• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      兩種沉水植物對(duì)間隙水磷濃度的影響

      2015-03-10 12:23:07王立志
      生態(tài)學(xué)報(bào) 2015年4期
      關(guān)鍵詞:苦草黑藻沉水植物

      王立志

      山東省水土保持與環(huán)境保育重點(diǎn)實(shí)驗(yàn)室,臨沂大學(xué),臨沂 276000

      兩種沉水植物對(duì)間隙水磷濃度的影響

      王立志*

      山東省水土保持與環(huán)境保育重點(diǎn)實(shí)驗(yàn)室,臨沂大學(xué),臨沂 276000

      為研究?jī)煞N根系特征的沉水植物在生長(zhǎng)過(guò)程中對(duì)間隙水中磷濃度的影響,選取根系較多的沉水植物苦草和根系相對(duì)較少的沉水植物黑藻作為實(shí)驗(yàn)材料,監(jiān)測(cè)底泥中間隙水各形態(tài)磷含量及環(huán)境因子的變化,探討不同根系特征沉水植物對(duì)間隙水中磷的影響。結(jié)果表明:黑藻和苦草實(shí)驗(yàn)組沉積物間隙水中各形態(tài)磷的濃度均呈不同程度的降低,黑藻和苦草對(duì)于穩(wěn)定水質(zhì),減少底泥中磷向水中轉(zhuǎn)移具有明顯的效果;沉水植物不同,底泥間隙水中溶解性總磷(DTP)和溶解性活性磷(SRP)存在明顯差異。實(shí)驗(yàn)結(jié)束時(shí)黑藻組和苦草組間隙水中DTP的濃度分別為0.24,0.01 mg/L,SRP的濃度分別為0.22 mg/L,0.004 mg/L。間隙水中磷的形態(tài)主要以DTP和SRP為主,溶解性有機(jī)磷(DOP)的含量相對(duì)較低。沉水植物對(duì)間隙水中磷的吸收是降低間隙水中磷含量的重要原因,苦草的吸收能力大于黑藻。沉水植物根系通過(guò)降低底泥pH值,提高氧化還原電位(Eh)的方式抑制了底泥中磷的釋放。

      沉水植物;根系;磷;間隙水

      沉水植物占據(jù)著淺水水體生態(tài)系統(tǒng)的關(guān)鍵界面,以自身的形態(tài)特征、群落結(jié)構(gòu)特征及生理活動(dòng)影響著其周圍的環(huán)境,對(duì)水體磷循環(huán)具有十分重要的影響[1]。近百年來(lái),湖泊富營(yíng)養(yǎng)化現(xiàn)象在世界范圍內(nèi)普遍發(fā)生,而磷是湖泊富營(yíng)養(yǎng)化的重要控制因子[2]。大量研究和實(shí)踐表明,治理淺水湖泊,僅依靠削減外源負(fù)荷的措施,經(jīng)常未能取得預(yù)期的降低湖水磷濃度的效果[3- 4],外源消減后,沉積物中的營(yíng)養(yǎng)鹽將釋放出來(lái),抵消外源負(fù)荷的消減,沉積物對(duì)湖泊生態(tài)環(huán)境的影響與其間隙水密切相關(guān)[5],間隙水中氮、磷的含量直接影響沉積物與上覆水之間氮和磷的交換,間隙水中可溶態(tài)營(yíng)養(yǎng)物質(zhì)氮、磷穿過(guò)水-泥界面向上覆水傳送是沉積物中營(yíng)養(yǎng)鹽釋放的重要途徑[6- 7]。沉水植物生長(zhǎng)過(guò)程中通過(guò)根系和莖葉吸收間隙水和水中的營(yíng)養(yǎng)物質(zhì),從而影響氮磷等營(yíng)養(yǎng)鹽的循環(huán)過(guò)程,因此開(kāi)展不同沉水植物對(duì)間隙水磷的影響顯得尤為重要,鑒于此,本研究通過(guò)選取根系較少的沉水植物黑藻和根系相對(duì)較發(fā)達(dá)的沉水植物苦草作為實(shí)驗(yàn)材料,研究?jī)煞N沉水植物在生長(zhǎng)過(guò)程中對(duì)間隙水中磷的影響,為湖泊富營(yíng)養(yǎng)化治理提供理論依據(jù)。

      1 實(shí)驗(yàn)材料與設(shè)計(jì)

      1.1 材料與設(shè)計(jì)

      底質(zhì)采自富營(yíng)養(yǎng)化水華爆發(fā)水體,采集后樣品低溫風(fēng)干后過(guò)100目篩,去除粗粒及動(dòng)植物殘?bào)w,然后充分混勻。將混勻后的底質(zhì)加入高密度聚乙烯桶(頂直徑×底直徑×高=55 cm×45 cm×75 cm,預(yù)先經(jīng)過(guò)5% 的HCl處理后用蒸餾水沖洗干凈),底質(zhì)平均厚度為10 cm,底質(zhì)干重為4821.00 g。然后緩慢注入蒸餾水100 L。

      按照植物的頂冠特征和根系狀況的不同,分別選取根系較少沉水植物黑藻和根系相對(duì)較發(fā)達(dá)的沉水植物苦草作為實(shí)驗(yàn)植物,以說(shuō)明沉水植物生長(zhǎng)期不同根系特征對(duì)底泥間隙水磷濃度的影響。

      實(shí)驗(yàn)設(shè)置實(shí)驗(yàn)桶裝置總計(jì)9桶,其中沉水植物苦草(30 g 鮮重)和黑藻(30 g鮮重)休眠芽分別種植3桶,另外3桶不種植沉水植物作為對(duì)照組。沉水植物黑藻和苦草采用性狀均一的休眠芽,均勻種植于實(shí)驗(yàn)桶。實(shí)驗(yàn)時(shí)間為2012年5—9月。

      實(shí)驗(yàn)在溫室玻璃房?jī)?nèi)進(jìn)行,實(shí)驗(yàn)溫室內(nèi)部月平均光照及溫度變化情況如圖1所示。

      實(shí)驗(yàn)期間水溫按照室外的溫度控制在5—25 ℃,各桶間水溫差異小于2 ℃。將底質(zhì)均勻鋪設(shè)于實(shí)驗(yàn)桶底后,緩慢注入蒸餾水,待實(shí)驗(yàn)裝置穩(wěn)定10 d后,均勻種植沉水植物,并采集水樣進(jìn)行測(cè)定,同時(shí)采用探頭測(cè)定底質(zhì)物理指標(biāo),上覆水及底泥初始理化指標(biāo)如表1所示。由于底質(zhì)中氮磷等營(yíng)養(yǎng)物質(zhì)在穩(wěn)定期間存在向水中的釋放過(guò)程,因此,水中氮磷的含量分別為1.25和0.05 mg/L。

      1.2 取樣與分析

      水樣采集采用虹吸管抽取的方式,采集水面以下5 cm、20 cm和45 cm處的等體積水(50 mL)混勻。底泥采用微型柱狀采泥器采集,底泥樣品每次均勻采集5個(gè)微型柱狀樣(橫切面直徑2 cm),采集后的樣品室溫(25 ℃)風(fēng)干,然后對(duì)風(fēng)干前后的樣品稱重以計(jì)算由采樣帶來(lái)的總體磷和水量的損耗。將風(fēng)干后底泥樣品與植物根系分離,過(guò)100目篩后充分混勻,然后進(jìn)行底泥中各形態(tài)磷分析。間隙水采用自行研制的原位滲濾器進(jìn)行采集,將原位滲濾器在實(shí)驗(yàn)種植植物之前埋置均勻與底泥中,在需要采集時(shí)打開(kāi)滲濾器進(jìn)行間隙水滲濾,并收集間隙水,用0.45μ的醋酸纖維素濾膜過(guò)濾采集到的間隙水,采用鉬銻抗比色法直接測(cè)定磷含量得到SRP的濃度,將濾液采用過(guò)硫酸鉀消解法測(cè)定磷的含量得到DTP的濃度,DOP濃度為DTP和SRP之差。底泥樣品磷分析采用國(guó)際通用的SMT法[8]。上覆水中磷濃度按照鉬銻抗比色法分析。所有樣品分析采用意大利連續(xù)流動(dòng)分析儀FLOWSYS III 完成。

      表1 底泥和上覆水初始理化指標(biāo)Table 1 Physical and chemic items of sediment and water

      1.3 生物量統(tǒng)計(jì)

      另外選取不同生長(zhǎng)期沉水植物,統(tǒng)計(jì)黑藻不同生長(zhǎng)階段的株高(X1/cm)和生物量(鮮重,W/g),生物量統(tǒng)計(jì)采用整株挖出的方法,將植物根系的底泥小心沖洗干凈后,采用吸水紙吸收植物表面殘留水分,吸干后進(jìn)行稱量??嗖萁y(tǒng)計(jì)葉片長(zhǎng)度(X1/cm)、葉片寬度(X2/cm)和生物量(W/g),苦草生物量的測(cè)定方法與黑藻一致。建立不同植物的生物量模型,以推算沉水植物在生長(zhǎng)過(guò)程中的生物量。

      不同沉水植物生長(zhǎng)期的生物量模型為:

      W黑藻=0.0198X1+0.5479R2=0.86P<0.05

      W苦草=0.0230X1+0.2029 X2-0.2576R2=0.76P<0.05

      1.4 數(shù)據(jù)處理

      實(shí)驗(yàn)所得數(shù)據(jù)采用SPSS16.0統(tǒng)計(jì)軟件進(jìn)行方差分析,處理組和對(duì)照組之間采用單因素方差分析法,P<0.05為差異性顯著,P<0.01為差異性極顯著。

      2 實(shí)驗(yàn)結(jié)果

      2.1 間隙水形態(tài)磷含量的變化

      實(shí)驗(yàn)期間黑藻和苦草組間隙水中各形態(tài)磷的濃度均呈不同程度的降低。DTP和SRP的濃度在實(shí)驗(yàn)期間總體呈下降趨勢(shì),在實(shí)驗(yàn)第120天黑藻組間隙水中DTP和SRP的濃度均呈上升趨勢(shì),濃度分別為0.24和0.22 mg/L(圖2)。方差分析表明實(shí)驗(yàn)期間黑藻組間隙水中DTP和SRP的濃度顯著低于對(duì)照組(P<0.05)。黑藻組間隙水中DOP在整個(gè)實(shí)驗(yàn)期間呈下降趨勢(shì),但是方差分析表明黑藻組和對(duì)照組之間DOP濃度無(wú)顯著差異(P>0.05)。

      圖2 實(shí)驗(yàn)期間間隙水中各形態(tài)磷的含量Fig.2 Phosphorus concentrations in pore water during the experiment course

      苦草組間隙水中DTP和SRP的濃度在實(shí)驗(yàn)0至120天均呈下降趨勢(shì),在實(shí)驗(yàn)第120天達(dá)到最低值分別是0.01和0.004 mg/L(圖2)。方差分析表明實(shí)驗(yàn)期間苦草組間隙水中DTP和SRP的濃度顯著低于對(duì)照組(P<0.05)??嗖萁M間隙水中DOP在整個(gè)實(shí)驗(yàn)期間呈下降趨勢(shì),但是方差分析表明苦草組和對(duì)照組之間DOP濃度無(wú)顯著差異(P>0.05)。

      黑藻、苦草和對(duì)照組間隙水中DTP、SRP和DOP的濃度大小表明,間隙水中磷的形態(tài)主要以DTP和SRP為主,DOP的含量相對(duì)較低。

      2.2 底泥及水中磷含量的變化

      圖3 實(shí)驗(yàn)期間底泥和水中磷含量變化(不同字符標(biāo)準(zhǔn)表示差異性顯著(P < 0.05))Fig.3 Phosphorus concentrations in water and sediment during the experiment course,different letters above bars indicate a significant difference between treatments (P<0.05)

      圖4 實(shí)驗(yàn)期間每實(shí)驗(yàn)桶植物生物量變化Fig.4 Biomass changes in the experiment bucket

      實(shí)驗(yàn)結(jié)果表明沉水植物組底泥中各形態(tài)磷的含量均呈現(xiàn)不同程度的降低,其中苦草組各形態(tài)磷含量降低幅度均較大。黑藻和苦草底泥TP的含量最大降低幅度分別為35.34、60.67 mg/kg(圖3)。

      苦草組水中磷的濃度在實(shí)驗(yàn)期間保持在相對(duì)較低的水平(0.04—0.10 mg/L)。從對(duì)照組水中磷含量呈先升高后下降的趨勢(shì)中可以看出實(shí)驗(yàn)組水中磷濃度的上升與底泥中較高的磷含量有關(guān),在實(shí)驗(yàn)開(kāi)始時(shí)配水中磷含量較低,導(dǎo)致了底泥向水體中磷的釋放,從而使得水體中磷的含量呈偏升高趨勢(shì)。黑藻組水體中磷濃度總體保持在相對(duì)較穩(wěn)定的水平,磷濃度在0.03—0.05 mg/L之間波動(dòng)。

      3 討論

      3.1 沉水植物生長(zhǎng)對(duì)間隙水磷濃度的影響

      在實(shí)驗(yàn)中實(shí)驗(yàn)第30 天后黑藻和苦草進(jìn)入旺盛生長(zhǎng)期(圖4)。沉水植物在旺盛生長(zhǎng)期對(duì)營(yíng)養(yǎng)鹽的需求量大,沉水植物在生長(zhǎng)、繁殖過(guò)程中,吸收水體及底泥中氮、磷等營(yíng)養(yǎng)物質(zhì),其中底質(zhì)吸收是植物組織礦質(zhì)營(yíng)養(yǎng)的主要來(lái)源[9]。沉水植物可以直接從水體或底泥中吸收 N、P,然后分配到枝條。實(shí)驗(yàn)結(jié)束時(shí),采集沉水植物植物樣本進(jìn)行植物體內(nèi)磷含量分析(將烘干后植物進(jìn)行粉碎,分析樣品為植物莖葉和根系的混合樣),然后將植物干重乘植物體內(nèi)的磷含量,獲得植物富集的磷總磷,試驗(yàn)結(jié)束時(shí)黑藻和苦草分別聚集的磷總量為,159.07和249.06 mg。在本實(shí)驗(yàn)系統(tǒng)中,處于一個(gè)相對(duì)封閉的環(huán)境,沒(méi)有外源磷的輸入,因此沉水植物體內(nèi)富集的磷只來(lái)自于水和底泥。這是沉水植物降低上覆水和間隙水中磷的濃度的一個(gè)重要原因[10]。從本實(shí)驗(yàn)結(jié)果看根系發(fā)達(dá)的沉水植物苦草對(duì)間隙水中磷的吸收能力要大于黑藻,同時(shí),沉水植物對(duì)間隙水磷的吸收主要作用于DTP和SRP。

      沉水植物的生長(zhǎng)對(duì)間隙水中磷的濃度具有重要的影響[11],因此,將實(shí)驗(yàn)桶中生物量和間隙水中各形態(tài)磷含量進(jìn)行函數(shù)擬合,可以反映沉水植物生長(zhǎng)過(guò)程對(duì)間隙水中磷的影響。黑藻生物量和間隙水中各形態(tài)磷的函數(shù)擬合表明,生物量的變化和間隙水中DTP和SRP的變化呈顯著相關(guān),與DOP含量的變化呈若相關(guān)(圖5)。DTP和SRP隨著的生物量的變化呈先降低后升高的拋物線趨勢(shì)變化,說(shuō)明黑藻在快速生長(zhǎng)期能快速降低間隙水中DTP和SRP的含量,但是,當(dāng)黑藻生物量達(dá)到穩(wěn)定階段時(shí)間隙水中DTP和SRP的含量有一定的反彈,呈上升趨勢(shì)。函數(shù)模擬推算當(dāng)生物量達(dá)到0.5614和0.5478 kg時(shí)間隙水中DTP和SRP的含量分別達(dá)到最低值。

      苦草生物量的變化和間隙水中DTP和SRP的變化呈顯著相關(guān),間隙水中各形態(tài)磷含量隨著生物量呈指數(shù)降低(圖5)。在苦草生物量最大時(shí)間隙水中各形態(tài)磷含量并未出現(xiàn)如黑藻組的反彈現(xiàn)象,這和苦草對(duì)底泥間隙水各形態(tài)磷較高的吸收效率及對(duì)底泥環(huán)境的影響有重要關(guān)系。較高的吸收效率使得間隙水中各形態(tài)磷含量在實(shí)驗(yàn)后期均保持在較低的水平,苦草在生長(zhǎng)過(guò)程中對(duì)底泥環(huán)境因子的改變同時(shí)也抑制了底泥向間隙水中磷的釋放過(guò)程,因此根系較為發(fā)達(dá)的沉水植物苦草能使得間隙水中磷含量保持在較低的水平。

      圖5 實(shí)驗(yàn)組生物量和間隙水磷含量之間函數(shù)模擬Fig.5 Function simulation between biomass and phosphorus concentrations in pore water DTP: 溶解性總磷; SRP: 溶解性活性磷; DOP: 溶解性有機(jī)磷

      3.2 底泥環(huán)境因子的變化對(duì)間隙水磷濃度的影響

      影響底泥磷釋放的因素很多[12],包括生物的(細(xì)菌活動(dòng)、生物擾動(dòng)等)、化學(xué)的[氧化還原電位(Eh)、pH值、溶解氧(DO)、鐵結(jié)合態(tài)磷含量比等]以及物理的(風(fēng)浪擾動(dòng)等)等因素[13]。研究表明,DO、pH值、Eh、溫度及水動(dòng)力條件等是影響底泥中磷的釋放與吸收的主要因素[14]。

      在本實(shí)驗(yàn)條件下,由于是室內(nèi)培養(yǎng)實(shí)驗(yàn),對(duì)溫度和水動(dòng)力均做了限制,因此底泥中環(huán)境因子pH值和Eh的變化是影響底泥磷釋放的主要因子。

      pH值是水質(zhì)的重要指標(biāo),它對(duì)水體物理化學(xué)反應(yīng)有重要影響。堿性條件下,pH值升高時(shí)底泥磷釋放增加;在中性范圍內(nèi),釋磷量最小;酸性條件下促使磷的釋放。溫度對(duì)水體磷的循環(huán)也會(huì)產(chǎn)生一定的影響。研究表明[7],隨溫度的升高,底泥磷釋放增加。

      在本實(shí)驗(yàn)中,黑藻和苦草組底泥pH值在實(shí)驗(yàn)期間均低于對(duì)照組,且苦草組底泥pH值的降低幅度要大于黑藻組,因此黑藻和苦草均能降低沉積物的pH值,但是各植物組pH值的變化范圍在7—8之間(圖6),因此,沉積物pH值保持在中性范圍之內(nèi),底泥磷釋放量最小。

      苦草組沉積物Eh在實(shí)驗(yàn)第30天就顯著低于黑藻組和對(duì)照組(P<0.05),并在后期實(shí)驗(yàn)中呈上升趨勢(shì)(圖6),所以,苦草組沉積物中較高的Eh抑制了底泥磷的釋放是間隙水中磷濃度較低另外一個(gè)重要原因。黑藻組底泥Eh較對(duì)照組雖然有升高趨勢(shì),但在實(shí)驗(yàn)大部分時(shí)間均無(wú)顯著差異(P>0.05),因此,黑藻底泥中較低的Eh導(dǎo)致了底泥中磷的釋放,是間隙水中磷濃度相對(duì)偏高的另外一個(gè)重要原因。

      圖6 實(shí)驗(yàn)期間環(huán)境因子的變化(不同字符標(biāo)準(zhǔn)表示差異性顯著P < 0.05)Fig.6 Environmental factor changes in the experiment,different letters above bars indicate a significant difference between treatments (P < 0.05)

      4 結(jié)論

      沉水植物黑藻和苦草對(duì)于穩(wěn)定水質(zhì),減少底泥中的磷向水體轉(zhuǎn)移有明顯的效果,沉水植物不同,底泥間隙水中DTP和SRP存在明顯差異。沉水植物黑藻和苦草在生長(zhǎng)期均能降低間隙水中磷的濃度,苦草對(duì)間隙水中DTP和SRP的降低能力要大于黑藻,實(shí)驗(yàn)第120天黑藻和苦草組間隙水中DTP和SRP的含量均顯著降低,黑藻和苦草對(duì)DOP具有一定的降低作用,但和對(duì)照組相比無(wú)顯著差異。

      沉水植物黑藻和苦草在生長(zhǎng)期均能降低底泥中磷的含量,并降低底泥pH值,提高底泥Eh,苦草對(duì)底泥Eh的提高能力要大于黑藻。

      [1] S?ndergaard M, Phillips G, Hellsten S, Kolada A, Ecke F, M?emets H, Mjelde M, Azzella M M, Oggioni l. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia, 2013, 704(1): 165- 177.

      [2] Wang S G, Jin X C, Pang Y, Zhao H C, Zhou X N, Wu F C. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. Journal of Colloid and Interface Science, 2005, 289(2): 339- 346.

      [3] Van Nes E H, Scheffer M, van den Berg M S, Coops H. Charisma: a spatial explicit simulation model of submerged macrophytes. Ecological Modelling, 2003, 159(2/3): 103- 116.

      [4] Ye C, Yu H C, Kong H N, Song X F, Zou G Y, Xu Q J, Liu J. Community collocation of four submerged macrophytes on two kinds of sediments in Lake Taihu, China. Ecological Engineering, 2009, 35(11): 1656- 1663.

      [5] Wang F, Liang L L, Zhang Y S, Gao R H. Eco-hydrological model and critical conditions of hydrology of the wetland of Erdos Larus Relictus Nature Reserve. Acta Ecologica Sinica, 2009, 29(5): 307- 313.

      [6] Sun S J, Huang S L, Sun X M, Wen W. Phosphorus fractions and its release in the sediments of Haihe River, China. Journal of Environmental Sciences. 2009, 21(3): 291- 295.

      [7] Haygarth P M, Condron L M, Heathwaite A L, Turner B L, Harris G P. The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled approach. Science of the total environment. 2005, 344(1/3): 5- 14.

      [8] Ruban V, López-Sánchez J F, Pardo P, Rauret G, Muntau H, Quevauviller P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments -A synthesis of recent works. Fresenius Journal of Analytical Chemistry, 2001, 370(2/3): 224- 228.

      [9] Schorer A, Schneider S, Melzer A. The importance of submerged macrophytes as indicators for the nutrient concentration in a small stream (Rotbach, Bavaria). Limnologica - Ecology and Management of Inland Waters, 2000, 30(4): 351- 358.

      [10] Horppila J, Nurminen L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research, 2003, 37(18): 4468- 4474.

      [11] Sorrell B K, Downes M T, Stanger C L. Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquatic Botany, 2002, 72(2): 107- 119.

      [12] Wang S R, Jin X C, Bu Q Y, Jiao L X, Wu F C. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316(1/3): 245- 252.

      [13] Asaeda T, Trung V K, Manatunge J. Modeling the effects of macrophyte growth and decomposition on the nutrient budget in Shallow Lakes. Aquatic Botany, 2000, 68(3): 217- 237.

      [14] Jin X C, Wang S R, Pang Y, Wu F C. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pollution, 2006, 139(2): 288- 295.

      [15] Wang S R, Jin X C, Zhao H C, Wu F C. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273(1/3): 109- 116.

      Influence of two submerged macrophytes on pore water phosphorus concentration

      WANG Lizhi*

      ShandongProvincialKeyLaboratoryofSoilConservationandEnvironmentalProtection,LinyiUniversity,Linyi276000,China

      Submerged macrophytes play an important role in nutrient cycling, especially in shallow lakes. Submerged macrophytes can acquire significant amounts of nutrients from the water via shoots and from the sediment via roots. In most natural situations, root uptake is the primary pathway for nutrients, because the absorbable nutrient concentrations are much higher in the sediment than in the water column. However, submerged macrophyte species vary in their root traits. Some submerged macrophytes, such asVallisnerianatans, have large root systems, while other species, such asHydrillaverticillata, grow only a few roots per plant. Phosphorus (P) is the most critical nutrient limiting lake productivity, and while submerged macrophytes play an important role in P cycling, little is known about the effects of different submerged macrophyte species on the behavior of P. Therefore, studies of the effects of different root characters of submerged macrophytes on P concentrations are important for understanding lake ecosystems. The purpose of this work was to identify how two different typical submerged macrophytes,H.verticillataandV.natans, affect the behavior of sediment P. We examined P concentrations and environmental factors in aquatic systems growing each of these plant species from May to September, 2012. During that time, we collected samples of sediment pore water, sediment, and column water on days 0, 30, 60, 90, and 120 of the experiment to determine P concentrations. The environmental factors of pH and redox potential (Eh) of the sediment were also measured. The results indicated that P concentrations in pore water of theH.verticillataandV.natanstreatments were lower than that of the control group. BothH.verticillataandV.natanshad obvious effects on water stabilization and reducing P release from sediment. Pore water concentrations of dissolved total P (DTP) and soluble reactive P (SRP) in theH.verticillataandV.natansgroups were significantly different, with 0.24 mg/L DTP and 0.22 mg/L SRP in theH.verticillatatreatment and 0.01 mg/L DTP and 0.004 mg/L SRP in theV.natanstreatment. P concentration increased after the 90thday of the experiment in theH.verticillatagroup, but it remained at a low level in theV.natansgroup. The pH was lower in theH.verticillatatreatment than in theV.natanstreatment, while Eh was higher in theH.verticillatagroup than in theV.natansgroup, which might explain why P levels fluctuated differently in the two treatment groups. The main P fractions in pore water were DTP and SRP, while the amount of dissolved organic P (DOP) was relatively low. The submerged macrophytes reduced the P concentration in water, sediment, and pore water during their growth periods. Their absorption of pore water P was one of the main reasons for the decreased P levels.Vallisnerianatanscould absorb more P thanH.verticillata. BothH.verticillataandV.natanscould reduce the DOP concentration, but there was no significant difference between the two submerged macrophyte species. There was no significant difference between treatments and control groups in DOP, indicating thatH.verticillataandV.natansmainly absorbed DTP and SRP. Submerged macrophyte inhibited the release of P from the sediment into the water column by decreasing the pH and increasing the Eh of the sediment. Overall, the submerged macrophytesH.verticillataandV.natanssignificantly stabilized water quality and reduced the release of P from the sediment to the water.

      submerged macrophyte; root system; phosphorus; pore water

      國(guó)家自然科學(xué)基金項(xiàng)目(41303061);山東省科技攻關(guān)項(xiàng)目(2011GGH21704,2013GSF11701);臨沂市重大科技創(chuàng)新項(xiàng)目(201211027),山東省水土保持與環(huán)境保育重點(diǎn)實(shí)驗(yàn)室開(kāi)發(fā)基金(stkf201206)

      2013- 05- 01;

      日期:2014- 04- 11

      10.5846/stxb201305010879

      *通訊作者Corresponding author.E-mail: wanglizhi@lyu.edu.cnHT

      王立志.兩種沉水植物對(duì)間隙水磷濃度的影響.生態(tài)學(xué)報(bào),2015,35(4):1051- 1058.

      Wang L Z.Influence of two submerged macrophytes on pore water phosphorus concentration.Acta Ecologica Sinica,2015,35(4):1051- 1058.

      猜你喜歡
      苦草黑藻沉水植物
      苦草對(duì)水體氮磷吸收與釋放作用的探析
      對(duì)沉水植物黑藻光合作用速度的實(shí)驗(yàn)探究
      這里的農(nóng)民愛(ài)種草,還能賺錢(qián)
      至愛(ài)(2020年10期)2020-11-20 02:41:06
      衰亡期黑藻與生長(zhǎng)期菹草交替生長(zhǎng)對(duì)水體磷遷移的影響
      沉水植物生長(zhǎng)影響因子研究進(jìn)展
      花卉(2020年12期)2020-01-09 07:12:52
      秋冬季精養(yǎng)小龍蝦,為什么非輪葉黑藻不可?還有哪些技術(shù)要點(diǎn)?看這位漢川金牌經(jīng)銷商的專業(yè)意見(jiàn)
      沉水植物種植工程實(shí)施后物種多樣性的變化
      ——以武漢紫陽(yáng)湖為例
      綠色科技(2019年2期)2019-05-21 07:43:18
      不同類型底棲藻對(duì)養(yǎng)殖廢水中苦草生長(zhǎng)的影響
      沉水植物在修復(fù)富營(yíng)養(yǎng)湖體的研究進(jìn)展
      大科技(2016年1期)2016-07-17 02:42:07
      大氣CO2升高對(duì)不同營(yíng)養(yǎng)水平條件下苦草生長(zhǎng)的影響
      明溪县| 舟曲县| 灌阳县| 高唐县| 临沭县| 革吉县| 迁西县| 兴国县| 商河县| 新晃| 驻马店市| 平乡县| 进贤县| 仁寿县| 西充县| 抚远县| 郓城县| 新邵县| 富川| 盘山县| 扬州市| 兴宁市| 西峡县| 鸡西市| 长阳| 洛浦县| 宿州市| 东乌珠穆沁旗| 长武县| 丽江市| 外汇| 长治县| 中山市| 方山县| 环江| 巧家县| 海南省| 邹平县| 淄博市| 腾冲县| 房产|