• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    2015-03-03 07:50:52XUYongjieWANGZhijun
    關(guān)鍵詞:彈箭背風(fēng)面王志軍

    XU Yong-jie, WANG Zhi-jun

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    XU Yong-jie, WANG Zhi-jun

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    Nose deflection control is a new concept of fast response control model. The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead. Consequently, aerodynamic control force is generated. This control way has high control efficiency and very good application prospects in the ammunition system. Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment, changes the aerodynamic characteristics in the projectile flight process, produces the corresponding balance angle and sideslip angle resulting in motor overload, adjusts flight moving posture to control the ballistics, finally changes shooting range and improves firing accuracy. In order to study characteristics of self-adaptive control projectile, numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile. The aerodynamic characteristics at different nose delectation angles, different Mach numbers and different angles of attack are obtained and compared. The results show that the nose deflection control has great influence on the head of rocket projectile, and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface, which results in a larger lift. Finally, ballistics experiments are done for verification. The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.

    rocket projectile; intelligent morphing technology; nose deflection; ballistics characteristics

    0 Introduction

    Smartness, intelligence and high mobility of ammunition will be the important development directions of ammunition technology in a long historical period in the future[1-3]. To research and develop active, detective and self-adaptive ballistic correction and autonomous smart attack ammunition by means of various innovative and intelligent control technologies, simple guidance way or ballistic adaptive way has become the research hotspot of national defense science and technology in the world.

    Intelligent morphing technology means that the shape of self-adaptive aircraft changes according to flight mission, flight speed and flight environment. It uses intelligent material or structure to realize active, adaptive and continuous changes in appearance to meet different missions with different aerodynamic layouts, thus performance optimization of aerodynamic and flight is achieved[4-7]. For modern high mobility weapons, it can solve the contradictions of different aerodynamic layouts of the aircrafts designed by intelligent morphing technology and improve economic efficiency and operational capability.

    Human beings are dedicated to development of lighter and more intelligent missiles now and even for the future. Research on creative and intelligent control technology has very important significance and practical value, where external ballistics plays a key role in this modern missile control technology.

    1 Modeling

    1.1 Geometrical model

    The 3D model of simplified standard fin stabilized rocket projectile is shown in Fig.1, where lengthL=600.0 mm, and diameterD=90.0 mm. The rocket projectile with nose deflection angleδis shown in Fig.2.

    Fig.1 Standard fin stabilized rocket projectile

    Fig.2 Rocket projectile with nose deflection angle

    1.2 Mass properties

    The trajectory correction models for rocket projectiles with different nose deflection angles, including 0°, 2°, 4°, 6°, 8° and 10°, are established. The mass properties of each model are shown in Table 1.

    Table 1 Mass properties

    1.3 Aerodynamic force analysis

    According to ballistic theory[8-9], in the flight process of projectile, regardless of the spinning, in order to measure the effects from each force and resultant force, all the forces and moments are simplified as the centroid of projectile. For illustrating conveniently, it is shown in Fig.3.

    Fig.3 Diagram for simplifying aerodynamic forces

    1)Rxis drag and expressed as

    whereCxis drag coefficient andSMis reference area (m2).

    2)Ryis lift and expressed as

    whereCyis drag coefficient andSMis reference area (m2).

    3)Mzis static moment and expressed as

    wheremzis moment coefficient.

    2 Ballistic flight flow field simulation

    Mach numbers in simulation are 0.8, 1.0, 1.2, 2.0 and 3.0, respectively, involving subsonic, transonic and supersonic speed ranges; and nose deflection angles contains 0°, 2°, 4°, 6°, 8° and 10°. The dynamics parameters such as flow field velocity and pressure, drag coefficient, lift coefficient and pitching moment coefficient, are obtained by simulation. In computational procedure, single equation model Spalart-Allmaras is used for turbulence model[10-13], which only solves a transport equation about the eddy viscosity and obtains good results involving wall limit flow problem and inverse pressure gradient of boundary layer problem. It is commonly used for solving aerodynamic problems of aircraft, flow around airfoil, flow field analysis, and so on.

    2.1 Pressure field analysis

    Typical simulation results of pressure field distribution are shown in Fig.4. Fig.4(a) is the pressure nephogram and Fig.4(b) is the pressure contour line.

    Fig.4 Pressure field distribution

    As shown in Fig.4, the pressure on projectile increases with the increase of deflection angle. For nose deflection angle of 10°, there is a mutation pressure due to its unsmooth surface. The greater the deflection angle is, the more obvious the mutation pressure is.

    The warhead is the most stressful part of the whole projectile, whereby ballistic cap is the most stressful part in the warhead. Its pressure grows with the increase of Mach number and the pressure region has a tendency to gradually expand and gradually move to the rear end of rocket.

    When air flows through the pressure region, there is an inflection point of pressure on the shoulder of the rocket, then gas expansion wave emerges. At the same time, a low pressure area emerges in the area near the bottom of the projectile, and it becomes smaller and smaller when Mach number increases, and the speed difference is more and more obvious. The reason is that the rocket empennage impedes the air flow, consequently gas choking phenomenon appears in the empennage leading edge and dilatational wave appears in the empennage trailing edge, finally the interaction leading edge and trailing edge flow field form tail flow field.

    In addition, it can be seen that the pressure flow field distribution is asymmetric, and the asymmetry intensifies that because of the existence of nose deflection angle, in front of the shoulder, with the increase of deflection angle, the pressure coefficient on the windward side is larger than that on the leeward side. On the back of the shoulder, with the increase of deflection angle, the pressure coefficient diminishes on the windward side and increases on the leeward side, and the pressure coefficient on the windward side is less than that on the leeward side.

    2.2 Velocity field analysis

    Typical simulation results of pressure field distribution are shown in Fig.5. Fig.5(a) is the pressure nephogram and Fig.5(b) is the pressure contour line.

    As shown in Fig.5, a high pressure area emerges around warhead in the flight process of external ballistics, and vortex area and stress concentration are around tail.

    Deflection angle has important influence on tail flow field. The larger the deflection angle is, the greater impact it has. Circle flow field changes a lot because of the warhead deflection angle. With the increase of deflection angle, the rocket overall speed slows down. The head velocity is low, and the low speed region caused by warhead is larger and moves to rear end of the rocket.

    Fig.5 Velocity field distribution

    The larger the deflection angle is, the greater impact it has on the warhead flow field structure and the less impact it has on the downstream flow field. The tail flow field asymmetry increases with the increment of deflection angle. The greater the deflection angle is, the greater warhead disturbance impact it has on the tail flow field. High speed area emerges on the warhead and expansion wave emerges on the shoulder at the same time.

    There is also a speed-jump on the shoulder windward side because of the existence of attack angle, and the larger Mach number, the larger speed-jump area. The fluid velocity is low in the empennage leading-edge area. Choking phenomenon occurs because of its retardation, and a series of smaller spirals also emerge in the tail flow field due to the speed differences caused by projectile disturbance.

    2.3 Aerodynamic characteristics analysis

    Calculation of drag coefficient is shown in Fig.6, and the changing laws of all the models are consistent and the curves change smoothly.

    Under the condition of the same Mach number, when the attack angle is 0°, aerodynamic drag coefficient changes smaller with the change of nose deflection angle. By comparing a large amount of simulation data, rocket projectile’s aerodynamic performance is poor in subsonic and transonic velocity ranges and aerodynamic lift and control torque are limited very much in subsonic velocity range.

    Fig.6 Drag coefficient when attack angle is 0°

    Simulations of lift coefficient and control moment coefficient are shown in Fig.7.

    Lift coefficient and additional control torque change obviously when the attack angle is 2° and aerodynamic performance changes significantly. Aerodynamic lift and control moment caused by nose deflection angle are objective and the smaller nose deflection angle can produce large aerodynamic control force.

    Control mode of nose deflection can provide greater aerodynamic lift and torque control than rocket projectile without nose deflection angle. Lift coefficient ratio and control moment coefficient ratio of rocket projectile with different nose deflection angles are shown in Table 2.

    Fig.7 Aerodynamic coefficient when attack angle is 2°

    Table 2 Calculation results of coefficient ratio

    In supersonic velocity range, nose deflection angle is 10°. And it can provide the aerodynamic lift 2.64 times and control moment 15.28 times as much as that without nose deflection angle.

    3 Experiment

    To improve rocket projectile design, the experiments for ballistic correction of rocket projectile with nose deflection angle of 5° was conducted. There are 5 ballistic correction rocket projectiles prepared for the flying experiment[14-15]. The arrangement for testing is shown in Fig.8.

    Fig.8 Arrangement for testing

    The distance of 200 m was intercepted in the shooting range direction and the distance between the aiming point and fall point was determined as transverse correction range, marked as ΔX.

    In order to get convenient verification, the nose deflection angle was set toward to the same launch direction and the distance between aiming point and fall point was measured as the horizontal correction range caused by nose deflection angle. The experimental results are shown in Table 3. The results show that at the velocity of 151.06 m/s and nose deflection angle being of 5°, the ballistic correction for rocket projectile can obtain horizontal correction range of 0.43 m on the average.

    Table 3 Horizontal correction value

    4 Conclusions

    From the simulation calculation and ballistic experiment on deflectable nose rocket projectile, the following conclusions can be obtained:

    1) Large number of aerodynamic simulations show that using nose deflection angle can achieve desired aerodynamic lift, aerodynamic drag and additional torque control. Furthermore, it can correct ballistic trajectory effectively and realize rocket projectile maneuvering flight.

    2) With rocket projectile ballistic correction as fine pneumatic control characteristics in the supersonic velocity range and limited aerodynamic performance in subsonic velocity range. Nose deflection has greater influence on warhead flow field structure and smaller impact on the downstream.

    3) With the increase of nose deflection angle, the pressure on the rocket body increases, especially the pressure mutation on the area around the shoulder of the rocket. The flow field changes dramatically and the pressure becomes bigger with the deflection angle being larger. The expansion waves emerge on the shoulder and low pressure area at the bottom of the projectile. The asymmetry of the flow field is bigger and different pressures on the windward and leeward surfaces increase, which result in larger lift.

    4) Flight test shows that flying control method of nose deflection is feasible and reliable, thus it can be used for engineering research in the further.

    [1] YIN Jian-ping, WANG Zhi-jun. Ammunition theory. Beijing: Beijing Institute of Technology Press, 2014.

    [2] ZHANG Bo, WANG Shu-shan, CAO Meng-yu, et al. Impacts of deflection nose on ballistic trajectory control law. Mathematical Problems in Engineering, 2014.

    [3] GAO Ting-xin. Study of aerodynamic characteristics of migraine control. In: Proceedings of Aviation Aircraft Development and Aerodynamics Seminar, Hangzhou, 2006.

    [4] ZHANG Tong, ZHAO Xiao-li. Analysis of trajectory correction projectile and its key technology.Cruise Missile, 2014, 24(5): 38-42.

    [5] Landers M G, Hall L H, Auman L M, et al. Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 1.

    [6] XIA Bin, ZHOU Liang. Trajectory correction projectile and analysis on the key technologies for the trajectory correction process. National Defense Science & Technology, 2013, 34(3): 27-33.

    [7] Vaughn, M E, Auman L M. Assessment of a productivity-oriented cfd methodology for designing a hypervelocity missile. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 23-29.

    [8] HAN Zi-peng. Exterior ballistics of projectile and rockets. Beijing: Beijing Institute of Technology Press, 2014.

    [9] XU Ming-you. Advanced external ballistics. Beijing: Higher Education Press, 2003.

    [10] YU Wen-jie. Study of aerodynamic characteristics for a fin-stabilized projectile with a deflectable nose control. Nanjing: Nanjing University of Science&Technology, 2010.

    [11] WANG Fei, WU Guo-dong, WANG Zhi-jun. Numerical calculation of aerodynamic characteristics of shell with attack angle at the shell head. Journal of North China Institute of Technology, 2005, 26(3): 177-179.

    [12] WEIi Fang-hai, WANG Zhi-jun, YIN Jian-ping. Numerical calculation of aerodynamic characteristics of shell with an angle of warhead. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 553-558.

    [13] DONG Er-bao. Research on realization mechanism and some key technologies of smart morphing aircraft structures. Anhui: University of Science and Technology of China, 2010.

    [14] XU Yu-xin, WANG Shu-shan. Armor-piercing experiment on fragment against sandwich plate with fiber reinforced composite cores. Acta Materiae Compositae Sinica, 2012, 29(3): 72-78.

    [15] XU Yu-xin, WANG Shu-shan. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel. Journal of Vibration and Shock, 2011, 30(5): 192-195.

    基于智能變形技術(shù)的火箭彈特性分析

    偏轉(zhuǎn)頭部控制是一種新概念快速響應(yīng)的控制方式。 彈頭部相對(duì)于彈軸進(jìn)行局部偏轉(zhuǎn), 并且在彈頭的迎風(fēng)面和背風(fēng)面形成壓力差從而產(chǎn)生空氣控制力, 在彈藥系統(tǒng)里, 這是一個(gè)高效并具有良好應(yīng)用前景的控制方式。 基于智能材料和結(jié)構(gòu)的彈箭頭部智能變形驅(qū)動(dòng)機(jī)構(gòu)可以使彈箭獲得額外的控制力和控制力矩, 改變彈丸在飛行過(guò)程中的空氣動(dòng)力特性, 在彈箭飛行過(guò)程中會(huì)產(chǎn)生附加的平衡角、 側(cè)滑角, 進(jìn)而產(chǎn)生機(jī)動(dòng)過(guò)載, 控制飛行姿態(tài)和飛行彈道, 并在最后時(shí)限提高彈丸的射擊精確度。 為了研究自適應(yīng)控制彈箭的特性, 利用流體力學(xué)軟件對(duì)尾翼穩(wěn)定的火箭彈進(jìn)行了數(shù)值模擬。 獲得不同頭部偏角、 不同馬赫數(shù)和不同攻角情況下的彈箭空氣動(dòng)力學(xué)特性。 結(jié)果表明, 偏轉(zhuǎn)頭部控制對(duì)彈箭的頭部具有較大的影響, 并且引起流場(chǎng)的不對(duì)稱性。 彈頭部迎風(fēng)面和背風(fēng)面的壓力差為彈箭提供較大的升力。 最后, 做彈道試驗(yàn)驗(yàn)證了仿真的研究結(jié)果。 研究結(jié)果可以為自適應(yīng)彈箭的設(shè)計(jì)及優(yōu)化提供理論基礎(chǔ), 并為智能彈藥的研究提供新思路和新方法。

    火箭彈; 智能變形技術(shù); 頭部偏轉(zhuǎn); 彈道特性

    XU Yong-jie, WANG Zhi-jun. Characteristics analysis of rocket projectile based on intelligent morphing technology. Journal of Measurement Science and Instrumentation, 2015, 6(3): 205-211. [

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.001]

    XU Yong-jie (yongqiang515@126.com)

    1674-8042(2015)03-0205-07 doi: 10.3969/j.issn.1674-8042.2015.03.001

    Received date: 2015-05-15

    CLD number: TJ415 Document code: A

    猜你喜歡
    彈箭背風(fēng)面王志軍
    TSCL-SQL:Two-Stage Curriculum Learning Framework for Text-to-SQL
    王志軍 油畫(huà)作品
    3D模型在彈箭拆裝實(shí)訓(xùn)課程教學(xué)實(shí)踐過(guò)程的應(yīng)用
    旋轉(zhuǎn)尾翼彈馬格努斯效應(yīng)數(shù)值模擬
    偏轉(zhuǎn)頭彈箭飛行特性
    非均勻等離子體Ka-Band傳輸性能中繼法優(yōu)化研究
    高超聲速風(fēng)洞子母彈大迎角拋殼投放試驗(yàn)
    高壓輸電鐵塔塔身背風(fēng)面風(fēng)荷載遮擋效應(yīng)研究
    Optimization of projectile aerodynamic parameters based on hybrid genetic algorithm
    Study on the impact of particle perturbation on yaw characteristics of aircraft at high angles of attack
    a级毛片黄视频| 不卡av一区二区三区| 婷婷色综合www| 色婷婷久久久亚洲欧美| 一级a爱视频在线免费观看| 水蜜桃什么品种好| 国产精品免费视频内射| 999精品在线视频| 亚洲精品一区蜜桃| 老熟女久久久| 亚洲七黄色美女视频| 90打野战视频偷拍视频| 精品免费久久久久久久清纯 | 蜜桃在线观看..| 人人妻人人爽人人添夜夜欢视频| 精品人妻在线不人妻| 久久精品熟女亚洲av麻豆精品| 久久久欧美国产精品| 久久久久精品人妻al黑| 欧美日韩综合久久久久久| 人成视频在线观看免费观看| 男人操女人黄网站| 日韩制服骚丝袜av| 亚洲国产中文字幕在线视频| 色视频在线一区二区三区| 午夜日韩欧美国产| 老司机在亚洲福利影院| 欧美亚洲日本最大视频资源| 精品人妻一区二区三区麻豆| 久久久精品免费免费高清| 黄色视频不卡| 欧美xxⅹ黑人| 久久性视频一级片| 日本vs欧美在线观看视频| 国产亚洲午夜精品一区二区久久| 一级毛片女人18水好多 | 香蕉丝袜av| 中国美女看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| xxx大片免费视频| 亚洲情色 制服丝袜| 热99国产精品久久久久久7| 丰满饥渴人妻一区二区三| 亚洲精品一区蜜桃| 热99久久久久精品小说推荐| 九草在线视频观看| 满18在线观看网站| 中文欧美无线码| 极品人妻少妇av视频| 午夜久久久在线观看| 啦啦啦在线免费观看视频4| 中文字幕精品免费在线观看视频| 麻豆乱淫一区二区| 丁香六月天网| a级片在线免费高清观看视频| 国产高清不卡午夜福利| 久久99精品国语久久久| 99久久精品国产亚洲精品| 国产高清国产精品国产三级| 真人做人爱边吃奶动态| 欧美精品亚洲一区二区| 免费在线观看影片大全网站 | 老鸭窝网址在线观看| 精品国产一区二区久久| svipshipincom国产片| 日日摸夜夜添夜夜爱| 女性被躁到高潮视频| 老汉色∧v一级毛片| 青春草视频在线免费观看| 国产一区二区三区综合在线观看| 亚洲七黄色美女视频| 观看av在线不卡| 美女扒开内裤让男人捅视频| 精品久久久久久电影网| 夫妻午夜视频| 久久青草综合色| 男人爽女人下面视频在线观看| 老司机靠b影院| 午夜免费观看性视频| 精品久久久久久久毛片微露脸 | 午夜福利免费观看在线| 超色免费av| 一级毛片 在线播放| 中国国产av一级| 不卡av一区二区三区| 亚洲国产成人一精品久久久| 一区福利在线观看| 国产免费现黄频在线看| 免费高清在线观看视频在线观看| 色婷婷av一区二区三区视频| 丰满迷人的少妇在线观看| 亚洲精品日本国产第一区| 国产一级毛片在线| 精品视频人人做人人爽| 波野结衣二区三区在线| 汤姆久久久久久久影院中文字幕| 日韩中文字幕视频在线看片| 亚洲 欧美一区二区三区| 亚洲国产精品成人久久小说| 丝瓜视频免费看黄片| 亚洲第一青青草原| 免费观看av网站的网址| 国产精品一国产av| 国产成人啪精品午夜网站| 99九九在线精品视频| 啦啦啦啦在线视频资源| 国产xxxxx性猛交| 国产精品一区二区在线观看99| 国产精品 国内视频| 操美女的视频在线观看| 高潮久久久久久久久久久不卡| 曰老女人黄片| av天堂在线播放| 免费在线观看完整版高清| 大话2 男鬼变身卡| 一区二区三区精品91| 日韩中文字幕视频在线看片| 精品卡一卡二卡四卡免费| 99热全是精品| 亚洲国产看品久久| 国产男女超爽视频在线观看| 国产色视频综合| 国产精品免费大片| av电影中文网址| 婷婷成人精品国产| 国产又色又爽无遮挡免| 天堂中文最新版在线下载| 黄色片一级片一级黄色片| 人人澡人人妻人| 国产精品一区二区精品视频观看| 男女午夜视频在线观看| 国产一区二区三区综合在线观看| 久久精品成人免费网站| 中文字幕色久视频| 热re99久久国产66热| 性色av一级| 午夜福利一区二区在线看| 国产伦人伦偷精品视频| 久久久精品国产亚洲av高清涩受| 高潮久久久久久久久久久不卡| 丰满饥渴人妻一区二区三| 精品人妻在线不人妻| 最近最新中文字幕大全免费视频 | 少妇粗大呻吟视频| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av | 亚洲精品av麻豆狂野| 秋霞在线观看毛片| 美女午夜性视频免费| 久久国产精品大桥未久av| 操出白浆在线播放| 欧美日韩视频高清一区二区三区二| 手机成人av网站| 国产一区有黄有色的免费视频| 亚洲中文av在线| 国产色视频综合| 丰满迷人的少妇在线观看| 老司机在亚洲福利影院| 少妇精品久久久久久久| 亚洲人成77777在线视频| 99香蕉大伊视频| 久久综合国产亚洲精品| 国产日韩欧美视频二区| 精品人妻在线不人妻| 男女下面插进去视频免费观看| 国产成人91sexporn| 啦啦啦视频在线资源免费观看| 国产亚洲一区二区精品| 少妇被粗大的猛进出69影院| 人成视频在线观看免费观看| 中文字幕色久视频| 天天躁日日躁夜夜躁夜夜| 男人舔女人的私密视频| 看免费成人av毛片| 日本av免费视频播放| 久久影院123| 亚洲欧美精品综合一区二区三区| 欧美在线黄色| 天堂中文最新版在线下载| 亚洲免费av在线视频| 一级毛片我不卡| av线在线观看网站| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| av在线播放精品| 国产亚洲av高清不卡| 国产精品久久久av美女十八| 国产男女超爽视频在线观看| 久久精品久久久久久噜噜老黄| xxxhd国产人妻xxx| 色婷婷久久久亚洲欧美| 亚洲少妇的诱惑av| 成年人免费黄色播放视频| 国产黄频视频在线观看| 亚洲精品国产色婷婷电影| 欧美精品亚洲一区二区| 男人添女人高潮全过程视频| 国产成人精品久久久久久| 一本—道久久a久久精品蜜桃钙片| 欧美日韩国产mv在线观看视频| 国产亚洲av片在线观看秒播厂| 色94色欧美一区二区| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 中文字幕亚洲精品专区| 国产精品国产av在线观看| 电影成人av| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 国产精品香港三级国产av潘金莲 | 国产成人精品久久二区二区免费| 成年av动漫网址| 国产一区二区激情短视频 | 国产97色在线日韩免费| 丰满少妇做爰视频| 少妇精品久久久久久久| 亚洲七黄色美女视频| 国产精品人妻久久久影院| www日本在线高清视频| 男人添女人高潮全过程视频| 亚洲国产精品一区二区三区在线| 777米奇影视久久| 亚洲精品一卡2卡三卡4卡5卡 | 成人国产一区最新在线观看 | 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 在现免费观看毛片| 一区福利在线观看| 色精品久久人妻99蜜桃| 成人影院久久| 亚洲av综合色区一区| 国产精品二区激情视频| 成人黄色视频免费在线看| 亚洲色图综合在线观看| 欧美亚洲日本最大视频资源| 在线天堂中文资源库| 亚洲五月婷婷丁香| 青青草视频在线视频观看| 国产精品久久久久久精品古装| 久久精品国产亚洲av涩爱| 久9热在线精品视频| 国产1区2区3区精品| 精品亚洲乱码少妇综合久久| 丝袜美腿诱惑在线| 大码成人一级视频| 老司机亚洲免费影院| 午夜福利一区二区在线看| 在线观看免费日韩欧美大片| 色视频在线一区二区三区| 欧美 日韩 精品 国产| av有码第一页| 黄色a级毛片大全视频| 韩国高清视频一区二区三区| 亚洲国产精品999| 国产精品一国产av| 好男人视频免费观看在线| 新久久久久国产一级毛片| 亚洲欧美精品自产自拍| 欧美另类一区| 亚洲熟女毛片儿| 亚洲精品美女久久av网站| 国产成人av教育| 一级毛片我不卡| 亚洲精品久久成人aⅴ小说| 亚洲精品自拍成人| 亚洲情色 制服丝袜| 欧美日韩黄片免| 人人妻人人澡人人爽人人夜夜| 亚洲国产欧美在线一区| 久久久久网色| 考比视频在线观看| 美女主播在线视频| 咕卡用的链子| 精品人妻在线不人妻| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| videos熟女内射| 国产福利在线免费观看视频| 亚洲欧洲精品一区二区精品久久久| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 在线av久久热| 国产精品99久久99久久久不卡| 1024香蕉在线观看| 成人黄色视频免费在线看| 久久精品国产综合久久久| 天天影视国产精品| 电影成人av| 日本av手机在线免费观看| 丝瓜视频免费看黄片| 国产成人精品久久久久久| 久久午夜综合久久蜜桃| 少妇粗大呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩另类电影网站| 深夜精品福利| 视频区图区小说| 老司机影院成人| 亚洲国产精品999| 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 久久亚洲国产成人精品v| 黄色片一级片一级黄色片| 欧美日韩av久久| 亚洲久久久国产精品| 亚洲av男天堂| 丝袜脚勾引网站| 久久久久精品人妻al黑| 国产97色在线日韩免费| 97人妻天天添夜夜摸| 捣出白浆h1v1| 女人精品久久久久毛片| 精品福利观看| 美女高潮到喷水免费观看| 一级片'在线观看视频| 激情视频va一区二区三区| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 美女脱内裤让男人舔精品视频| 夫妻午夜视频| 三上悠亚av全集在线观看| 黑丝袜美女国产一区| 多毛熟女@视频| 久久久久久久大尺度免费视频| 狠狠婷婷综合久久久久久88av| 制服人妻中文乱码| 97在线人人人人妻| 电影成人av| 国产成人免费无遮挡视频| 91成人精品电影| 日韩av不卡免费在线播放| 亚洲精品久久午夜乱码| 在线观看人妻少妇| 国产精品偷伦视频观看了| netflix在线观看网站| 欧美激情 高清一区二区三区| 少妇人妻久久综合中文| 亚洲欧美日韩另类电影网站| 国产高清不卡午夜福利| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看| 男女免费视频国产| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 最新的欧美精品一区二区| 亚洲国产最新在线播放| 久久天堂一区二区三区四区| 日本一区二区免费在线视频| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 各种免费的搞黄视频| 一级黄片播放器| 国产成人精品在线电影| 美女扒开内裤让男人捅视频| 每晚都被弄得嗷嗷叫到高潮| 欧美xxⅹ黑人| 黑人欧美特级aaaaaa片| 欧美精品高潮呻吟av久久| 18在线观看网站| netflix在线观看网站| 蜜桃在线观看..| 操美女的视频在线观看| 久久久久国产精品人妻一区二区| 国产一区二区激情短视频 | 中文字幕最新亚洲高清| 波多野结衣av一区二区av| 亚洲美女黄色视频免费看| av不卡在线播放| 久久精品国产亚洲av涩爱| 一级片'在线观看视频| 晚上一个人看的免费电影| 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看 | 久久人妻熟女aⅴ| 91老司机精品| 欧美黑人精品巨大| 日韩制服骚丝袜av| 亚洲三区欧美一区| 狠狠婷婷综合久久久久久88av| 人人妻人人添人人爽欧美一区卜| 久久国产精品男人的天堂亚洲| 91国产中文字幕| 成年人午夜在线观看视频| 国产在线免费精品| 夫妻午夜视频| 丁香六月天网| 欧美精品一区二区免费开放| 中文乱码字字幕精品一区二区三区| 欧美日本中文国产一区发布| 国产一区亚洲一区在线观看| 另类精品久久| 久久精品国产亚洲av高清一级| 一级毛片女人18水好多 | 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 国产精品 国内视频| 欧美日韩国产mv在线观看视频| 欧美人与善性xxx| 2018国产大陆天天弄谢| www.自偷自拍.com| 亚洲精品日韩在线中文字幕| 美女福利国产在线| 国产一卡二卡三卡精品| 首页视频小说图片口味搜索 | 国产一区二区三区av在线| 欧美日韩精品网址| 成人亚洲欧美一区二区av| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| 操出白浆在线播放| 狂野欧美激情性bbbbbb| 99国产综合亚洲精品| 午夜免费鲁丝| 久久久精品免费免费高清| 十分钟在线观看高清视频www| 亚洲精品国产区一区二| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| 国产一区二区激情短视频 | 国产成人免费无遮挡视频| 亚洲av美国av| 啦啦啦在线观看免费高清www| 亚洲伊人色综图| 最黄视频免费看| 亚洲精品国产区一区二| 男的添女的下面高潮视频| 人妻人人澡人人爽人人| 视频区欧美日本亚洲| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 日韩一卡2卡3卡4卡2021年| 亚洲专区中文字幕在线| 91国产中文字幕| 曰老女人黄片| 免费观看人在逋| 亚洲色图综合在线观看| 尾随美女入室| 国产亚洲午夜精品一区二区久久| videos熟女内射| 午夜老司机福利片| 另类精品久久| 婷婷色麻豆天堂久久| 热99国产精品久久久久久7| 波野结衣二区三区在线| 欧美日韩视频高清一区二区三区二| h视频一区二区三区| 成人三级做爰电影| 国产亚洲av片在线观看秒播厂| 18禁黄网站禁片午夜丰满| 性色av一级| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡| 黄频高清免费视频| 午夜日韩欧美国产| 尾随美女入室| 国产片内射在线| 久久狼人影院| 中文字幕色久视频| 国产在线一区二区三区精| 美女主播在线视频| 国产无遮挡羞羞视频在线观看| 这个男人来自地球电影免费观看| 欧美精品啪啪一区二区三区 | 1024香蕉在线观看| 丰满少妇做爰视频| 一区福利在线观看| 一级片'在线观看视频| 精品亚洲成国产av| 日本wwww免费看| 午夜精品国产一区二区电影| 日本av免费视频播放| 亚洲欧美激情在线| 日韩一本色道免费dvd| 丝袜脚勾引网站| 在线看a的网站| 一区二区三区乱码不卡18| 国产av精品麻豆| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频| 丰满人妻熟妇乱又伦精品不卡| 人妻 亚洲 视频| av一本久久久久| 热99久久久久精品小说推荐| 亚洲欧洲日产国产| 亚洲欧美色中文字幕在线| 国产精品亚洲av一区麻豆| 精品人妻一区二区三区麻豆| 日本wwww免费看| 国产深夜福利视频在线观看| 中文欧美无线码| 激情视频va一区二区三区| 欧美日韩成人在线一区二区| 韩国高清视频一区二区三区| 嫁个100分男人电影在线观看 | 日韩av不卡免费在线播放| 国产精品久久久久久精品电影小说| 国产福利在线免费观看视频| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 国产免费一区二区三区四区乱码| 女性生殖器流出的白浆| 久久精品久久精品一区二区三区| 亚洲成av片中文字幕在线观看| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 9色porny在线观看| 久久av网站| 色视频在线一区二区三区| 国产欧美日韩精品亚洲av| 黄色a级毛片大全视频| 亚洲久久久国产精品| 午夜免费鲁丝| 亚洲精品美女久久久久99蜜臀 | 十八禁网站网址无遮挡| 久久人人爽av亚洲精品天堂| 国产成人一区二区在线| 黑人欧美特级aaaaaa片| 99re6热这里在线精品视频| 人人妻人人添人人爽欧美一区卜| 精品人妻熟女毛片av久久网站| 黄色怎么调成土黄色| 久久精品国产亚洲av涩爱| 国产99久久九九免费精品| 成人免费观看视频高清| 色播在线永久视频| 久久女婷五月综合色啪小说| 精品国产国语对白av| 国产av精品麻豆| 又黄又粗又硬又大视频| 欧美xxⅹ黑人| 亚洲午夜精品一区,二区,三区| 母亲3免费完整高清在线观看| 亚洲精品第二区| 日本av免费视频播放| 中文字幕制服av| 国产国语露脸激情在线看| 国产野战对白在线观看| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 国产男女内射视频| 午夜福利一区二区在线看| 久久热在线av| 99re6热这里在线精品视频| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 99热全是精品| 麻豆国产av国片精品| 亚洲 国产 在线| 最新在线观看一区二区三区 | 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 一区二区三区精品91| 中文字幕制服av| 99久久精品国产亚洲精品| 欧美97在线视频| av天堂久久9| 看免费成人av毛片| 亚洲国产最新在线播放| 最近最新中文字幕大全免费视频 | 亚洲精品自拍成人| 久久久久久免费高清国产稀缺| av福利片在线| 国产亚洲精品第一综合不卡| 美女扒开内裤让男人捅视频| 蜜桃在线观看..| 日日夜夜操网爽| 人体艺术视频欧美日本| 手机成人av网站| 汤姆久久久久久久影院中文字幕| 老汉色∧v一级毛片| 亚洲欧美成人综合另类久久久| 人人妻,人人澡人人爽秒播 | 亚洲欧美一区二区三区国产| 在线观看免费日韩欧美大片| 91字幕亚洲| 91麻豆av在线| a级片在线免费高清观看视频| 国产99久久九九免费精品| 精品国产一区二区三区久久久樱花| 国产精品久久久久久精品电影小说| 欧美亚洲 丝袜 人妻 在线| 国产欧美日韩一区二区三区在线| 老司机午夜十八禁免费视频| 男人添女人高潮全过程视频| 国产一区二区 视频在线| 国产免费现黄频在线看| 在线 av 中文字幕| 嫁个100分男人电影在线观看 | 欧美日韩福利视频一区二区| 国产日韩欧美亚洲二区| 国产亚洲午夜精品一区二区久久| 亚洲,欧美,日韩| 亚洲av片天天在线观看| 天天操日日干夜夜撸| 另类精品久久| 日本vs欧美在线观看视频| 久久亚洲精品不卡| 久久精品久久精品一区二区三区| 国产熟女欧美一区二区| 秋霞在线观看毛片| 精品国产乱码久久久久久小说| tube8黄色片| 两个人看的免费小视频| 90打野战视频偷拍视频| 亚洲欧美中文字幕日韩二区|