhuǎn)運(yùn)等具有促進(jìn)作用[2-6]。飼糧中添加外源EGF對降低斷奶仔豬腹瀉率[7],提高免疫力[6],提高生產(chǎn)性能[7-9],促進(jìn)腸道發(fā)育[5,10-11]及提高胃腸道消化酶活性[12]等具有很好的效果。本文就EGF對早期斷奶仔豬生產(chǎn)性能及腸道健康的影響做一綜述,為EGF在仔豬飼糧中的應(yīng)用提供參考。
EGF屬于促生長因子家族成員,與轉(zhuǎn)運(yùn)生長因子 α(transform ing grow th factor-alpha,TGF-α)、肝素結(jié)合 EGF(heparin-binding EGF,HB-EGF)、雙調(diào)蛋白(amphiregulin,AR)、乙胞素(betacellulin,BTC)及上皮調(diào)節(jié)蛋白(epiregulin,EPR)同屬于EGF 蛋 白 家 族[13]。EGF、TGF-α、HB-EGF、AR、BTC及EPR能與EGF受體(EGF receptor,EGFR)結(jié)合,激活酪氨酸激酶活性,并形成一個二聚體[13],從而發(fā)揮其生物學(xué)效應(yīng)。EGFR是一種分子質(zhì)量為170 ku的跨膜蛋白,主要由細(xì)胞外區(qū)、跨膜區(qū)和細(xì)胞內(nèi)區(qū)3部分組成。
EGF是Stanley Cohen在1962年從小鼠下頜腺中分離提純出的一種單鏈多肽類活性物質(zhì)[14]。氨基酸序列分析發(fā)現(xiàn)成熟的EGF含有53個氨基酸殘基,活性中心位于第48~53個氨基酸殘基之間,在第 6、20 位,14、31 位,33、42 位之間形成 3個二硫鍵(圖 1)[15]。
EGF主要由泌乳乳房、下頜腺、腎臟、十二指腸Brunner腺、胰腺和胎盤等分泌,釋放進(jìn)入乳液、唾液、尿液、腸液、血液、羊水等[15-16]。EGF 對熱和酸具有較強(qiáng)耐受性,能抵抗胰蛋白酶、糜蛋白酶及胃蛋白酶的消化,對其維持結(jié)構(gòu)的穩(wěn)定和發(fā)揮生物學(xué)作用具有重要意義,也使其可作為飼料添加劑應(yīng)用在斷奶仔豬飼糧中[16]。
圖1 EGF氨基酸序列及二硫鍵位置Fig.1 The am ino acid sequence and disulfide bond position of EGF[15]
斷奶是仔豬生長過程中最大的應(yīng)激事件,斷奶應(yīng)激可導(dǎo)致仔豬腸道及免疫功能紊亂而引起采食量下降及生長緩慢甚至停滯,影響豬生產(chǎn)性能。據(jù)報(bào)道,商品豬出欄時間與斷奶后1周仔豬的日增重有關(guān),日增重大的仔豬出欄時間比日增重小的仔豬出欄時間更短[17]。因此,提高斷奶仔豬采食量及日增重對養(yǎng)豬生產(chǎn)意義重大。
大量研究發(fā)現(xiàn)EGF可改善斷奶仔豬的斷奶應(yīng)激,提高斷奶仔豬生產(chǎn)性能[7-9,18-19]。EGF 的使用可減少高質(zhì)量氨基酸及抗生素的使用[8],提高飼料轉(zhuǎn)化率,降低料重比和腹瀉率[9],降低生產(chǎn)成本,提高經(jīng)濟(jì)效益。隨著基因工程技術(shù)的發(fā)展,EGF 已經(jīng)在大腸桿菌[20],畢赤酵母[21]、釀酒酵母[3,6,22]、乳酸乳球菌[5,7,19]等微生物中表達(dá)成功,使EGF來源更為廣泛。利用畢赤酵母、釀酒酵母以及乳酸乳球菌等益生菌表達(dá)重組EGF產(chǎn)物可以直接添加在仔豬飼糧中,提高仔豬采食量與日增重[6-8,19,23],且在早期斷奶仔豬腸道中可檢測到重組微生物的活性,對改善腸道微生物菌群有重要作用[5-6,19]。也有研究表明重組微生物的活性不是必要的,甚至高濃度的微生物會對EGF的效果起反作用,導(dǎo)致仔豬腹瀉率增加[7]。
EGF可促進(jìn)腸道對營養(yǎng)物質(zhì)的吸收,提高斷奶仔豬生產(chǎn)性能。大量研究表明EGF及其相關(guān)因子涉及到許多上皮細(xì)胞離子通道的調(diào)節(jié),如,上皮細(xì)胞鈉離子通道(epithelial sodium channel,ENaC)[24]、Na+/K+/2Cl-共同轉(zhuǎn)運(yùn)蛋白(Na+/K+/2Cl-co-transporter,NKCC1)[25]、跨 膜 蛋 白 16A(transmembrane protein 16A TMEM 16A,Ca2+-dependent Cl-channel)[26]、鈣激活鉀離子通道(calcium-activated K+channels,KCa3.1)[27]及瞬時感受器電位M 6離子通道(transient receptor potential melastatin 6,TRPM 6)與瞬時受體電位陽離子通道蛋白C5(cation-nonselective transient receptor potential channel 5,TRPC5)[28]。說明 EGF 與 Na+、K+、Ca+、Mg+、Cl-等離子的轉(zhuǎn)運(yùn)有關(guān)。EGF 還能調(diào)節(jié)鈉磷轉(zhuǎn)運(yùn)蛋白NaPi-Ⅱb的表達(dá)[29],說明EGF參與小腸磷吸收的調(diào)節(jié)。研究表明,EGF能促進(jìn)腸道對葡萄糖[11,24,30]、谷氨酰胺[31]等營養(yǎng)物質(zhì)的吸收。Cellini等[32]報(bào)道,給雌性家兔子宮內(nèi)胎兒提供含EGF的羊水,可增加小腸葡萄糖的攝取量。這是因?yàn)镋GF可刺激腸黏膜細(xì)胞刷狀上的Na+-葡萄糖共轉(zhuǎn)運(yùn)載體(sodium/glucose cotransporter-1,SGLT-1)移位到黏膜刷狀緣頂端,增加刷狀緣上SGLT-1濃度,將腸腔內(nèi)葡萄糖轉(zhuǎn)運(yùn)至上皮細(xì)胞,影響能量攝入[11,23,30]。Na+-依賴性中性氨基酸載體(Na+-dependent neutral amino acids transporter,ASCT2)是一種氨基酸載體,EGF可通過提高腸道上皮細(xì)胞中谷氨酰胺載體ASCT2的轉(zhuǎn)運(yùn)活性、mRNA表達(dá)量和蛋白質(zhì)表達(dá)量,促進(jìn)對Na+-依賴性谷氨酰胺的吸收[31]。
母乳中EGF是促進(jìn)新生動物胃、腸道發(fā)育的重要生長因子。EGF可促進(jìn)斷奶仔豬胃腸道中胃蛋白酶、糜蛋白酶、胰蛋白酶及空腸堿性磷酸酶(alkaline phosphatase,ALP)、蔗糖酶、麥芽糖酶和乳糖酶的活性并能促進(jìn)ALP、蔗糖酶、麥芽糖酶、乳糖酶、氨基肽酶A(am inopeptidase A,APA)及氨基肽酶 N(am inopeptide N,APN)mRNA的表達(dá)[10,12,23]。早期斷奶仔豬母源 EGF 突然中斷,消化系統(tǒng)發(fā)育不完善,胃腸道消化酶分泌不足,不能很好的消化固態(tài)食物。飼糧中添加外源EGF可促進(jìn)仔豬胃腸道消化酶的分泌,改善機(jī)體對營養(yǎng)物質(zhì)的吸收利用。EGF對斷奶仔豬消化道酶活性的影響存在劑量效應(yīng)。給14日齡早期斷奶仔豬分別飼喂 0、0.5、1.0、1.5 mg/kg 的 EGF,結(jié)果發(fā)現(xiàn)飼喂1.5mg/kg的EGF可顯著增加空腸ALP及乳糖酶的活性,伴隨著ALP mRNA及乳糖酶mRNA的表達(dá)量增加[12]。
斷奶應(yīng)激會導(dǎo)致仔豬小腸絨毛萎縮,腺窩增生,不利于營養(yǎng)物質(zhì)的吸收,影響仔豬生長性能。EGF作為有絲分裂原,可促進(jìn)腸上皮組織細(xì)胞增殖與分化[2,5,11],促進(jìn)小腸絨毛及隱窩發(fā)育[6,18],促進(jìn)細(xì)胞內(nèi)DNA、RNA和蛋白質(zhì)合成[6],對腸道發(fā)育的調(diào)節(jié)及腸道損傷的修復(fù)具有重要作用。Kang等[5]研究表明口飼EGF可增加早期斷奶仔豬的空腸與十二指腸的絨毛高度及腸道長度,促進(jìn)腸道細(xì)胞增殖?;庇裼⒌龋?8]研究發(fā)現(xiàn)口飼EGF,斷奶仔豬十二指腸和空腸的絨毛高度和絨毛/腺窩的比值都明顯優(yōu)于對照組,表明EGF可有效降低斷奶應(yīng)激對仔豬腸道結(jié)構(gòu)和功能的不利影響,促進(jìn)仔豬腸道發(fā)育。EGF可刺激腸道杯狀細(xì)胞增殖[11],杯狀細(xì)胞可分泌三葉肽,對胃腸道損傷的修復(fù)及傷口愈合有重要作用[33],且EGF與三葉肽共同作用對腸道傷口愈合效果更好[34]。
EGF可促進(jìn)白細(xì)胞介素-13(interleukin-13,IL-13)與角質(zhì)細(xì)胞生長因子(keratinocyte grow th factor,KGF)[11]的分泌。IL-13 是一種抗炎細(xì)胞因子,可刺激杯狀細(xì)胞增殖及黏蛋白2(Muc2)的分泌[35]。KGF是成纖維生長因子家族成員(也叫做FGF-7),也可刺激杯狀細(xì)胞增殖及黏蛋白2(Muc2)的分泌[11]。Muc2是黏液保護(hù)層重要成分,對腸道潤滑,限制細(xì)菌黏附及維持腸道通透性有重要作用[11]。同時,EGF可促進(jìn)腸道免疫球蛋白(IgA、IgG、IgM)的表達(dá)及淋巴細(xì)胞的增殖[6,11],促進(jìn)豬流行性腹瀉病毒導(dǎo)致的萎縮性腸炎的恢復(fù)[36],提高早期斷奶仔豬的免疫功能,降低仔豬腹瀉率 。
大量研究證實(shí)了EGF可以促進(jìn)早期斷奶仔豬生長性能與腸道發(fā)育,但其涉及的機(jī)制研究還不夠深入。總結(jié)前人研究推測EGF促進(jìn)早期斷奶仔豬生長性能與腸道發(fā)育的可能機(jī)制為:1)EGF通過激活 PI3K/AKT、RAS/MAPK信號通路(圖2)[16,37],促進(jìn)小腸 DNA、RNA 合成[6],促進(jìn)細(xì)胞增殖與分化[5,11],從而促進(jìn)小腸絨毛發(fā)育[6,18]促進(jìn)胃腸道消化酶的分泌表達(dá)[6,10,12,18,23],提高小腸養(yǎng)分吸收及養(yǎng)分利用率,同時促進(jìn)受損腸道組織的修 復(fù)[16]。EGF促 發(fā) 絲 裂 原 活 化 蛋 白 激 酶(MAPK)信號通路過程為:EGF與其受體EGFR結(jié)合后,形成二聚體,并發(fā)生自身磷酸化而被激活,其酪氨酸殘基與生長因子受體結(jié)合蛋白2(Grb2)的SH2結(jié)構(gòu)域特異結(jié)合,Grb2的SH3結(jié)構(gòu)域與鳥苷酸交換因子(SOS)結(jié)合,SOS與膜上的小G蛋白Ras結(jié)合后使非活性的GDP-Ras轉(zhuǎn)化為激活型 GTP-Ras,GTP-Ras與絲氨酸/蘇氨酸(Ser/Thr)蛋白激酶Raf(又稱MAPKK)的N端結(jié)合并使其激活,活化的Raf結(jié)合并磷酸化MAPKK,激活MAPK(即 ERK)的蘇氨酸和酪氨酸殘基,ERK進(jìn)入細(xì)胞核,激活多種轉(zhuǎn)錄因子,調(diào)節(jié)DNA的合成、轉(zhuǎn)錄及細(xì)胞增殖與分化(圖 2-B)[16,37]。EGF 也 能 促 發(fā) 磷 脂 酰 肌 醇 3 - 激 酶(PI3K)信號通路。EGF與其受體結(jié)合后激活EGFR,酪氨酸殘基與PI3K結(jié)合,將磷酸肌醇二磷酸(PIP2)磷酸化為 3,4,5-磷脂酰肌醇三磷酸(PI-3,4,5-P3)?;罨?PI-3,4,5-P3與磷酸肌醇依賴性激酶-1(PDK-1)和絲氨酸/蘇氨酸蛋白激酶Akt(PKB)結(jié)合,轉(zhuǎn)位到細(xì)胞膜上,改變Akt的構(gòu)象。激活的PKB返回細(xì)胞質(zhì),通過磷酸化作用激活或抑制下游靶蛋白,進(jìn)而調(diào)節(jié)細(xì)胞的增殖、分化、凋亡以及遷移等(圖 2-A)[16,37]。2)EGF 促進(jìn) IL-13及KGF表達(dá)[11],刺激杯狀細(xì)胞增殖,促進(jìn) Muc2的分泌[11],保護(hù)腸道健康。具體通過何種途徑調(diào)節(jié)促進(jìn)IL-13及KGF表達(dá)還需進(jìn)一步研究。3)EGF促進(jìn)營養(yǎng)物質(zhì)轉(zhuǎn)運(yùn)蛋白基因表達(dá),如SGLT1[11,23]。研 究 表 明 EGF 在 轉(zhuǎn) 錄 水 平 調(diào) 控SGLT1基因的表達(dá),其通過EGFR與PI3K信號通路激活cAMP相應(yīng)元件結(jié)合蛋白(cAMP response element-binding protein,CREB)并磷酸化促進(jìn)SGLT1基因表達(dá)與腸道葡萄糖吸收[38]。綜上所述,EGF通過促進(jìn)腸道絨毛發(fā)育、消化酶分泌及腸道營養(yǎng)物質(zhì)轉(zhuǎn)運(yùn)蛋白表達(dá),促進(jìn)腸道養(yǎng)分吸收利用,提高斷奶仔豬生產(chǎn)性能;通過促進(jìn)腸道杯狀細(xì)胞分化維持腸道健康及通過促進(jìn)腸細(xì)胞增殖與分化修復(fù)受損腸道(圖3)。
圖2 EGF激活的PI3K(A)與MAPK(B)信號通路過程圖Fig.2 The process of PI3K(A)and MAPK(B)signal pathway activated by EGF[37]
圖3 EGF促進(jìn)早期斷奶仔豬生長性能與腸道發(fā)育的可能機(jī)制Fig.3 Proposed mechanism of EGF on early-weaned piglet grow th performance and intestine development[11]
早期斷奶對提高母豬繁殖性能及減少病原菌由母體向仔豬傳遞有重要意義。但是早期斷奶也會因?yàn)榄h(huán)境及飲食的改變引發(fā)斷奶應(yīng)激;同時,早期斷奶仔豬胃腸道發(fā)育不完善,對養(yǎng)分吸收利用率低下,嚴(yán)重影響斷奶仔豬胃腸道健康及生長性能,給養(yǎng)豬生產(chǎn)帶來不利影響。大量研究表明EGF可提高斷奶仔豬生產(chǎn)性能、促進(jìn)腸道發(fā)育和營養(yǎng)物質(zhì)轉(zhuǎn)運(yùn)、提高胃腸道消化酶活性和免疫力及降低腹瀉率。但關(guān)于EGF促進(jìn)早期斷奶仔豬生長性能及腸道發(fā)育的機(jī)制研究較少。因此,深入研究EGF促進(jìn)早期斷奶仔豬生長性能及腸道發(fā)育的機(jī)制可能是今后的研究熱點(diǎn)。
[1] WHITING T L,PASMA T.Isolated weaning technology:humane benefits and concerns in the production of pork[J].The Canadian Veterinary Journal,2008,49(3):293-301.
[2] CHEUNG Q C,YUAN Z F,DYCE PW,et al.Generation of epidermal grow th factor-expressing Lactococcus lactis and its enhancement on intestinal development and grow th of early-weaned m ice[J].American Journal of Clinical Nutrition,2009,89(3):871-879.
[3] WANG S J,ZHOU L,CHEN H N,et al.Analysis of the biological activities of Saccharomyces cerevisiae expressing intracellular EGF,extracellular EGF,and tagged EGF in early-weaned rats[J].Applied M icrobiology and Biotechnology,2015,99(5):2179-2189.
[4] CELLINIC,XU J,BUCHM ILIER-CRAIR T.Effect of epidermal grow th factor on small intestinal sodium/glucose cotransporter-1 expression in a rabbitmodel of intrauterine grow th retardation[J].Journal of Pediatric Surgery,2005,40(12):1892-1897.
[5] KANG P,TOMSD,YIN Y L,etal.Epidermal grow th factor-expressing Lactococcus lactis enhances intestinal development of early-weaned pigs[J].The Journal of Nutrition,2010,140(4):806-811.
[6] WANG S J,GUO C H,ZHOU L,etal.Comparison of the biological activities of Saccharomyces cerevisiaeexpressed intracellular EGF,extracellular EGF,and tagged EGF in early-weaned pigs[J].Applied M icrobiology and Biotechnology,2015,doi:10.1007/s00253-015-6468-6.
[7] BEDFORD A,HUYNH E,F(xiàn)U M L,et al.Grow th performance of early-weaned pigs is enhanced by feeding epidermal grow th factor-expressing Lactococcus lactis fermentation product[J].Journal of Biotechnology,2014,173:47-52.
[8] BEDFORD A,LI Z,LI M,et al.Epidermal grow th factor-expressing Lactococcus lactis enhances grow th performance of early-weaned pigs fed diets devoid of blood plasma[J].Journal of Animal Science,2012,90(4S):4-6.
[9] 王勇飛,段葉輝,夏連喜,等.重組豬表皮生長因子對早期斷奶仔豬生長性能的影響[J].動物營養(yǎng)學(xué)報(bào),2014,26(12):3787-3792.
[10] LEE D N,CHANGW F,YU IT,etal.Effects of diets supplemented w ith recombinant epidermal grow th factor and glutam ine on gastrointestinal tract development of early-weaned piglets[J].Asian-Australasian Journal of Animal Sciences,2008,21(4):582-589.
[11] BEDFORD A,CHEN T,HUYNH E,et al.Epidermal grow th factor containing culture supernatant enhances intestine development of early-w eaned pigs in vivo:potentialmechanisms involved[J].Journal of Biotechnology,2015,196-197:9-19.
[12] LEE D N,CHUANG Y S,CHIOU H Y,etal.Oral adm inistration recombinant porcine epidermal grow th factor enhances the jejunal digestive enzyme genes expression and activity of early-weaned piglets[J].Journal of Animal Physiology and Animal Nutrition,2008,92(4):463-470.
[13] SCHNEIDER M R,WOLF E.The epidermal grow th factor receptor ligands at a glance[J].Journal of Cellular Physiology,2009,218(3):460-466.
[14] COHEN S.Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal[J].The Journal of Biological Chem istry,1962,237:1555-1562.
[15] ZENG H F,HARRIS R C.Epidermal grow th factor,from gene organization to bedside[J].Sem inars in Cell& Developmental Biology,2014,28:2-11.
[16] 劉淑杰,徐子偉,齊珂珂,等.表皮生長因子對腸道功能調(diào)控的研究[J].動物營養(yǎng)學(xué)報(bào),2014,26(3):565-570.
[17] CAMPBELL JM,CRENSHAW JD,POLO J.The biological stress of early weaned piglets[J].Journal of Animal Science and Biotechnology,2013,4:19.
[18] 槐玉英,紀(jì)少麗,李明,等.表達(dá)表皮生長因子的乳酸球菌對早期斷奶仔豬生長性能和腸道形態(tài)學(xué)結(jié)構(gòu)的影響[J].中國獸醫(yī)雜志,2013,49(3):21-23.
[19] WANG D Y,XU SY,LIN Y,et al.Recombinant porcine epidermal grow th factor-secreting Lactococcus lactis promotes the grow th performance of earlyweaned piglets[J].BMC Veterinary Research,2014,10:171.
[20] ABDULL RAZISA F,ISMAIL EN,HAMBALIZ,et al.Expression of recombinanthuman epidermal grow th factor in Escherichia coli and characterization of its bi-ological activity[J].Applied Biochem istry and Biotechnology,2008,144(3):249-261.
[21] LEE D N,KUO T Y,CHEN M C,et al.Expression of porcine epidermal grow th factor in Pichia pastoris and its biology activity in early-weaned piglets[J].Life Sciences,2006,78(6):649-654.
[22] 王蜀金,周琳,陳慧娜,等.重組豬表皮生長因子在釀酒酵母中的克隆表達(dá)及其生物學(xué)活性鑒定[J].畜牧獸醫(yī)學(xué)報(bào),2014,45(12):1971-1980.
[23] XU S,WANG D,ZHANG P,etal.Oral adm inistration of Lactococcus lactis-expressed recombinant porcine epidermal grow th factor stimulates the development and promotes the health of small intestines in earlyweaned piglets[J].Journal of Applied M icrobiology,2015,119(1):225-235.
[24] ZHELEZNOVA N N,W ILSON P D,STARUSCHENKO A.Epidermal grow th factor-mediated proliferation and sodium transport in normal and PKD epithelial cells[J].Biochim ica et Biophysica Acta:Molecular Basis of Disease,2011,1812(10):1301-1313.
[25] O’MAHONY F,TOUM IF,MROZ M S,et al.Induction of Na+/K+/2Cl-cotransporter expression mediates chronic potentiation of intestinal epithelial Cl-secretion by EGF[J].American Journal of Physiology Cell Physiology,2008,294(6):C1362-C1370.
[26] MROZ M S,KEELY S J.Epidermal grow th factor chronically upregulates Ca2+-dependent Cl-conductance and TMEM 16A expression in intestinal epithelial cells[J].The Journal of Physiology,2012,590(8):1907-1920.
[27] TRINH N T,PRIVE A,MAILLE E,etal.EGF and K+channel activity control normal and cystic fibrosis bronchial epithelia repair[J].American Journal of Physiology Lung Cellular and Molecular Physiology,2008,295(5):L866-L880.
[28] BEZZERIDES V J,RAMSEY I S,KOTECHA S,et al.Rapid vesicular translocation and insertion of TRP channels[J].Nature Cell Biology,2004,6(8):709-720.
[29] XU H,INOUYE M,HINES E R,et al.Transcriptional regulation of the human NaPi-Ⅱb cotransporter by EGF in Caco-2 cells involves c-myb[J].American Journal of Physiology Cell Physiology,2003,284(5):C1262-C1271.
[30] YANG C B,ALBIN D M,WANG Z R,et al.Apical Na+-d-glucose cotransporter 1(SGLT1)activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig[J].American Journal of Physiology:Gastrointestinaland Liver Physiology,2011,300(1):G60-G70.
[31] RAY E C,AVISSAR N E,SALLOUM R,et al.Grow th hormone and epidermal grow th factor upregulate specific sodium-dependent glutam ine uptake systems in human intestinal C2BBe1 cells[J].The Journal of Nutrition,2005,135(1):14-18.
[32] CELLINIC,XU J,ARRIAGA A,et al.Effect of epidermal grow th factor infusion on fetal rabbit intrauterine grow th retardation and small intestinal development[J].Journal of Pediatric Surger,2004:39(6):891-897.
[33] PAULSEN F P,WOON CW,VAROGA D,et al.Intestinal trefoil factor/TFF3 promotes re-epithelialization of corneal wounds[J].The Journal of Biological Chem istry,2008,283(19):13418-13427.
[34] HUYNH E,LI J L.Generation of Lactococcus lactis capable of coexpressing epidermal grow th factor and trefoil factor to enhance in vitro wound healing[J].Applied M icrobiology and Biotechnology,2015,99(11):4667-4677.
[35] MANNON P,REINISCH W.Interleukin 13 and its role in gut defence and inflammation[J].Gut,2012,61(12):1765-1773.
[36] JUNG K,KANG B K,KIM J Y,et al.Effects of epidermal grow th factor on atrophic enteritis in piglets induced by experimental porcine epidem ic diarrhoea virus[J].The Veterinary Journal,2008,177(2):231-235.
[37] BRAND T M,LIDA M,LIC,et al.The nuclear epidermal grow th factor receptor signaling network and its role in cancer[J].Discovery Medicine,2011,12(66):419-432.
[38] WANG CW,CHANG W L,HUANG Y C,et al.An essential role of cAMP response element-binding protein in epidermal grow th factor-mediated induction of sodium/glucose cotransporter 1 gene expression and intestinal glucose uptake[J].The International Journal of Biochem istry & Cell Biology,2015,64:239-251.