李玉梅,羅明奇,潘國勇,陶千冶
1.中國科學院計算地球動力學重點實驗室,北京 100049 2.中國科學院大學地球科學學院,北京 100049
?
離心操作對BIOLOG法測定微生物群落功能多樣性的影響
李玉梅1,2,羅明奇1,2,潘國勇1,2,陶千冶1,2
1.中國科學院計算地球動力學重點實驗室,北京 100049 2.中國科學院大學地球科學學院,北京 100049
陸地生態(tài)系統(tǒng)的有機質分解是地球系統(tǒng)碳循環(huán)的重要環(huán)節(jié),但目前人們對這一過程的認知程度尚待提高,原因之一是對植物凋落物分解時微生物群落功能多樣性的變化缺乏系統(tǒng)認識。如能將BIOLOG微平板法引入植物凋落物降解初期的研究中,將彌補這一重要環(huán)節(jié)的缺失。但當前對如何在降解初期研究中應用這一方法、尤其是對于在預處理過程中是否應進行離心操作并無定論。為此,筆者選用北京樺樹林區(qū)凋落物的淋洗液為接種液,考察離心操作對BIOLOG微平板法測定結果的影響。研究發(fā)現(xiàn):離心操作能減小培養(yǎng)液的濁度(吸光度減小0.13)、降低溶液顏色對微孔顯色程度的干擾,但也會導致測得的微生物群落數(shù)量減少(平均顏色變化率可降低約0.4);樣品中微生物群落數(shù)量越小,群落功能多樣性受影響的程度則越大。因此,在選擇是否進行離心操作時,需針對具體的研究對象綜合選擇。
BIOLOG;離心;凋落物;微生物群落;功能多樣性
在地球系統(tǒng)碳循環(huán)研究中,人們對陸地分解作用的過程、機制和效應的了解尚待深入。在分解作用(尤其是中低緯區(qū))中起關鍵作用的微生物組合復雜多變、測定難度大是導致人們對其認識不足的重要原因之一。
BIOLOG微平板法[1-2]是與變性梯度凝膠電泳法[3]近乎同時應用于微生物生態(tài)學的研究手段。BIOLOG微平板法通過測試微生物對單一碳源的利用程度來反映微生物群體水平的群落結構、測定微生物群落的功能多樣性[4-7]。其優(yōu)點是簡便、快捷、靈敏度高、分辨率強[4],已被廣泛應用于土壤[1,8-16]、水體[1,17-19]、活性污泥[20-21]的微生物群落功能多樣性研究中,但在新鮮凋落物和半分解層凋落物研究中鮮有使用。若能被引入植物凋落物降解初期的研究中,將有望增強對這一重要環(huán)節(jié)的認識。欲將BIOLOG法應用于凋落物分析中,必須先充分開展方法學研究。
BIOLOG法的使用基于微孔中溶液的顯色程度[1-2];因此,培養(yǎng)液含有的干擾物質會直接影響平板顯色結果。前人[22-26]研究土壤樣品時對接種液濃度選擇、離心操作等的試驗表明,較高的接種密度利于BIOLOG平板更客觀地反映微生物群落信息[22,26-27]。然而,接種液濃度越高,由樣品本身所含可溶性有機質產生的額外的顏色變化也越大[28]。雖然離心操作能在一定程度上減少樣品稀釋液中的有機懸浮顆粒,但上清液中細菌和真菌菌絲也會有不同程度的損失[26-27];會導致樣品接種液中的可培養(yǎng)微生物物種減少[29-30]。
離心操作中,溶液中微生物數(shù)量減少主要有兩種途徑:其一是游離的菌體受到離心力作用而自主沉降;其二是細菌個體和真菌菌絲體附著在土壤懸浮顆粒上,伴隨懸浮顆粒而沉降。由于大量微生物附著在土壤懸浮顆粒上,因此對土壤樣品稀釋液進行離心操作時,很難區(qū)分這兩種沉降效應。
那么,在凋落物的處理過程中,離心操作具體將產生怎樣的影響,影響程度又如何呢?
為回答這一問題,筆者嘗試用凋落物的淋洗液作為微生物培養(yǎng)液,盡量避免懸浮顆粒對微生物個體的吸附作用;在探討B(tài)IOLOG法測定凋落物微生物群落功能多樣性的過程中,通過控制離心操作來觀察離心與否對培養(yǎng)液可溶性有機質和可培養(yǎng)微生物群落數(shù)量產生的影響,以求為今后的研究工作尋找最佳技術路線。
1.1 樣品采集
采樣地點位于北京東靈山地區(qū)(39° 48′ N, 115° 24′ E)一次生林東坡,海拔1 500~1 600 m,主要植被有白樺(Betulaplatyphylla)、遼東櫟(Quercusliaotungenisis)和蒙古櫟(Quercusmongolicus),另有少量五角楓(Acermono)和胡桃楸(Juglansmandshurica)伴生。
根據(jù)凋落物的新鮮程度和物理性狀差異,可區(qū)分新鮮凋落物層(fresh litter layer, F)和半分解凋落物層(fragmented litter layer, R)。其中:F層為新鮮黃色或輕微變色的未分解凋落物,葉片基本完整,僅局部有微小破損,干燥易碎;R層為中度到強度破碎成片段的凋落物,葉脈可見,葉肉呈棕黑色,濕度大。二者分層清晰,外觀差別明顯。
用五點取樣法分別采集F層和R層樣品,裝入信封后立即封口,用冷藏箱帶回實驗室,在4 ℃冰箱內暫時保存?zhèn)溆谩?/p>
1.2 實驗方法
準確稱取相當于5 g干物質質量的凋落物,置于95 mL無菌NaCl溶液(0.85%)中,振蕩搖勻30 min,每個樣品均設置未離心(分別記為F-1,R-1)和離心(分別記為F-2,R-2)兩組不同處理,其中做離心處理的相對離心力為1 500 g,離心時間為10 min。在超凈臺中,用10倍稀釋法將樣品淋洗液濃度稀釋至10-3梯度。移取150 μL樣品稀釋液于預熱至25 ℃的BIOLOGTMECO板微孔后,25 ℃避光恒溫培養(yǎng)228 h,每隔12 h在BIOLOG讀數(shù)器上讀取590 nm和750 nm兩波段下的吸光度值。對微生物群落第72 h的CLPP進行主成分分析(principal component analysis, PCA)和多樣性指數(shù)分析[6,31-32]。樣品測定在中國科學院生態(tài)環(huán)境研究中心系統(tǒng)生態(tài)重點實驗室完成。
1.3 數(shù)據(jù)統(tǒng)計
微生物代謝活性用590 nm(顏色+濁度)與750 nm(濁度)兩波段處吸光度的差值表示[33]。計算微孔的平均顏色變化率(average well color development,AWCD):
其中,Ci,Ri分別為反應孔和對照孔在兩波段處吸光度的差值。當(Ci-Ri)<0.06時以0值計算。
分別用Microsoft?Excel2003和SPSS對實驗數(shù)據(jù)進行方差分析和主成分分析。
2.1 離心操作對樣品培養(yǎng)液濁度的影響
BIOLOGTMECO微平板的對照孔(A1,A5,A9)中無單一碳底物,其在波長750 nm[33]處吸光度的變化可以指示培養(yǎng)液濁度的變化、追蹤濁度對平板顯色的干擾程度。
R層的吸光度總體高于F層(圖1),反映其濁度總體高于F層。分別比較F-1與F-2、R-1與R-2兩組曲線(圖1)發(fā)現(xiàn):進行離心操作與否,F(xiàn)層稀釋液的吸光度幾乎無變化,反映其濁度無變化;但R層的濁度則對離心操作較為敏感,離心操作后,其稀釋液的吸光度減小約0.13。
圖1 凋落物層微生物培育過程中微孔吸光度變化Fig.1 Variations of absorbance of micro pores in the proass of microbial communities overtime in BIOLOGTM ECO micro-plates
2.2 離心操作對微生物群落功能多樣性的影響
2.2.1 AWCD曲線
從BIOLOGTMECO微平板展示的平均顏色變化率曲線(圖2)可以看出:總體上,R-1、R-2曲線明顯高于F-1、F-2曲線;F-2曲線明顯低于F-1曲線,而R-2曲線略低于R-1曲線。
圖2 凋落物層微生物培育過程中AWCD變化Fig.2 Variations of AWCD over time in the process of microbial communities in BIOLOGTM ECO micro-plates
可見,采用離心操作的凋落物樣品,微生物群落代謝單一碳底物的總能力較低。離心操作對半分解層凋落物層微生物群落的影響比較小,而對新鮮凋落物層的影響較為明顯。
2.2.2 多樣性指數(shù)
BIOLOGTMECO微平板上,微孔中單一碳底物的代謝種類和數(shù)量直接反映了微生物群落結構特征,平板上呈現(xiàn)的代謝碳源的差異是微生物群落特征差異的反映。
從微生物群落功能多樣性指數(shù)(表1)可以看出,R層凋落物微生物群落多樣性指數(shù)穩(wěn)定,是否進行離心操作對其沒有明顯影響;而F層微生物群落的豐富度指數(shù)(H′)則因采用離心操作而顯著降低,均勻度指數(shù)(E)也略有減小。
表1 微生物群落功能多樣性指數(shù)①
Table 1 Functional diversified indices of microbial communities in litter fall
H'②N③E④n⑤F-12.71±0.02200.90±0.013F-21.64±0.1770.87±0.034R-13.21±0.02290.96±0.016R-23.21±0.04290.95±0.006
注:①H′、E數(shù)據(jù)格式為樣本平均值±標準偏差;②Shannon豐富度指數(shù)H′=-∑(Piln(Pi)),Pi為第i孔相對吸光值(Ci-Ri)與整個平板相對吸光值總和的比率[34];③N為BIOLOGTMECO板上微生物利用碳源的數(shù)目;④Shannon均勻度指數(shù)E=H′/ln(S),S為板中顏色變化孔的數(shù)目[34];⑤n為樣本重復數(shù)。
2.2.3 PCA成分圖
微生物群落代謝碳源特征在主成分分析圖(圖3)上得到分離。其中:PC1表示第一主成分,其方差貢獻率為66.2%,即所占信息總量為66.2%;PC2表示第二主成分,其方差貢獻率為11.6%。F層和R層分別分布在PC1的正負兩端(圖3),起分異作用的首要碳底物為D-葡萄糖、聚合物和羧酸類物質(表2)。離心操作對新鮮凋落物微生物代謝多樣性的影響主要體現(xiàn)在PC2上,羧酸、糖類和雙性化合物是引起分異的主要碳源(表2)。離心操作對半分解層凋落物微生物代謝多樣性的影響。
總體上,進行離心操作,半分解層凋落物微生物群落多樣性指數(shù)幾乎不受影響,代謝單一碳底物的總能力有所下降,濁度則明顯降低。新鮮凋落物除濁度不受影響外,其他參數(shù)均有不同程度的降低。
圖3 微生物群落碳源利用特性的主成分分析圖Fig.3 Principal component analysis of microbial communities in fallen leaves for sole carbon sources
對照孔濁度在前36 h的增幅較大,之后趨于平穩(wěn)(圖1)。這可能是由于微生物短期內利用培養(yǎng)液中含有的有機質進行生命代謝、微孔內微生物群落數(shù)量增多造成的。當可利用的有機質消耗殆盡,微生物生命代謝變弱,群落數(shù)量逐漸穩(wěn)定。這一現(xiàn)象也證明,微生物會利用培養(yǎng)液本身的有機質,導致額外的顏色反應[28],干擾平板顯色結果。
F層凋落物經歷風化、分解時間較短,破碎程度很?。欢鳵層凋落物經歷一定時期(本試驗采集凋落物樣品為400~460 d)的分解過程,破碎程度大,可溶性有機成分和細小顆粒含量較多[35-38],微生物群落數(shù)量也多。因此,半分解層凋落物的微生物群落活性高于新鮮凋落物。同時,這也是導致半分解層凋落物離心(1 500 g, 10 min)后溶液濁度減小幅度較大(圖1)的原因。
表2 BIOLOGTM ECO微平板上PC1和PC2的主要負荷因子碳源
注:R為主成分和相應原先變量的相關系數(shù)。
從微生物代謝碳源的數(shù)量和類型看,離心操作并沒有對半分解層凋落物微生物群落產生明顯影響,但對新鮮凋落物層微生物群落代謝碳源的總能力和多樣性均有顯著影響(圖2,3;表1)。
當研究對象可溶有機質含量高、微生物群落數(shù)量豐富時,離心操作能降低培養(yǎng)液本身產生的額外顏色變化和溶液濁度對顯色程度的干擾,且對微生物群落功能多樣性無明顯影響,故推薦使用離心操作;當研究對象可溶有機質含量低、微生物群落數(shù)量較少時,離心操作可能導致測得的群落功能多樣性減小,故不推薦使用。簡言之,離心操作適用于培養(yǎng)液中有機質含量較高且微生物群落數(shù)量豐富的樣品。在實際工作中,應針對研究對象和研究目標進行選擇。
感謝中國科學院生態(tài)環(huán)境研究中心系統(tǒng)生態(tài)重點實驗室鄭華研究員對測定工作的指導和幫助。
[1] Garland J L, Mills A L. Classification and Characte-rization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Tilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359.
[2] 吳才武, 趙蘭坡. 土壤微生物多樣性的研究方法[J]. 中國農學通報, 2011, 27(11): 231-235. Wu Caiwu, Zhao Lanpo.Technologies on Soil Microbiology Diversity[J]. Chinese Agricultural Science Bulletin, 2011, 27(11): 231-235.
[3] 蘇小四, 孟祥菲, 張文靜, 等. 人工回灌過程中地下水微生物群落變化[J]. 吉林大學學報:地球科學版, 2015, 45(2): 573-583. Su Xiaosi, Meng Xiangfei, Zhang Wenjing, et al. Change of the Groundwater Microbial Community During Artificial Recharge Process[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(2): 573-583.
[4] Li S H, Liu K X, Liao Z W. Method for Simplification of Characteristic Carbon Sources for Biolog Analysis of Soil Microbial Community and Its Application[J]. Scientia Agricultura Sinica, 2010, 43(3): 523-528.
[5] Myers R T, Zak D R, White D C, et al. Landscape-Level Patterns of Microbial Community Composition and Substrate Use in Upland Forest Ecosystems[J]. Soil Science Society of America Journal, 2001, 65(2): 359-367.
[6] Garland J L. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization[J]. Soil Biology and Biochemistry, 1996, 28(2): 213-221.
[7] Garland J L. Analysis and Interpretation of Community-Level Physiological Profiles in Microbial Ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300.
[8] De Fede K L, Panaccione D G, Sexstone A J. Characterization of Dilution Enrichment Cultures Obtained from Size-Fractionated Soil Bacteria by BIOLOGTMCommunity-Level Physiological Profiles and Restriction Analysis of 16Sr RNA Genes[J]. Soil Biology and Biochemistry, 2001, 33(11): 1555-1562.
[9] De Fede K L, Sexstone A J. Differential Response of Size-Fractionated Soil Bacteria in BIOLOG?Microtitre Plates[J]. Soil Biology and Biochemistry, 2001, 33(11): 1547-1554.
[10] 金劍, 王光華, 陳雪麗, 等. Biolog-ECO解析不同大豆基因型R1期根際微生物群落功能多樣性特征[J]. 大豆科學, 2007, 26(4): 565-570. Jin Jian, Wang Guanghua, Chen Xueli, et al. Analysis of Microbial Community Functional Diversity in Rhizosphere of Different Soybean Genotypes R1 Stage Using Biolog-ECO Method[J]. Soybean Science,2007, 26(4): 565-570.
[11] Zak J C, Willig M R, Moorhead D L, et al. Functional Diversity of Microbial Communities: A Quantitative Approach[J]. Soil Biology and Biochemistry, 1994, 26(9): 1101-1108.
[12] Schutter M E, Sandeno J M, Dick R P. Seasonal, Soil Type, and Alternative Management Influences on Microbial Communities of Vegetable Cropping Systems[J]. Biology and Fertility of Soils, 2001, 34(6): 397-410.
[13] 鄭麗萍, 龍濤, 林玉鎖, 等. Biolog-ECO解析有機氯農藥污染場地土壤微生物群落功能多樣性特征[J]. 應用與環(huán)境生物學報, 2013, 19(5): 759-765. Zheng Liping, Long Tao, Lin Yusuo, et al. Biolog-ECO Analysis of Microbial Community Functional Diversity in Organochlorine Contaminated Soil[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5): 759-765.
[14] 鄭華, 歐陽志云, 王效科, 等. 不同森林恢復類型對土壤微生物群落的影響[J]. 應用生態(tài)學報,2004,15(11): 2019-2024. Zheng Hua, Ouyang Zhiyun, Wang Xiaoke, et al. Effects of Forest Restoration Patterns on Soil Microbial Communities[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2019-2024.
[15] 董立國, 蔣齊, 蔡進軍, 等. 基于Biolog-ECO技術不同退耕年限苜蓿地土壤微生物功能多樣性分析[J]. 干旱區(qū)研究, 2011, 28(4): 630-637. Dong Liguo, Jiang Qi, Cai Jinjun, et al. Anaysis on Functional Diversity of Edaphon Communities in Medicago Sativa Fields of Different Growth Years Based on Biolog-ECO Plates[J]. Arid Zone Research, 2011, 28(4): 630-637.
[16] 岳冰冰, 李鑫, 張會慧, 等. 連作對黑龍江烤煙土壤微生物功能多樣性的影響[J]. 土壤, 2013, 45(1): 116-119. Yue Bingbing, Li Xin, Zhang Huihui, et al. Soil Microbial Diversity and Community Structure Under Continuous Tobacco Cropping[J]. Soil, 2013, 45(1): 116-119.
[17] Williams M A, Rice C W. Seven Years of Enhanced Water Availability Influences the Physiological, Structural, and Functional Attributes of a Soil Microbial Community[J]. Applied Soil Ecology, 2007, 35(3): 535-545.
[18] Kersters I,Van Vooren L,Verschuere L,et al.Utility of the Biolog System for the Characterization of Heterotrophic Microbial Communities[J]. Systematic and Applied Microbiology, 1997, 20(3): 439-447.
[19] Choi K H, Dobbs F C. Comparison of Two Kinds of Biolog Microplates (GN and ECO) in Their Ability to Distinguish Among Aquatic Microbial Communities[J]. Journal of Microbiological Methods, 1999, 36(3): 203-213.
[20] Guckert J B, Carr G J, Johnson T D, et al. Community Analysis by Biolog: Curve Integration for Statistical Analysis of Activated Sludge Microbial Habitats[J]. Journal of Microbiological Methods, 1996, 27(2): 183-197.
[21] Kaiser S K, Guckert J B, Gledhill D W. Comparison of Activated Sludge Microbial Communities Using BiologTMMicroplates[J]. Water Science and Technology, 1998, 37(4): 57-63.
[22] Garland J L, Mills A L, Young J S. Relative Effectiveness of Kinetic Analysis vs Single Point Readings for Classifying Environmental Samples Based on Community-Level Physiological Profiles (CLPP)[J]. Soil Biology and Biochemistry, 2001, 33(7): 1059-1066.
[23] Engelen B, Meinken K, Von Wintzingerode F, et al. Monitoring Impact of a Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures[J]. Applied and Environmental Microbiology, 1998, 64(8): 2814-2821.
[24] Franklin R B, Garland J L, Bolster C H, et al. Impact of Dilution on Microbial Community Structure and Functional Potential: Comparison of Numerical Simulations and Batch Culture Experiments[J]. Applied and Environmental Microbiology, 2001, 67(2): 702-712.
[25] Gomez E, Garland J, Conti M. Reproducibility in the Response of Soil Bacterial Community-Level Physiological Profiles from a Land Use Intensification Gradient[J]. Applied Soil Ecology, 2004, 26(1): 21-30.
[26] Calbrix R, Laval K, Barray S. Analysis of the Potential Functional Diversity of the Bacterial Community in Soil: A Reproducible Procedure Using Sole-Carbon-Source Utilization Profiles[J]. European Journal of Soil Biology, 2005, 41(1): 11-20.
[27] 鄭華, 歐陽志云, 方治國, 等. BIOLOG在土壤微生物群落功能多樣性研究中的應用[J]. 土壤學報, 2004, 41(3): 456-461. Zheng Hua, Ouyang Zhiyun, Fang Zhiguo, et al. Application of Biolog to Study on Soil Microbial Community Functional Diversity[J]. Acta Pedologica Sinica, 2004, 41(3): 456-461.
[28] Preston-Mafham J, Boddy L, Randerson P F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon-Source Utilisation Profiles:A Critique[J]. FEMS Microbiology Ecology, 2002, 42(1): 1-14.
[29] Warcup J. The Soil-Plate Method for Isolation of Fungi from Soil[J]. Nature, 1950, 166: 117-118.
[30] Warcup J. Isolation of Fungi from Hyphae Present in Soil[J]. Nature, 1955, 175: 953-954.
[31] Verschuere L, Fievez V, Van Vooren L, et al. The Contribution of Individual Populations to the Biolog Pattern of Model Microbial Communities[J]. FEMS Microbiology Ecology, 1997, 24(4): 353-362.
[32] 鄭華, 歐陽志云, 趙同謙, 等. 不同森林恢復類型對土壤生物學特性的影響[J]. 應用與環(huán)境生物學報, 2006, 12(1): 36-43. Zheng Hua, Ouyang Zhiyun, Zhao Tongqian, et al. Effect of Different Forest Restoration Approaches on Soil Biological Properties[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(1): 36-43.
[33] Classen A T, Boyle S I, Haskins K E, et al. Community-Level Physiological Profiles of Bacteria and Fungi: Plate Type and Incubation Temperature Influences on Contrasting Soils[J]. FEMS Microbiology Ecology, 2003, 44(3): 319-328.
[34] 楊永華, 姚鍵, 華曉梅. 農藥污染對土壤微生物群落功能多樣性的影響[J]. 微生物學雜志, 2000, 20(2): 23-25. Yang Yonghua, Yao Jian, Hua Xiaomei. Effect of Pesticide Pollution Against Functional Microbial Diversity in Soil[J]. Journal of Microbiology, 2000, 20(2): 23-25.
[35] 張萬儒, 許本彤, 楊承棟, 等. 山地森林土壤枯枝落葉層結構和功能研究[J]. 土壤學報, 1990, 27(2): 121-131. Zhang Wanru, Xu Bentong, Yang Chengdong, et al. Studies on Structure and Function of Forest Floors of Mountain Forest Soils[J]. Acta Pedologica Sinica, 1990, 27(2): 121-131.
[36] 莫江明, 布朗, 孔國輝, 等. 鼎湖山生物圈保護區(qū)馬尾松林凋落物的分解及其營養(yǎng)動態(tài)研究[J]. 植物生態(tài)學報, 1996,20(6): 534-542. Mo Jiangming, Bu Lang, Kong Guohui, et al. Litter Decomposition and Its Nutrient Dynamics of a Pine Forest in Dinghushan Biosphere Reserve[J]. Acta Phytoecologica Sinica, 1996,20(6): 534-542.
[37] Ribeiro C, Madeira M, Araújo M C. Decomposition and Nutrient Release from Leaf Litter of Eucalyptus Globulus Grown Under Different Water and Nutrient Regimes[J]. Forest Ecology and Management, 2002, 171(1): 31-41.
[38] Moretto A S, Distel R A. Decomposition of and Nutrient Dynamics in Leaf Litter and Roots of Poa Pigularis and Stipa Gyneriodes[J]. Journal of Arid Environments, 2003, 55(3): 503-514.
Centrifugation Effect on the Functional Diversity of Microbial Community in Fallen Leaves Displaying in BIOLOG Micro-Plates
Li Yumei1,2, Luo Mingqi1,2, Pan Guoyong1,2, Tao Qianye1,2
1.KeyLaboratoryofComputationalGeodynamics,ChineseAcademyofSciences,Beijing100049,China2.CollegeofEarthScience,UniversityofChineseAcademySciences,Beijing100049,China
The decomposition of organic matter in terrestrial ecosystem is an important link in the global carbon cycle; however, and the knowledge of this process are still not sufficient. One of the reasons is the lack of a systematical recognition to the changes of microbial community functional diversity during a decomposition of plant litter. Things will get better if the method of BIOLOG micro-plates can be introduced into the initial degradation process of plant litter. Unfortunately, there was no conclusion on how to use this method to the initial degradation, and whether a centrifugal operation should be used during the process of pretreatment. We choose the eluting solution of Beijing birch forest litter as inoculums and consider the effects of centrifugal operation on the BIOLOG micro-plates. The results show that centrifugation can reduce the turbidity (absorbance decreases 0.13) and the interference of color to the solution. At the same time, centrifugation could reduce the measured quantity of microbial communities (AWCDvalue can be reduced by 0.4). The less the quantity of microbial communities in the sample is, the greater the impact on the functional diversity of soil microbial communities is. Therefore, a specific study target should be the judging basis to determine whether a centrifugation is used for its pretreatment.
BIOLOG;centrifugation;leaf litter;microbial community;functional diversity
10.13278/j.cnki.jjuese.201504206.
2014-10-28
中國科學院戰(zhàn)略性先導科技專項項目(XDA05130402);國家自然科學基金項目(41272207,40772112);中國科學院知識創(chuàng)新工程重要方向項目(KZCX2-EW-QN601)
李玉梅(1974--),女,副教授,主要從事地球化學、地球生物學和第四紀地質學方面的研究,E-mail:liym@ucas.ac.cn。
10.13278/j.cnki.jjuese.201504206
S718.43
A
李玉梅,羅明奇,潘國勇,等.離心操作對BIOLOG法測定微生物群落功能多樣性的影響.吉林大學學報:地球科學版,2015,45(4):1198-1204.
Li Yumei, Luo Mingqi, Pan Guoyong, et al. Centrifugation Effect on the Functional Diversity of Microbial Community in Fallen Leaves Displaying in BIOLOG Micro-Plates.Journal of Jilin University:Earth Science Edition,2015,45(4):1198-1204.doi:10.13278/j.cnki.jjuese.201504206.