• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      油菜素內(nèi)酯對(duì)鹽漬下油菜幼苗生長(zhǎng)的調(diào)控效應(yīng)及其生理機(jī)制

      2015-03-11 06:46:52鄭春芳劉偉成尹曉明劉金隆王長(zhǎng)海鄭青松
      生態(tài)學(xué)報(bào) 2015年6期
      關(guān)鍵詞:外源穩(wěn)態(tài)油菜

      馬 梅,劉 冉,鄭春芳,劉偉成,尹曉明,劉金隆,王長(zhǎng)海,鄭青松,*

      1 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院 江蘇省海洋生物學(xué)重點(diǎn)實(shí)驗(yàn)室, 南京 210095 2 浙江省海洋水產(chǎn)養(yǎng)殖研究所 浙江省永興水產(chǎn)種業(yè)有限公司, 溫州 325005

      油菜素內(nèi)酯對(duì)鹽漬下油菜幼苗生長(zhǎng)的調(diào)控效應(yīng)及其生理機(jī)制

      馬 梅1,劉 冉1,鄭春芳2,劉偉成2,尹曉明1,劉金隆1,王長(zhǎng)海1,鄭青松1,*

      1 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院 江蘇省海洋生物學(xué)重點(diǎn)實(shí)驗(yàn)室, 南京 210095 2 浙江省海洋水產(chǎn)養(yǎng)殖研究所 浙江省永興水產(chǎn)種業(yè)有限公司, 溫州 325005

      為了探討油菜素內(nèi)酯對(duì)植物耐鹽性的調(diào)控,以甘藍(lán)型油菜“南鹽油1號(hào)”為試驗(yàn)材料,研究了外源24-表油菜素內(nèi)酯(24-EBL)對(duì)100、200 mmol/L NaCl脅迫下油菜幼苗干重(DW)、相對(duì)含水量(RWC)、滲透調(diào)節(jié)能力(OAA)、葉片氣體交換參數(shù)、氣孔限制值(Ls)等的調(diào)節(jié)效應(yīng),還測(cè)定了不同器官的Na+、K+、Cl-含量,并計(jì)算各器官的K+/Na+和SK,Na。結(jié)果表明: (1)在不同濃度的鹽脅迫下,油菜幼苗DW顯著下降,脅迫下外源噴施10-12、10-10、10-8、10-6mol/L 24-EBL作用下,油菜植株干重均不同程度的上升,且植株干重都在10-10mol/L 24-EBL(EBL2)處理下達(dá)到最大值,分別比100、200 mmol/L NaCl脅迫下增加29%和20%。與對(duì)照相比,非鹽脅迫下外源噴施10-12、10-10、10-8、10-6mol/L 24-EBL,油菜幼苗植株干重與對(duì)照相比均無顯著變化。(2)不同NaCl濃度脅迫下,油菜葉片的RWC顯著下降,外施EBL2可顯著提高油菜葉片的RWC和OAA。(3)不同濃度NaCl脅迫下,油菜幼苗葉片凈光合速率(Pn)、氣孔導(dǎo)度(Gs)、胞間CO2濃度 (Ci)和蒸騰速率(Tr)均不同程度下降,而Ls顯著上升,而外噴EBL2可不同程度的提高Pn、Gs、Ci、Tr,降低Ls。(4)與對(duì)照相比,NaCl脅迫下油菜幼苗葉片、葉柄和根的Na+和Cl-含量均顯著上升,NaCl濃度愈高,Na+和Cl-含量上升愈顯著。 而K+含量均下降,外源EBL2可顯著降低幼苗各器官的Na+和Cl-含量,對(duì)幼苗葉片K+含量沒有影響,但提高了葉柄和根中的K+含量。上述表明,合適濃度的24-EBL外噴可明顯提高油菜的耐鹽水平,且不同濃度NaCl脅迫下,最適24-EBL濃度均為10-10mol/L。主要是因?yàn)橥庠磭娛?4-EBL能顯著改善離子穩(wěn)態(tài)和滲透調(diào)節(jié)能力,從而改善鹽脅迫下油菜幼苗的光合作用、水分狀況,提高其耐鹽性。而24-EBL對(duì)鹽處理下油菜植株氣孔限制的顯著改善是其促進(jìn)其光合、水分利用的重要原因,也是其對(duì)100 mmol/L NaCl處理的油菜生長(zhǎng)調(diào)控效果優(yōu)于200 mmol/L NaCl處理的重要原因之一。結(jié)果還顯示,在葉片中,24-EBL外施可通過排Na+和Cl-來維持植株離子穩(wěn)態(tài),而對(duì)K+影響不大;在根、莖中可通過排Na+、排Cl-、吸K+維持穩(wěn)態(tài)。

      油菜; 幼苗; 24-表油菜素內(nèi)酯; 鹽脅迫; 光合作用; 滲透調(diào)節(jié); 離子吸收

      土壤鹽漬化是降低作物產(chǎn)量的主要原因之一,世界上20%的灌溉用地都面臨土壤鹽漬化的影響,由于高鹽分危害作物生長(zhǎng),進(jìn)而影響了世界陸地的可種植面積[1]。造成土壤鹽漬化的原因有自然因素,但更主要因素是墾荒和不合理灌溉引起的[2]。滴灌和輪作等措施可以適當(dāng)緩解土壤鹽漬化,但都有賴于植物耐鹽性的提高,因?yàn)橥寥乐锌傆幸欢ǔ潭鹊柠}存在[3-4]。油菜作為世界第三大油料作物和我國(guó)第一大食用植物油料作物種植范圍非常廣泛[5-6]。其中,甘藍(lán)型油菜(BrassicanapusL.)比較耐鹽,近年來,油菜在半干旱地區(qū)的種植面積不斷增加,因此研究油菜耐鹽性十分重要[6]。

      油菜素甾醇類化合物(brassinosteroids, BRs)是迄今為止國(guó)際上公認(rèn)的活性最高、最廣譜的一類植物生長(zhǎng)激素,植物經(jīng)極低濃度處理便能表現(xiàn)出顯著的生理效應(yīng)[7]。自1979年首次從油菜花粉中分離油菜素內(nèi)酯(brassinolide, BL)以來,已先后從植物中分離了約70種BRs[8]。它能調(diào)節(jié)植物的生長(zhǎng)發(fā)育,如莖的伸長(zhǎng)、花粉管生長(zhǎng)、果實(shí)成熟、乙烯的合成、木質(zhì)部的分化、植物光合作用等[9-11]。對(duì)BRs信號(hào)傳導(dǎo)途徑的研究一直都是熱點(diǎn),除了對(duì)其生長(zhǎng)調(diào)節(jié)的研究外,BRs也參與一系列非生物脅迫,如重金屬脅迫、高溫脅迫、干旱脅迫、氧化脅迫、鹽脅迫等,但其抗性機(jī)制尚不清楚[12-14]。BRs介導(dǎo)植物耐鹽性調(diào)節(jié)的研究主要集中在抗氧化能力、滲透保護(hù)物質(zhì)、光合作用等方面,且集中在水稻[15]、菜豆[16]、大麥[16]、綠豆[17]、胡椒[18]等材料上,在其它方面的研究相對(duì)還比較薄弱,特別是在離子穩(wěn)態(tài)方面,其機(jī)理仍然很不清晰。而在植物的鹽適應(yīng)機(jī)制上,離子穩(wěn)態(tài)與滲透調(diào)節(jié)、光合作用等代謝過程相互交織[2-3,19]。24-表油菜素內(nèi)酯(24-Epibrassinolide, 24-EBL)對(duì)150 mmol/L NaCl脅迫下油菜生長(zhǎng)的調(diào)節(jié)效應(yīng)和植物色素在油菜耐鹽性中的作用,發(fā)現(xiàn)外源噴施適宜濃度24-EBL 能夠顯著促進(jìn)鹽漬條件下油菜幼苗光合能力,并提高其抗氧化能力,從而增強(qiáng)其對(duì)鹽漬的適應(yīng)性,而光合色素和花青素水平被24-EBL誘導(dǎo)上升在油菜幼苗抗氧化過程中起著重要的作用[14]。在本研究中,設(shè)置了多個(gè)水平(0、100、200 mmol/L NaCl)鹽處理,并噴施多個(gè)24-EBL濃度(0、10-6、10-8、10-10、10-12mol/L),探討外源24-EBL調(diào)節(jié)不同水平鹽脅迫下油菜幼苗生長(zhǎng)的濃度效應(yīng),并探討了24-EBL對(duì)油菜幼苗光合作用、滲透調(diào)節(jié)和離子穩(wěn)態(tài)等調(diào)控效應(yīng),以明確24-EBL誘導(dǎo)油菜幼苗抗鹽性的效果及可能的生理機(jī)制,為作物的抗鹽栽培以及應(yīng)用BRs緩解作物鹽害提供更多的理論和實(shí)踐依據(jù)。

      1 材料與方法

      1.1 試驗(yàn)材料

      甘藍(lán)型油菜(BrassicanapusL.)品種:南鹽油1號(hào)。

      1.2 試驗(yàn)設(shè)計(jì)和處理

      挑選大小一致、飽滿的種子經(jīng)0.1% HgCl2消毒3 min,清水沖洗干凈后清水浸種12 h,放入墊有吸水紙的瓷盤內(nèi)催芽。挑選露白一致的種子播種于裝有20—40目石英砂的塑料盆(直徑16 cm,高24 cm)中,每盆6粒種子。用1/4 Hoagland溶液培養(yǎng),砂培至3葉期,間苗以確保齊苗,每盆2株。轉(zhuǎn)入含100和200 mmol/L NaCl的Hoagland溶液進(jìn)行處理,編號(hào)為S100和S200,同時(shí)外噴10-12、10-10、10-8、10-6mol/L 24-EBL,依次編號(hào)為EBL1、EBL2、EBL3、EBL4。不含NaCl的Hoagland培養(yǎng)液的、噴施去離子水的幼苗為對(duì)照(Control)。 每個(gè)處理4盆,處理期間每隔1 d更換處理液,于每天早上和傍晚分別葉面噴施去離子水或不同濃度的24-EBL,處理15 d后采樣進(jìn)行指標(biāo)測(cè)定。整個(gè)培養(yǎng)期間溫度為(25.0±4.0) ℃(白天),(22.0±2.0) ℃(夜間),相對(duì)濕度(55.2±10.3)%(白天)及(58.1±6.2)%(夜間)。

      1.3 測(cè)定指標(biāo)和方法

      1.3.1 植株生物量測(cè)定

      將油菜幼苗從砂中取出,先用自來水緩慢沖洗根部的砂粒,再用蒸餾水將鮮樣洗凈,用吸水紙吸干,子葉節(jié)處分開地上部和根部,在105 ℃殺青15 min后于75 ℃烘干至恒重,稱得干重。

      1.3.2 葉片相對(duì)含水量和滲透調(diào)節(jié)能力的測(cè)定

      將新完全展開葉(即倒3葉)從植株分離后立即稱其重量得葉片鮮重(FW),再將其浸入蒸餾水中, 4 ℃,過夜,使葉片吸水成飽和狀態(tài),稱重,得飽和時(shí)的重量(TW),然后將樣品75 ℃烘干,稱重,得干重(DW),根據(jù)公式求得RWC:

      RWC (%) = [(FW-DW)/(TW-DW)]×100。

      采用 Zheng等[20]方法測(cè)定飽和滲透勢(shì)(π100)和滲透調(diào)節(jié)能力(OAA),根據(jù)公式計(jì)算OAA:

      1.3.3 氣體交換參數(shù)的測(cè)定

      采用美國(guó)LI-COR公司的LI-6400 XT便攜式光合儀測(cè)定系統(tǒng),在處理的第15 天(晴天)9:00—11:00測(cè)定其新完全展開葉的凈光合速率(Pn)、氣孔導(dǎo)度(Gs)、胞間CO2濃度(Ci)、蒸騰速率(Tr)。氣孔限制值(Ls)的測(cè)定按照Yang等[21]文獻(xiàn)。

      1.3.4 植株Na+和K+濃度、K+/Na+和SK,Na的測(cè)定

      將烘干的油菜葉片(倒3葉)及其葉柄和植株根系磨碎后過40目不銹鋼篩,采用HNO3∶HClO4(3∶1)消化,利用電感耦合等離子體廣譜發(fā)生儀(ICP)測(cè)定并計(jì)算樣品中的Na+和K+含量 (mmol/g干重),每個(gè)樣品重復(fù)3次。然后計(jì)算K+/Na+比值,按下列公式計(jì)算離子吸收和運(yùn)輸?shù)腒+、Na+的選擇性比率[22],即SK,Na:

      根SK,Na= (根K+/Na+)/(介質(zhì)K+/Na+)
      葉柄SK,Na= (葉柄K+/Na+)/(根K+/Na+)
      葉SK,Na= (葉K+/Na+)/(根K+/N a+)

      1.4 數(shù)據(jù)處理與統(tǒng)計(jì)分析

      利用Microsoft Excel、SPSS17.0軟件進(jìn)行數(shù)據(jù)的處理、統(tǒng)計(jì)分析,數(shù)據(jù)均為“平均數(shù)±標(biāo)準(zhǔn)差”格式,采用Duncan新復(fù)極差測(cè)驗(yàn)法(P<0.05)進(jìn)行顯著性分析。

      2 結(jié)果與分析

      2.1 24-EBL對(duì)鹽脅迫下油菜幼苗生長(zhǎng)的效應(yīng)

      表1所示,與對(duì)照相比,10-12mol/L 24-EBL處理下,油菜幼苗植株干重增加,但未達(dá)顯著水平,隨著24-EBL濃度的增加,油菜幼苗植株干重逐漸下降,但均未達(dá)顯著水平;而100 mmol/L NaCl脅迫(S100)下,10-6—10-12mol/L 24-EBL處理均提高植株干重,其中10-10mol/L 24-EBL處理作用最為明顯,干重增加29%;而200 mmol/L NaCl脅迫(S200)下,EBL2處理作用最為明顯,干重增加20%,而其它濃度24-EBL處理對(duì)干重的提高不顯著。

      表1 不同水平的24-表油菜素內(nèi)酯(24-EBL)和NaCl交互作用對(duì)油菜幼苗植株干重的影響Table 1 Interaction effects of different concentrations of 24-epibrassinolide (24-EBL) and NaCl on plant dry weight of canola seedlings

      同列不同的小寫字母表示差異顯著(P<0.05)

      2.2 24-EBL對(duì)鹽脅迫下油菜幼苗葉片水分含量和滲透調(diào)節(jié)能力的效應(yīng)

      與對(duì)照相比,NaCl脅迫下油菜葉片相對(duì)含水量(RWC)顯著下降;而不同鹽度脅迫下,外加EBL2處理均明顯提高葉片RWC(圖1);100、200 mmol/L NaCl脅迫下油菜葉片均顯示出一定的滲透調(diào)節(jié)能力(OAA),而EBL2處理均極顯著提高其葉片的OAA(圖1)。

      圖1 100、200mmol/L NaCl脅迫下不同濃度24-EBL對(duì)油菜葉片相對(duì)含水量和滲透調(diào)節(jié)能力(OAA)的影響 Fig.1 Effects of different concentrations of 24-EBL on relative water content (RWC) and osmotic adjustment ability (OAA) the dry weight of canola seedlings under 100 and 200 mmol L-1 NaCl stress conditions

      2.3 24-EBL對(duì)鹽脅迫下油菜幼苗葉片氣體交換參數(shù)和氣孔限制值(Ls)的效應(yīng)

      NaCl脅迫均降低油菜幼苗葉片的Pn、Gs、Ci和Tr,其中Gs和Tr的降幅要大于Pn和Ci,外源EBL2則可不同程度的部分逆轉(zhuǎn)這一效應(yīng)(圖2)。而圖3顯示,NaCl脅迫均明顯提高葉片的Ls,鹽度愈高,Ls愈大;外源EBL2可降低鹽脅迫植株葉片的Ls,其中在100 mmol/L NaCl脅迫下,EBL2降低Ls的效應(yīng)達(dá)到顯著水平(圖3)。

      圖2 100、200 mmol/L NaCl脅迫下10-10 mol/L 24-EBL (EBL2)對(duì)油菜Pn、Gs、Ci和Tr的影響Fig.2 Effects of 10-10 mol/L 24-EBL (EBL2) on the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of canola seedlings under 100 and 200 mmol/L NaCl stress conditions

      圖3 100、200 mmol/L NaCl脅迫下10-10 mol/L 24-EBL (EBL2)對(duì)油菜Ls的影響Fig.3 Effects of 10-10 mol/L 24-EBL (EBL2) on the stomata limitation values (Ls) of canola seedlings under 100 and 200 mmol/L NaCl stress conditions

      2.4 24-EBL對(duì)鹽脅迫下油菜幼苗離子含量和選擇性吸收或運(yùn)輸?shù)男?yīng)

      與對(duì)照相比,NaCl脅迫下油菜幼苗葉片、葉柄和根的Na+和Cl-含量均顯著上升,NaCl濃度愈高,Na+和Cl-含量上升愈顯著。 而K+含量均下降,但是葉片中K+含量下降的幅度要顯著低于葉柄和根。因此,在NaCl脅迫下油菜幼苗每個(gè)器官K+/Na+均顯著下降(表2)。鹽脅迫下,外源EBL2可顯著降低幼苗各器官的Na+和Cl-含量,在100、200 mmol/L NaCl脅迫下,外加EBL2,分別降低葉片中Na+含量49%和18%,及Cl-含量43%和15%;分別降低葉柄中Na+含量28%和16%,及Cl-含量13%和和25%;分別降低根中Na+含量23%和17%,Cl-含量21%和和18%;鹽脅迫下,外源EBL2對(duì)幼苗葉片K+含量沒有影響,在100、200 mmol/L NaCl脅迫下,外加EBL2,分別提高葉柄中K+含量17%和13%,分別提高根中K+含量34%和31%(表2)。因此,鹽脅迫下,外源EBL2不同程度地提高油菜不同器官的K+/Na+。SK,Na反映植物對(duì)不同離子吸收或運(yùn)輸?shù)倪x擇性程度。鹽脅迫下,外源EBL2明顯提高葉片和根的SK,Na,而顯著降低葉柄的SK,Na。

      表2 100、200 mmol/L NaCl脅迫下10-10mol/L 24-EBL (EBL2)對(duì)油菜幼苗不同器官Na+、Cl-、K+含量,以及K+/Na+和SK,Na的影響

      Table 2 Effects of 10-10mol/L 24-EBL (EBL2) on contents of Na+, Cl-and K+, K+/Na+andSK,Naof canola seedlings under 100 and 200 mmol/L NaCl stress conditions

      器官Organs處理TreatmentNa+Cl-K+/(mmol/g干重)K+/Na+SK,Na葉片對(duì)照0.15±0.02e0.21±0.02e0.96±0.06a6.34±0.18a0.54±0.05bcLeafS1001.98±0.08c2.12±0.12c0.91±0.05ab0.50±0.04c0.58±0.06bS100+EBL21.01±0.06d1.21±0.08d0.93±0.04ab0.95±0.10b0.72±0.07aS2002.71±0.11a3.35±0.33a0.86±0.06b0.31±0.04d0.40±0.03dS200+EBL22.23±0.14b2.86±0.15b0.85±0.05b0.41±0.05cd0.48±0.04c葉柄對(duì)照0.24±0.03d0.34±0.04d2.75±0.16a11.54±0.24a7.36±0.26aPetioleS1002.45±0.14b3.03±0.15b2.12±0.13cd0.88±0.08c3.85±0.21cS100+EBL21.76±0.10c2.65±0.22c2.48±0.12b1.36±0.12b3.18±0.16dS2002.77±0.12a3.83±0.19a1.96±0.10d0.66±0.05c4.55±0.23bS200+EBL22.34±0.11b2.87±0.12bc2.21±0.14c0.82±0.06c3.76±0.19c根對(duì)照0.33±0.04d0.19±0.06d0.52±0.05a1.60±0.08a0.01±0.00eRootS1001.41±0.08b1.56±0.12b0.32±0.04c0.23±0.02cd7.44±0.33dS100+EBL21.09±0.10c1.23±0.10c0.43±0.07b0.42±0.05b12.83±0.25bS2001.78±0.12a1.98±0.11a0.26±0.04c0.13±0.02d9.84±0.33cS200+EBL21.47±0.09b1.63±0.14b0.34±0.04bc0.25±0.03c15.76±0.47a

      同一器官不同小寫字母表示差異顯著(P<0.05)

      3 討論

      24-EBL對(duì)植物耐鹽性的調(diào)節(jié)的濃度效應(yīng)報(bào)道不一。Zeng等[23]研究發(fā)現(xiàn),在100 mmol/L NaCl脅迫下,10-9和10-8mol/L 24-EBL能明顯促進(jìn)擬南芥(Arabidopsisthaliana)根的伸長(zhǎng),緩解其鹽害。Divi等[24]在150 mmol/L NaCl處理下,也發(fā)現(xiàn)10-9mol/L 24-EBL能明顯促進(jìn)擬南芥(A.thaliana)種子萌發(fā)。Anurdha和Rao[25]研究表明在150 mmol/L NaCl脅迫下,3×10-6mol/L 24-EBL浸種能明顯促進(jìn)水稻(Oryzasativa)種子萌發(fā)及其幼苗生長(zhǎng);?zdemir等[15]在120 mmol/L NaCl處理水稻(O.sativa),也采用同樣的濃度浸種處理,得到同樣的效應(yīng),但非鹽脅迫下,浸種處理反而起抑制作用。Houimli等[18]在0.4 g/L NaCl處理下外噴0.01、0.05、0.1、0.5 mg/L 24-EBL(24-EBL:0.5 mg/L相當(dāng)于1.04×10-6mol/L),可不同程度的增加胡椒(Pipernigrum)的耐鹽性,且隨著24-EBL濃度上升,耐鹽性的增強(qiáng)愈明顯。非鹽脅迫或者鹽脅迫(150 mmol/L NaCl)下,外噴0.001、0.025、0.050、0.075、0.10、0.125、0.150、0.175、0.20 mg/L 24-EBL均能不同程度促進(jìn)小麥(Triticumaestivum)幼苗生長(zhǎng),其中0.125 mg/L(2.6×10-7mol/L)24-EBL處理的效果最為顯著[26]。Kagale等[27]研究表明,鹽脅迫下1×10-6和2×10-6mol/L 24-EBL促進(jìn)油菜(Brassicanapus)種子萌發(fā)。研究[14]表明,外噴10-6、10-8、10-10、10-12mol/L 24-EBL均能不同程度促進(jìn)150 mmol/L NaCl處理下的甘藍(lán)型油菜(B.napus)幼苗的生長(zhǎng),其中以10-10mol/L 24-EBL濃度效果最好,然而在非鹽脅迫下外噴10-10mol/L 24-EBL,對(duì)其根系的生長(zhǎng)還有抑制作用,對(duì)其地上部無明顯影響。在100 mmol/L NaCl處理下,10-6—10-12mol/L 24-EBL處理均可提高植株干重,其中10-10mol/L 24-EBL(EBL2)處理作用最為明顯,而脅迫濃度增加到200 mmol/L NaCl,24-EBL處理效應(yīng)的趨勢(shì)還是一樣,但是除了EBL2處理對(duì)其生物量的提升達(dá)到顯著水平外,其它濃度的24-EBL的促進(jìn)效應(yīng)均不顯著(表1)。同時(shí),非鹽脅迫下,除了外噴10-12mol/L 24-EBL促進(jìn)油菜幼苗生長(zhǎng)外,外噴10-6—10-10mol/L 24-EBL對(duì)植株生長(zhǎng)均沒有顯著作用(表1)。上述結(jié)果與以往研究[14]類似。因此,24-EBL在不同植物上、不同鹽脅迫處理下得到的結(jié)果有所差異。

      鹽脅迫下的許多植物具有一定的滲透調(diào)節(jié)作用,從而維持葉片的含水量,但是盡管這樣,植株在鹽脅迫下仍然會(huì)表現(xiàn)出失水狀況[3,28]。研究表明,100和200 mmol/L NaCl脅迫下,EBL2處理均明顯增加油菜葉片RWC(圖1),這顯示外噴24-EBL可明顯改善油菜植株的水分狀況。在江蘇菜豆(Phaseolusvulgaris)[26]、大麥(Hordeumvulgare)[26]和胡椒(Capsicumannuum)[29]上也有類似的研究報(bào)告。然而逆境下有關(guān)BRs對(duì)植物滲透調(diào)節(jié)效應(yīng)的文獻(xiàn)鮮有觸及。鹽脅迫下,EBL2處理明顯增加油菜葉片的OAA(圖1),從而改善植株的水分狀況。而OAA的改善也勢(shì)必促進(jìn)植物的光合作用[3,30],在外噴24-EBL條件下,油菜幼苗光合作用的氣孔限制得到緩解(圖3),從而鹽漬下被抑制的光合作用得到明顯改善(圖2)。

      重建體內(nèi)離子平衡來抵御鹽漬傷害是植物耐鹽的一大特征,在鹽漬環(huán)境,植物對(duì)K+的維持對(duì)其生存至關(guān)重要[30]。不同器官的K+/Na+在鹽脅迫下顯著下降,鹽處理強(qiáng)度越大,降幅越大。然而,外施24-EBL可不同程度的提高油菜不同器官的K+/Na+。鹽脅迫下24-EBL對(duì)植物K+/Na+、Ca2+/Na+的這種提高效應(yīng)在大麥、玉米和草莓上也有文獻(xiàn)報(bào)告[26,31-32]。鹽漬下,外施24-EBL可明顯提高油菜葉柄和根中的K+含量,而對(duì)葉片中的K+影響不大。這一結(jié)果和在芥菜(Brassicajuncea)[33]和小麥(Triticumaestivum)[34]上的結(jié)果相似。鹽漬下24-EBL對(duì)植物葉片K+積累的這一特征很可能正如Haubrick等[35]所推斷,即BRs可抑制保衛(wèi)細(xì)胞的內(nèi)整流K+通道。因此,證明了24-EBL對(duì)油菜葉片K+/Na+的提高主要是其對(duì)植株Na+外排的結(jié)果。就SK,Na來看,鹽脅迫下,外源EBL明顯提高油菜葉片和根的SK,Na,而顯著降低葉柄的SK,Na,說明EBL可以調(diào)節(jié)油菜葉片和根對(duì)K+、Na+的選擇性吸收或運(yùn)輸來更好的維持植株的離子穩(wěn)態(tài),增強(qiáng)植株耐鹽性。從Na+和Cl-主要分布上看,鹽漬下油菜的生存策略正如Majeed等[36]所描述,即Na+和Cl-主要積累在葉柄(或莖),而根和葉片中較少(尤其是本研究中油菜的根)。外源24-EBL處理進(jìn)一步增強(qiáng)了這一效應(yīng),而且24-EBL對(duì)不同器官礦質(zhì)營(yíng)養(yǎng)離子的促進(jìn)和鹽離子的外排,改善了根、葉片等器官的離子穩(wěn)態(tài),對(duì)植株器官的OAA的改善也起著很好的作用。已有研究[14]表明,外源噴施10-10mol/L 24-EBL 能夠顯著促進(jìn)鹽漬條件下油菜幼苗抗氧化能力,其實(shí)這一促進(jìn)與植株離子穩(wěn)態(tài)和滲透調(diào)節(jié)的改善是分不開的[30](表2)。

      本研究探討了外源24-EBL對(duì)鹽脅迫下油菜幼苗生長(zhǎng)、光合作用、滲透調(diào)節(jié)和離子穩(wěn)態(tài)等調(diào)控效應(yīng),發(fā)現(xiàn)24-EBL外施同樣存在著明顯的濃度效應(yīng),且可以通過改善滲透調(diào)節(jié)和離子穩(wěn)態(tài),促進(jìn)其在鹽脅迫下的光合作用和生物量積累。在葉片中,24-EBL外施可通過排Na+和Cl-來維持離子穩(wěn)態(tài),在根、莖中可通過排Na+和Cl-、吸K+來維持離子穩(wěn)態(tài)。從整體看,根或葉片可維持較高的對(duì)K+的選擇性吸收或運(yùn)輸,維持離子穩(wěn)態(tài)和滲透調(diào)節(jié)。對(duì)Na+、Cl-、K+的吸收、運(yùn)輸和分配機(jī)制,以及其在滲透調(diào)節(jié)中的角色或作用,高親和性鉀離子轉(zhuǎn)運(yùn)蛋白(HKT)、質(zhì)膜Na+/H+逆向運(yùn)輸?shù)鞍?SOS1)、液泡膜Na+/H+逆向運(yùn)輸?shù)鞍?NHX)、H+-ATPase等膜蛋白的作用和功能有待深入研究。

      [1] Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science, 2005, 10(12): 615-620.

      [2] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.

      [3] Munns R. Comparative physiology of salt and water stress. Plant, Cell and Environment, 2002, 25(2): 239-250.

      [4] Zhao Y Y, Hu X H, Zou Z R, Yan F. Effects of seed soaking with different concentrations of 5-aminolevulinic acid on the germination of tomato (Solanumlycopersicum) seeds under NaCl stress. Acta Ecologica Sinica, 2013, 33(1): 62-70.

      [5] Zheng Q S, Liu H Y, Long X H, Liu Z P, Niu D D, Gao Y Y. Effects of salt stress on ionic absorption and distribution of rapeseed seedlings. Chinese Journal of Oil Crop Sciences, 2010, 32(1): 65-70.

      [6] Akbari G A, Hojati M, Modarres-Sanavy S A M, Mussig F G C, Altmann T. Exogenously applied hexaconazole ameliorates salinity stress by inducing an antioxidant defense system inBrassicanapusL. plants. Pesticide Biochemistry and Physiology, 2011, 100: 244-250.

      [7] Choudhary S P, Oral H V, Bhardwaj R, Yu J Q, Tran L S P. Interaction of brassinosteroids and polyamines enhances copper stress tolerance inRaphanussativus. Journal of Experimental Botany, 2012, 63(15): 5659-5675.

      [8] Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 2009, 47 (1): 1-8.

      [9] Arteca J M, Arteca R N. Brassinosteroid-induced exaggerated growth in hydroponically grownArabidopsisplants. Physiologia Plantarum, 2001, 112(1): 104-112.

      [10] Yu J Q, Hu W H, Zhou Y H, Mao W H, Ye S F, Nogues S. A role for brassinosteroids in the regulation of photosynthesis inCucumissativus. Journal of Experimental Botany, 2004, 55(399): 1135-1143.

      [11] Fu F Q, Mao W H, Shi K, Zhou Y H, Asami T, Yu J Q. A role of brassinosteroids in early fruit development in cucumber. Journal of Experimental Botany, 2008, 59(9): 2299-2308.

      [12] Xia X J, Wang Y J, Zhou Y H, Tao Y, Mao W H, Shi K, Asami T, Chen Z, Yu JQ. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 2009, 150(2): 801-814.

      [13] Gao H L, Liu J L, Zheng Q S, Hong L Z, Wang C H, Ma M, Zhao S X, Zheng C F. Regulation of exogenous brassinosteroid on growth and photosynthesis ofHelianthustuberosusseedlings and cadmium biological enrichment under cadmium stress. Acta Ecologica Sinica, 2012, 33(6): 1935-1943.

      [14] Liu J L, Gao H L, Hong L Z, Wang C H, Zhao G M, Wang X Y, Zheng Q S. Role of plant pigments in the 24-epibrassinolide ameliorating salt stress in canola. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(1): 90-100.

      [15] ?zdemir F, Bor M, Demiral T, Turkan I. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (OryzasativaL.) under salinity stress. Plant Growth Regulation, 2004, 42 (3): 203-211.

      [16] Abdel-Fattah RI. Osmolytes-antioxidant behaviour inPhaseolusvulgarisandHordeumvulgarewith brassinosteroid under salt stress. American-Eurasian Journal of Agricultural and Environmental Science, 2007, 2(6): 639-647.

      [17] Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A. (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature inVignaradiata. Environmental and Experimental Botany, 2010, 69(2): 105-112.

      [18] Houimli S I M, Denden M, Mouhandes BD. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal of BioSciences, 2010, 4: 96-104.

      [19] He X L, Chen S F, Wang Z H, Jia W J, He J B, Wang H Y, Yang G. Effect of saline water irrigation on sand soil salt and the physiology and growth ofPopuluseuphraticaOliv. Acta Ecologica Sinica, 2012, 32(11): 3449-3459.

      [20] Zheng Q S, Liu Z P, Chen G, Gao Y Z, Li Q, Wang J Y. Comparison of osmotic regulation in dehydration and salinity stressed sunflower seedlings. Journal of Plant Nutrition, 2010, 33 (7): 966-981.

      [21] Yang Y, Zheng Q S, Liu M, Long X H, Liu Z P, Shen Q R, Guo S W. Difference in sodium spatial distribution in the shoot of two canola cultivars under saline stress. Plant and Cell Physiology, 2012, 53(6): 1083-1092.

      [22] Shao J, Zheng Q S, Liu Z P, Ning J F. Effects of phosphorus application on ion distribution in aloe seedlings under seawater stress. Acta Ecologica Sinica, 2005, 25(12): 3167-3171.

      [23] Zeng H T, Tang Q, Hua XJ.Arabidopsisbrassinosteroid mutantsdet2-1 andbin2-1 display altered salt tolerance. Journal of Plant Growth Regulation, 2010, 29(1): 44-52.

      [24] Divi UK, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance inArabidopsisshows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 2010, 10: 151-164.

      [25] Anuradha S, Rao S S R. Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (OryzasativaL.). Plant Growth Regulation, 2001, 33 (2): 151-153.

      [26] Ali A A, Abdel-Fattah R I. Osmolytes-antioxidant behaviour inPhaseolusvulgarisandHordeumvulgarewith brassinosteroid under salt stress. Journal of Agronomy, 2006, 5(1): 167-174.

      [27] Kagale S, Divi U K, Krochko J E, Keller W A, Krishna P. Brassinosteroid confers tolerance inArabidopsisthalianaandBrassicanapusto a range of abiotic stresses. Planta, 2007, 225(2): 353-364.

      [28] You J, Wang W R, Lu J, Jia P X, Miao J S, Yang Y L. Effects of salinity on seed germination and seedling growth in halophyteLimoniumaureum(L.) Hill. Acta Ecologica Sinica, 2012, 32(12): 3825-3833.

      [29] Houimli S I M, Denden M, El Hadj S B. Induction of salt tolerance in pepper (Capsicumannuum) by 24-epibrassinolide. EurAsian Journal of BioSciences, 2008, 2: 83-90.

      [30] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.

      [31] El-Khallal S M, Hathout T A, Ashour A A, Kerrit A A. Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under salt stress. Research Journal of Agriculture and Biological Sciences, 2009, 5 (4): 380-390.

      [32] Karlidag H, Yildirim E, Turan M. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragria×ananassa). Scientia Horticulturae, 2011, 130(1): 133-140.

      [33] Hayat S, Ahmad A, Mobin M, Hussain A, Fariduddin Q. Photosynthetic rate, growth, and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica, 2001, 38 (3): 469-471.

      [34] Shahbaz M, Ashraf M. Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (TriticumaestivumL.) under saline conditions. Pakistan Journal of Botany, 2007, 39 (2): 513-522.

      [35] Haubrick L L, Torsethaugen G, Assmann S M. Effect of brassinolide, alone and in concert with abscisic acid on control of stomatal aperture and potassium currents ofViciafabaguard cell protoplasts. Physiologia Plantarum, 2006, 128(1): 134-143.

      [36] Majeed A, Nisar M F, Hussain K. Effect of saline culture on the concentration of Na+, K+and Cl-inAgrostistolonifera. Current Research Journal of Biological Sciences, 2009, 2(1): 76-82.

      Regulation of exogenous brassinosteroid on growth of salt-stressed canola seedlings and its physiological mechanism

      MA Mei1, LIU Ran1, ZHENG Chunfang2, LIU Weicheng2, YIN Xiaoming1, LIU Jinlong1, WANG Changhai1, ZHENG Qingsong1,*

      1CollegeofResourcesandEnvironmentalScience,KeyLaboratoryofMarineBiology,NanjingAgriculturalUniversity,Nanjing210095,China2ZhejiangMaricultureResearchInstitute,ZhejiangYongxingAquaticProductsIndustryCo.,Ltd.,Wenzhou325005,China

      Brassinosteroids are a new group of steroid phytohormones that have high bioactivity and are widely spread in the plant kingdom. They are not only essential regulators of plant normal growth and development, but also can alleviate various abiotic stresses at very low concentration. This study evaluated effects of foliar spraying 24-epibrassinoide (24-EBL) on dry weight (DW), relative water content (RWC), osmotic adjustment ability (OAA), leaf gas exchange parameters, stomatal limitation values (Ls), the contents of Na+, K+, Cl-, K+/Na+ratio andSK,Nain different organs of canola seedlings under 100 and 200 mmol/L NaCl. The results showed that: (1) DW of canola seedlings was decreased significantly under 100 and 200 mmol/L NaCl, however, 10-12,10-10, 10-8, 10-6mol/L 24-EBL foliar spraying application all increased the DW of stressed plant. Also, 10-10mol/L 24-EBL (EBL2) treatments made the seedling DW peaked in both salt-stressed canola plants, and 29% and 20% higher than the values of only 100 or 200 mmol/L NaCl stress treatment, respectively. It was suggested that 10-12, 10-10, 10-8, 10-6mol/L 24-EBL foliar spraying application alone made no significant difference to biomass accumulation of canola under non-salt treatment. (2) RWC of canola leaves was decreased under NaCl treatments, and EBL2 application promoted RWC and OAA of salt-stressed canola. (3) Under NaCl treatments, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2concentration (Ci) and transpiration rate (Tr) of canola leaves were declined at varying degree and limitation values (Ls) was increased markedly. However, EBL2 application partly reversed all the parameters at varying degree. (4) Compared with control, the contents of Na+and Cl-in leaves, petioles and roots of canola were increased significantly, while its K+was decreased significantly. EBL2 application reduced the contents of Na+and Cl-in all canola organs, did not affected K+content in the leaves significantly, and increased K+content in petioles and roots. In general, the appropriate range concentration of foliar spraying 24-EBL obviously promoted salt resistance of canola seedlings. however, the optimal 24-EBL concentration of canola growth promotion was 10-10mol/L at each NaCl treatment level. The promotion of canola salt resistance was due to 24-EBL promoting the plant ion homeostasis and osmotic adjustment, then, improved plant water status and photosynthesis. Promotions of photosynthesis and water use efficiency in salt-stressed canola were owing to significant alleviation on stomatal limitation of stressed plant leaves caused by 24-EBL. The results also suggested that improvement of ion homeostasis in leaves caused by 24-EBL was as the result of exclusion of Na+and Cl-. However, not only exclusion of Na+and Cl-, but also K+uptake increase was as the result of 24-EBL application contributing to ion homeostasis improvement in roots and stems.

      canola; seedlings; 24-epibrassinoide; salt stress; photosynthesis; osmotic adjustment; ion homeostasis

      浙江省重大科研專項(xiàng)(2012C12017-3);浙江省科技廳創(chuàng)新團(tuán)隊(duì)建設(shè)與人才培養(yǎng)項(xiàng)目(2011F20032);浙海漁計(jì)(2013)108; 浙海漁計(jì)(2012)146; 溫州市科技計(jì)劃項(xiàng)目(S20110010)

      2013-05-23;

      日期:2014-04-25

      10.5846/stxb201305231157

      *通訊作者Corresponding author.E-mail: qszheng@njau.edu.cn

      馬梅,劉冉,鄭春芳,劉偉成,尹曉明,劉金隆,王長(zhǎng)海,鄭青松.油菜素內(nèi)酯對(duì)鹽漬下油菜幼苗生長(zhǎng)的調(diào)控效應(yīng)及其生理機(jī)制.生態(tài)學(xué)報(bào),2015,35(6):1837-1844.

      Ma M, Liu R, Zheng C F, Liu W C, Yin X M, Liu J L, Wang C H, Zheng Q S.Regulation of exogenous brassinosteroid on growth of salt-stressed canola seedlings and its physiological mechanism.Acta Ecologica Sinica,2015,35(6):1837-1844.

      猜你喜歡
      外源穩(wěn)態(tài)油菜
      可變速抽水蓄能機(jī)組穩(wěn)態(tài)運(yùn)行特性研究
      具有外源輸入的船舶橫搖運(yùn)動(dòng)NARX神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)
      碳化硅復(fù)合包殼穩(wěn)態(tài)應(yīng)力與失效概率分析
      油菜田間管理抓『四防』
      油菜可以像水稻一樣實(shí)現(xiàn)機(jī)插
      電廠熱力系統(tǒng)穩(wěn)態(tài)仿真軟件開發(fā)
      煤氣與熱力(2021年4期)2021-06-09 06:16:54
      元中期歷史劇對(duì)社會(huì)穩(wěn)態(tài)的皈依與維護(hù)
      中華戲曲(2020年1期)2020-02-12 02:28:18
      外源鉛脅迫對(duì)青稞生長(zhǎng)及鉛積累的影響
      油菜開花
      心聲歌刊(2019年4期)2019-09-18 01:15:28
      外源鈣對(duì)干旱脅迫下火棘種子萌發(fā)的影響
      肇庆市| 瑞金市| 溧水县| 高台县| 阿克陶县| 嘉定区| 建阳市| 沁阳市| 雅江县| 眉山市| 施甸县| 定结县| 工布江达县| 利津县| 林州市| 秭归县| 商水县| 松滋市| 尉氏县| 阳新县| 湖州市| 阜新市| 芒康县| 噶尔县| 秭归县| 泰和县| 乌鲁木齐市| 奎屯市| 哈密市| 宜城市| 抚顺县| 襄城县| 霸州市| 毕节市| 盱眙县| 台湾省| 随州市| 罗城| 永兴县| 新竹市| 浦江县|