• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    2015-03-03 07:50:52XUYongjieWANGZhijun
    關(guān)鍵詞:彈箭背風(fēng)面王志軍

    XU Yong-jie, WANG Zhi-jun

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    XU Yong-jie, WANG Zhi-jun

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    Nose deflection control is a new concept of fast response control model. The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead. Consequently, aerodynamic control force is generated. This control way has high control efficiency and very good application prospects in the ammunition system. Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment, changes the aerodynamic characteristics in the projectile flight process, produces the corresponding balance angle and sideslip angle resulting in motor overload, adjusts flight moving posture to control the ballistics, finally changes shooting range and improves firing accuracy. In order to study characteristics of self-adaptive control projectile, numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile. The aerodynamic characteristics at different nose delectation angles, different Mach numbers and different angles of attack are obtained and compared. The results show that the nose deflection control has great influence on the head of rocket projectile, and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface, which results in a larger lift. Finally, ballistics experiments are done for verification. The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.

    rocket projectile; intelligent morphing technology; nose deflection; ballistics characteristics

    0 Introduction

    Smartness, intelligence and high mobility of ammunition will be the important development directions of ammunition technology in a long historical period in the future[1-3]. To research and develop active, detective and self-adaptive ballistic correction and autonomous smart attack ammunition by means of various innovative and intelligent control technologies, simple guidance way or ballistic adaptive way has become the research hotspot of national defense science and technology in the world.

    Intelligent morphing technology means that the shape of self-adaptive aircraft changes according to flight mission, flight speed and flight environment. It uses intelligent material or structure to realize active, adaptive and continuous changes in appearance to meet different missions with different aerodynamic layouts, thus performance optimization of aerodynamic and flight is achieved[4-7]. For modern high mobility weapons, it can solve the contradictions of different aerodynamic layouts of the aircrafts designed by intelligent morphing technology and improve economic efficiency and operational capability.

    Human beings are dedicated to development of lighter and more intelligent missiles now and even for the future. Research on creative and intelligent control technology has very important significance and practical value, where external ballistics plays a key role in this modern missile control technology.

    1 Modeling

    1.1 Geometrical model

    The 3D model of simplified standard fin stabilized rocket projectile is shown in Fig.1, where lengthL=600.0 mm, and diameterD=90.0 mm. The rocket projectile with nose deflection angleδis shown in Fig.2.

    Fig.1 Standard fin stabilized rocket projectile

    Fig.2 Rocket projectile with nose deflection angle

    1.2 Mass properties

    The trajectory correction models for rocket projectiles with different nose deflection angles, including 0°, 2°, 4°, 6°, 8° and 10°, are established. The mass properties of each model are shown in Table 1.

    Table 1 Mass properties

    1.3 Aerodynamic force analysis

    According to ballistic theory[8-9], in the flight process of projectile, regardless of the spinning, in order to measure the effects from each force and resultant force, all the forces and moments are simplified as the centroid of projectile. For illustrating conveniently, it is shown in Fig.3.

    Fig.3 Diagram for simplifying aerodynamic forces

    1)Rxis drag and expressed as

    whereCxis drag coefficient andSMis reference area (m2).

    2)Ryis lift and expressed as

    whereCyis drag coefficient andSMis reference area (m2).

    3)Mzis static moment and expressed as

    wheremzis moment coefficient.

    2 Ballistic flight flow field simulation

    Mach numbers in simulation are 0.8, 1.0, 1.2, 2.0 and 3.0, respectively, involving subsonic, transonic and supersonic speed ranges; and nose deflection angles contains 0°, 2°, 4°, 6°, 8° and 10°. The dynamics parameters such as flow field velocity and pressure, drag coefficient, lift coefficient and pitching moment coefficient, are obtained by simulation. In computational procedure, single equation model Spalart-Allmaras is used for turbulence model[10-13], which only solves a transport equation about the eddy viscosity and obtains good results involving wall limit flow problem and inverse pressure gradient of boundary layer problem. It is commonly used for solving aerodynamic problems of aircraft, flow around airfoil, flow field analysis, and so on.

    2.1 Pressure field analysis

    Typical simulation results of pressure field distribution are shown in Fig.4. Fig.4(a) is the pressure nephogram and Fig.4(b) is the pressure contour line.

    Fig.4 Pressure field distribution

    As shown in Fig.4, the pressure on projectile increases with the increase of deflection angle. For nose deflection angle of 10°, there is a mutation pressure due to its unsmooth surface. The greater the deflection angle is, the more obvious the mutation pressure is.

    The warhead is the most stressful part of the whole projectile, whereby ballistic cap is the most stressful part in the warhead. Its pressure grows with the increase of Mach number and the pressure region has a tendency to gradually expand and gradually move to the rear end of rocket.

    When air flows through the pressure region, there is an inflection point of pressure on the shoulder of the rocket, then gas expansion wave emerges. At the same time, a low pressure area emerges in the area near the bottom of the projectile, and it becomes smaller and smaller when Mach number increases, and the speed difference is more and more obvious. The reason is that the rocket empennage impedes the air flow, consequently gas choking phenomenon appears in the empennage leading edge and dilatational wave appears in the empennage trailing edge, finally the interaction leading edge and trailing edge flow field form tail flow field.

    In addition, it can be seen that the pressure flow field distribution is asymmetric, and the asymmetry intensifies that because of the existence of nose deflection angle, in front of the shoulder, with the increase of deflection angle, the pressure coefficient on the windward side is larger than that on the leeward side. On the back of the shoulder, with the increase of deflection angle, the pressure coefficient diminishes on the windward side and increases on the leeward side, and the pressure coefficient on the windward side is less than that on the leeward side.

    2.2 Velocity field analysis

    Typical simulation results of pressure field distribution are shown in Fig.5. Fig.5(a) is the pressure nephogram and Fig.5(b) is the pressure contour line.

    As shown in Fig.5, a high pressure area emerges around warhead in the flight process of external ballistics, and vortex area and stress concentration are around tail.

    Deflection angle has important influence on tail flow field. The larger the deflection angle is, the greater impact it has. Circle flow field changes a lot because of the warhead deflection angle. With the increase of deflection angle, the rocket overall speed slows down. The head velocity is low, and the low speed region caused by warhead is larger and moves to rear end of the rocket.

    Fig.5 Velocity field distribution

    The larger the deflection angle is, the greater impact it has on the warhead flow field structure and the less impact it has on the downstream flow field. The tail flow field asymmetry increases with the increment of deflection angle. The greater the deflection angle is, the greater warhead disturbance impact it has on the tail flow field. High speed area emerges on the warhead and expansion wave emerges on the shoulder at the same time.

    There is also a speed-jump on the shoulder windward side because of the existence of attack angle, and the larger Mach number, the larger speed-jump area. The fluid velocity is low in the empennage leading-edge area. Choking phenomenon occurs because of its retardation, and a series of smaller spirals also emerge in the tail flow field due to the speed differences caused by projectile disturbance.

    2.3 Aerodynamic characteristics analysis

    Calculation of drag coefficient is shown in Fig.6, and the changing laws of all the models are consistent and the curves change smoothly.

    Under the condition of the same Mach number, when the attack angle is 0°, aerodynamic drag coefficient changes smaller with the change of nose deflection angle. By comparing a large amount of simulation data, rocket projectile’s aerodynamic performance is poor in subsonic and transonic velocity ranges and aerodynamic lift and control torque are limited very much in subsonic velocity range.

    Fig.6 Drag coefficient when attack angle is 0°

    Simulations of lift coefficient and control moment coefficient are shown in Fig.7.

    Lift coefficient and additional control torque change obviously when the attack angle is 2° and aerodynamic performance changes significantly. Aerodynamic lift and control moment caused by nose deflection angle are objective and the smaller nose deflection angle can produce large aerodynamic control force.

    Control mode of nose deflection can provide greater aerodynamic lift and torque control than rocket projectile without nose deflection angle. Lift coefficient ratio and control moment coefficient ratio of rocket projectile with different nose deflection angles are shown in Table 2.

    Fig.7 Aerodynamic coefficient when attack angle is 2°

    Table 2 Calculation results of coefficient ratio

    In supersonic velocity range, nose deflection angle is 10°. And it can provide the aerodynamic lift 2.64 times and control moment 15.28 times as much as that without nose deflection angle.

    3 Experiment

    To improve rocket projectile design, the experiments for ballistic correction of rocket projectile with nose deflection angle of 5° was conducted. There are 5 ballistic correction rocket projectiles prepared for the flying experiment[14-15]. The arrangement for testing is shown in Fig.8.

    Fig.8 Arrangement for testing

    The distance of 200 m was intercepted in the shooting range direction and the distance between the aiming point and fall point was determined as transverse correction range, marked as ΔX.

    In order to get convenient verification, the nose deflection angle was set toward to the same launch direction and the distance between aiming point and fall point was measured as the horizontal correction range caused by nose deflection angle. The experimental results are shown in Table 3. The results show that at the velocity of 151.06 m/s and nose deflection angle being of 5°, the ballistic correction for rocket projectile can obtain horizontal correction range of 0.43 m on the average.

    Table 3 Horizontal correction value

    4 Conclusions

    From the simulation calculation and ballistic experiment on deflectable nose rocket projectile, the following conclusions can be obtained:

    1) Large number of aerodynamic simulations show that using nose deflection angle can achieve desired aerodynamic lift, aerodynamic drag and additional torque control. Furthermore, it can correct ballistic trajectory effectively and realize rocket projectile maneuvering flight.

    2) With rocket projectile ballistic correction as fine pneumatic control characteristics in the supersonic velocity range and limited aerodynamic performance in subsonic velocity range. Nose deflection has greater influence on warhead flow field structure and smaller impact on the downstream.

    3) With the increase of nose deflection angle, the pressure on the rocket body increases, especially the pressure mutation on the area around the shoulder of the rocket. The flow field changes dramatically and the pressure becomes bigger with the deflection angle being larger. The expansion waves emerge on the shoulder and low pressure area at the bottom of the projectile. The asymmetry of the flow field is bigger and different pressures on the windward and leeward surfaces increase, which result in larger lift.

    4) Flight test shows that flying control method of nose deflection is feasible and reliable, thus it can be used for engineering research in the further.

    [1] YIN Jian-ping, WANG Zhi-jun. Ammunition theory. Beijing: Beijing Institute of Technology Press, 2014.

    [2] ZHANG Bo, WANG Shu-shan, CAO Meng-yu, et al. Impacts of deflection nose on ballistic trajectory control law. Mathematical Problems in Engineering, 2014.

    [3] GAO Ting-xin. Study of aerodynamic characteristics of migraine control. In: Proceedings of Aviation Aircraft Development and Aerodynamics Seminar, Hangzhou, 2006.

    [4] ZHANG Tong, ZHAO Xiao-li. Analysis of trajectory correction projectile and its key technology.Cruise Missile, 2014, 24(5): 38-42.

    [5] Landers M G, Hall L H, Auman L M, et al. Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 1.

    [6] XIA Bin, ZHOU Liang. Trajectory correction projectile and analysis on the key technologies for the trajectory correction process. National Defense Science & Technology, 2013, 34(3): 27-33.

    [7] Vaughn, M E, Auman L M. Assessment of a productivity-oriented cfd methodology for designing a hypervelocity missile. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 23-29.

    [8] HAN Zi-peng. Exterior ballistics of projectile and rockets. Beijing: Beijing Institute of Technology Press, 2014.

    [9] XU Ming-you. Advanced external ballistics. Beijing: Higher Education Press, 2003.

    [10] YU Wen-jie. Study of aerodynamic characteristics for a fin-stabilized projectile with a deflectable nose control. Nanjing: Nanjing University of Science&Technology, 2010.

    [11] WANG Fei, WU Guo-dong, WANG Zhi-jun. Numerical calculation of aerodynamic characteristics of shell with attack angle at the shell head. Journal of North China Institute of Technology, 2005, 26(3): 177-179.

    [12] WEIi Fang-hai, WANG Zhi-jun, YIN Jian-ping. Numerical calculation of aerodynamic characteristics of shell with an angle of warhead. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 553-558.

    [13] DONG Er-bao. Research on realization mechanism and some key technologies of smart morphing aircraft structures. Anhui: University of Science and Technology of China, 2010.

    [14] XU Yu-xin, WANG Shu-shan. Armor-piercing experiment on fragment against sandwich plate with fiber reinforced composite cores. Acta Materiae Compositae Sinica, 2012, 29(3): 72-78.

    [15] XU Yu-xin, WANG Shu-shan. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel. Journal of Vibration and Shock, 2011, 30(5): 192-195.

    基于智能變形技術(shù)的火箭彈特性分析

    偏轉(zhuǎn)頭部控制是一種新概念快速響應(yīng)的控制方式。 彈頭部相對(duì)于彈軸進(jìn)行局部偏轉(zhuǎn), 并且在彈頭的迎風(fēng)面和背風(fēng)面形成壓力差從而產(chǎn)生空氣控制力, 在彈藥系統(tǒng)里, 這是一個(gè)高效并具有良好應(yīng)用前景的控制方式。 基于智能材料和結(jié)構(gòu)的彈箭頭部智能變形驅(qū)動(dòng)機(jī)構(gòu)可以使彈箭獲得額外的控制力和控制力矩, 改變彈丸在飛行過(guò)程中的空氣動(dòng)力特性, 在彈箭飛行過(guò)程中會(huì)產(chǎn)生附加的平衡角、 側(cè)滑角, 進(jìn)而產(chǎn)生機(jī)動(dòng)過(guò)載, 控制飛行姿態(tài)和飛行彈道, 并在最后時(shí)限提高彈丸的射擊精確度。 為了研究自適應(yīng)控制彈箭的特性, 利用流體力學(xué)軟件對(duì)尾翼穩(wěn)定的火箭彈進(jìn)行了數(shù)值模擬。 獲得不同頭部偏角、 不同馬赫數(shù)和不同攻角情況下的彈箭空氣動(dòng)力學(xué)特性。 結(jié)果表明, 偏轉(zhuǎn)頭部控制對(duì)彈箭的頭部具有較大的影響, 并且引起流場(chǎng)的不對(duì)稱性。 彈頭部迎風(fēng)面和背風(fēng)面的壓力差為彈箭提供較大的升力。 最后, 做彈道試驗(yàn)驗(yàn)證了仿真的研究結(jié)果。 研究結(jié)果可以為自適應(yīng)彈箭的設(shè)計(jì)及優(yōu)化提供理論基礎(chǔ), 并為智能彈藥的研究提供新思路和新方法。

    火箭彈; 智能變形技術(shù); 頭部偏轉(zhuǎn); 彈道特性

    XU Yong-jie, WANG Zhi-jun. Characteristics analysis of rocket projectile based on intelligent morphing technology. Journal of Measurement Science and Instrumentation, 2015, 6(3): 205-211. [

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.001]

    XU Yong-jie (yongqiang515@126.com)

    1674-8042(2015)03-0205-07 doi: 10.3969/j.issn.1674-8042.2015.03.001

    Received date: 2015-05-15

    CLD number: TJ415 Document code: A

    猜你喜歡
    彈箭背風(fēng)面王志軍
    TSCL-SQL:Two-Stage Curriculum Learning Framework for Text-to-SQL
    王志軍 油畫(huà)作品
    3D模型在彈箭拆裝實(shí)訓(xùn)課程教學(xué)實(shí)踐過(guò)程的應(yīng)用
    旋轉(zhuǎn)尾翼彈馬格努斯效應(yīng)數(shù)值模擬
    偏轉(zhuǎn)頭彈箭飛行特性
    非均勻等離子體Ka-Band傳輸性能中繼法優(yōu)化研究
    高超聲速風(fēng)洞子母彈大迎角拋殼投放試驗(yàn)
    高壓輸電鐵塔塔身背風(fēng)面風(fēng)荷載遮擋效應(yīng)研究
    Optimization of projectile aerodynamic parameters based on hybrid genetic algorithm
    Study on the impact of particle perturbation on yaw characteristics of aircraft at high angles of attack
    99久久精品热视频| 欧美黑人巨大hd| 成人手机av| 国产单亲对白刺激| 制服人妻中文乱码| 欧美成人午夜精品| 香蕉av资源在线| 村上凉子中文字幕在线| 淫秽高清视频在线观看| 欧美性猛交╳xxx乱大交人| 夜夜爽天天搞| 国产精品久久电影中文字幕| 不卡av一区二区三区| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区三| 午夜亚洲福利在线播放| 亚洲人与动物交配视频| 丁香六月欧美| 国产精品99久久99久久久不卡| 波多野结衣高清无吗| 丰满的人妻完整版| 亚洲av熟女| 日本撒尿小便嘘嘘汇集6| 国产探花在线观看一区二区| 欧美成人午夜精品| 丰满的人妻完整版| 欧美黑人巨大hd| 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 九色国产91popny在线| 天天一区二区日本电影三级| 一级a爱片免费观看的视频| videosex国产| 黄色片一级片一级黄色片| 亚洲人成网站高清观看| 亚洲欧美精品综合一区二区三区| 男女做爰动态图高潮gif福利片| 少妇裸体淫交视频免费看高清 | 国产亚洲av高清不卡| 午夜福利欧美成人| 日本免费a在线| 午夜老司机福利片| 亚洲精品av麻豆狂野| 亚洲 欧美 日韩 在线 免费| 深夜精品福利| 最近在线观看免费完整版| 精品久久久久久久久久久久久| 不卡av一区二区三区| 亚洲美女黄片视频| 欧美性猛交╳xxx乱大交人| 黄色片一级片一级黄色片| 脱女人内裤的视频| 91字幕亚洲| 国产黄a三级三级三级人| 欧美乱妇无乱码| 国产片内射在线| 国产精品一区二区三区四区免费观看 | 夜夜夜夜夜久久久久| 久久 成人 亚洲| 国产午夜福利久久久久久| 日韩欧美一区二区三区在线观看| 久久久久九九精品影院| 欧美一级a爱片免费观看看 | 首页视频小说图片口味搜索| 天天一区二区日本电影三级| 久久99热这里只有精品18| 大型av网站在线播放| 久久久国产成人精品二区| 国产成人精品久久二区二区免费| 午夜免费成人在线视频| 欧美日韩乱码在线| 欧美中文综合在线视频| 欧美激情久久久久久爽电影| 国产av一区二区精品久久| av视频在线观看入口| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 成人永久免费在线观看视频| 日韩欧美精品v在线| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕| 在线观看66精品国产| 在线观看一区二区三区| 岛国在线免费视频观看| 99久久综合精品五月天人人| 国产精品乱码一区二三区的特点| 国产不卡一卡二| 日日干狠狠操夜夜爽| 特大巨黑吊av在线直播| 国产精品亚洲一级av第二区| 国产精品一区二区三区四区久久| 操出白浆在线播放| 亚洲一区二区三区不卡视频| 在线观看一区二区三区| 禁无遮挡网站| 国产成人av激情在线播放| 两个人的视频大全免费| 99在线人妻在线中文字幕| 别揉我奶头~嗯~啊~动态视频| 亚洲在线自拍视频| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 国产精品久久电影中文字幕| 国产亚洲av高清不卡| 国产精品免费一区二区三区在线| av福利片在线| 香蕉久久夜色| 亚洲片人在线观看| 一级作爱视频免费观看| 久久 成人 亚洲| 亚洲av成人不卡在线观看播放网| 最近视频中文字幕2019在线8| x7x7x7水蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 久久午夜亚洲精品久久| 午夜精品一区二区三区免费看| 国产一区二区三区视频了| 亚洲国产欧洲综合997久久,| 91国产中文字幕| 精品一区二区三区av网在线观看| 亚洲 国产 在线| 极品教师在线免费播放| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 欧美乱色亚洲激情| 久久精品国产亚洲av香蕉五月| 丝袜人妻中文字幕| 欧美大码av| 国产精品98久久久久久宅男小说| 国产av不卡久久| 久久这里只有精品19| 亚洲国产日韩欧美精品在线观看 | 在线观看www视频免费| 亚洲熟妇中文字幕五十中出| 精品熟女少妇八av免费久了| 天堂av国产一区二区熟女人妻 | 成人手机av| 可以在线观看毛片的网站| 波多野结衣高清无吗| 久久人妻福利社区极品人妻图片| 精品午夜福利视频在线观看一区| 久久国产精品影院| 久久精品综合一区二区三区| 91麻豆av在线| 久久香蕉精品热| 亚洲精品美女久久av网站| 99久久国产精品久久久| 激情在线观看视频在线高清| 精品乱码久久久久久99久播| 99热6这里只有精品| 欧美乱码精品一区二区三区| 国产不卡一卡二| 日韩高清综合在线| 日韩欧美在线乱码| 丁香欧美五月| tocl精华| 在线国产一区二区在线| 男女做爰动态图高潮gif福利片| 毛片女人毛片| 日韩国内少妇激情av| 草草在线视频免费看| 青草久久国产| 亚洲自偷自拍图片 自拍| 搡老岳熟女国产| 这个男人来自地球电影免费观看| 天堂av国产一区二区熟女人妻 | 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av| 久久国产乱子伦精品免费另类| 啪啪无遮挡十八禁网站| 精品久久久久久久人妻蜜臀av| 亚洲成人精品中文字幕电影| 男插女下体视频免费在线播放| 国产1区2区3区精品| 亚洲美女黄片视频| a级毛片在线看网站| 最近最新中文字幕大全电影3| 老司机靠b影院| 中文字幕熟女人妻在线| 黄色丝袜av网址大全| 亚洲一区二区三区色噜噜| 久久久久久大精品| 国产精品永久免费网站| 国产三级中文精品| 两个人视频免费观看高清| 级片在线观看| 人人妻,人人澡人人爽秒播| 精品免费久久久久久久清纯| 日本一本二区三区精品| 亚洲美女黄片视频| 国产精华一区二区三区| 亚洲午夜理论影院| www日本黄色视频网| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 日本撒尿小便嘘嘘汇集6| 午夜激情av网站| 老汉色av国产亚洲站长工具| 成人亚洲精品av一区二区| 亚洲 欧美 日韩 在线 免费| 日日干狠狠操夜夜爽| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看| 夜夜爽天天搞| 在线观看舔阴道视频| 99久久精品热视频| 最新在线观看一区二区三区| 三级国产精品欧美在线观看 | 日韩有码中文字幕| 小说图片视频综合网站| 黄色视频,在线免费观看| www.熟女人妻精品国产| 亚洲成人精品中文字幕电影| 久99久视频精品免费| 岛国在线观看网站| 香蕉丝袜av| 欧洲精品卡2卡3卡4卡5卡区| 日本五十路高清| 国产精品久久视频播放| 久久久久久久久中文| 一区福利在线观看| 很黄的视频免费| 日本成人三级电影网站| 一个人免费在线观看电影 | 国产一级毛片七仙女欲春2| av在线天堂中文字幕| 成人18禁高潮啪啪吃奶动态图| www.自偷自拍.com| 禁无遮挡网站| 欧美日韩精品网址| 丝袜美腿诱惑在线| 最近最新中文字幕大全电影3| 国产男靠女视频免费网站| a级毛片在线看网站| 天堂av国产一区二区熟女人妻 | 国内精品久久久久久久电影| 熟女电影av网| 亚洲黑人精品在线| 亚洲一区二区三区不卡视频| 亚洲国产欧美人成| 久久热在线av| 搡老岳熟女国产| 午夜精品久久久久久毛片777| 99国产精品一区二区三区| 国产成年人精品一区二区| 久久精品国产99精品国产亚洲性色| 一边摸一边做爽爽视频免费| 大型av网站在线播放| 黄色毛片三级朝国网站| 欧美黑人精品巨大| 成人av在线播放网站| www日本在线高清视频| 亚洲熟妇熟女久久| 级片在线观看| 精华霜和精华液先用哪个| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 欧美zozozo另类| 可以在线观看毛片的网站| 亚洲美女视频黄频| 午夜福利成人在线免费观看| 免费看a级黄色片| 一本久久中文字幕| 国产黄片美女视频| 日韩欧美免费精品| 色综合婷婷激情| 国产私拍福利视频在线观看| 亚洲国产中文字幕在线视频| 村上凉子中文字幕在线| 免费在线观看亚洲国产| 久久久久久九九精品二区国产| av卡一久久| 久久亚洲国产成人精品v| 久久久久久久久久黄片| 直男gayav资源| 国产av在哪里看| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 69av精品久久久久久| 国产av麻豆久久久久久久| 久久这里只有精品中国| 日本黄色片子视频| 此物有八面人人有两片| 99久久精品国产国产毛片| 九草在线视频观看| 一夜夜www| 一级毛片aaaaaa免费看小| 成人国产麻豆网| 99热这里只有是精品在线观看| 天堂中文最新版在线下载 | 天堂av国产一区二区熟女人妻| 九九久久精品国产亚洲av麻豆| 成人鲁丝片一二三区免费| 国内精品美女久久久久久| 久久韩国三级中文字幕| 久久久久国产网址| 国产黄色小视频在线观看| 美女被艹到高潮喷水动态| 免费电影在线观看免费观看| 99久久人妻综合| 只有这里有精品99| 国产麻豆成人av免费视频| 国产老妇女一区| 一区二区三区四区激情视频 | 99国产精品一区二区蜜桃av| 欧美日本视频| 精品久久国产蜜桃| 天堂网av新在线| 精品一区二区免费观看| 蜜桃久久精品国产亚洲av| 欧美又色又爽又黄视频| 午夜激情欧美在线| 大型黄色视频在线免费观看| 简卡轻食公司| 日本黄大片高清| 99国产精品一区二区蜜桃av| 国产精品乱码一区二三区的特点| 综合色丁香网| 少妇的逼水好多| 亚洲精品色激情综合| 精品久久久久久成人av| 97人妻精品一区二区三区麻豆| 可以在线观看的亚洲视频| 国产熟女欧美一区二区| 最近手机中文字幕大全| av天堂中文字幕网| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| av在线天堂中文字幕| 欧美变态另类bdsm刘玥| 色综合站精品国产| 久久久欧美国产精品| 国产黄a三级三级三级人| 又黄又爽又刺激的免费视频.| 久久久成人免费电影| 欧美成人精品欧美一级黄| 久久人人精品亚洲av| 在线免费观看不下载黄p国产| 亚洲成人久久性| 男人的好看免费观看在线视频| 大香蕉久久网| 岛国在线免费视频观看| 九草在线视频观看| 免费搜索国产男女视频| 一个人看的www免费观看视频| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 天堂√8在线中文| 日本一本二区三区精品| 爱豆传媒免费全集在线观看| 亚洲图色成人| 男女做爰动态图高潮gif福利片| 国产精品蜜桃在线观看 | 热99re8久久精品国产| 国内精品美女久久久久久| 一本久久精品| 亚洲第一区二区三区不卡| 一级毛片我不卡| av福利片在线观看| 美女内射精品一级片tv| av福利片在线观看| 99riav亚洲国产免费| 一个人看的www免费观看视频| 一区二区三区四区激情视频 | 春色校园在线视频观看| 全区人妻精品视频| 亚洲av免费高清在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲欧美清纯卡通| 亚洲电影在线观看av| 18禁在线无遮挡免费观看视频| 日本熟妇午夜| 国产成人a∨麻豆精品| 成人高潮视频无遮挡免费网站| 国产精品女同一区二区软件| 啦啦啦韩国在线观看视频| 亚州av有码| 国产大屁股一区二区在线视频| 国产蜜桃级精品一区二区三区| 亚洲精品乱码久久久v下载方式| 久久精品久久久久久噜噜老黄 | 免费看光身美女| 我要搜黄色片| 人妻制服诱惑在线中文字幕| av卡一久久| 国语自产精品视频在线第100页| 卡戴珊不雅视频在线播放| 婷婷亚洲欧美| 亚洲精品影视一区二区三区av| 成人无遮挡网站| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 波野结衣二区三区在线| 久久久久九九精品影院| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 久久久久久久久久久免费av| videossex国产| 国产高清不卡午夜福利| 久久国内精品自在自线图片| 两个人的视频大全免费| 最近的中文字幕免费完整| 日韩人妻高清精品专区| 日韩一区二区三区影片| 久久99精品国语久久久| 国产精品蜜桃在线观看 | 国产视频内射| 亚洲精品日韩av片在线观看| 如何舔出高潮| 久久久久久伊人网av| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 亚洲丝袜综合中文字幕| 一级二级三级毛片免费看| 亚洲,欧美,日韩| 免费观看人在逋| 特级一级黄色大片| 六月丁香七月| 高清午夜精品一区二区三区 | 日本五十路高清| 美女高潮的动态| 97人妻精品一区二区三区麻豆| 老司机福利观看| 最新中文字幕久久久久| av黄色大香蕉| 国产高清视频在线观看网站| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看| 免费看光身美女| 色播亚洲综合网| 成人亚洲欧美一区二区av| 久久九九热精品免费| 12—13女人毛片做爰片一| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 成年免费大片在线观看| avwww免费| 国产在视频线在精品| 日韩欧美三级三区| 欧美变态另类bdsm刘玥| 一夜夜www| 国产白丝娇喘喷水9色精品| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 简卡轻食公司| 日本五十路高清| 国产精品伦人一区二区| 男女做爰动态图高潮gif福利片| 国产综合懂色| 九色成人免费人妻av| 午夜免费男女啪啪视频观看| а√天堂www在线а√下载| .国产精品久久| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 欧美色欧美亚洲另类二区| 亚洲精品日韩av片在线观看| 尤物成人国产欧美一区二区三区| 午夜免费男女啪啪视频观看| 舔av片在线| 熟妇人妻久久中文字幕3abv| videossex国产| 寂寞人妻少妇视频99o| 国产人妻一区二区三区在| 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 夫妻性生交免费视频一级片| 免费观看的影片在线观看| 午夜福利高清视频| 少妇猛男粗大的猛烈进出视频 | 97超碰精品成人国产| 午夜福利在线观看免费完整高清在 | 淫秽高清视频在线观看| 乱码一卡2卡4卡精品| 亚洲成人中文字幕在线播放| 久久精品国产亚洲网站| 欧美精品一区二区大全| 亚洲欧美清纯卡通| 看免费成人av毛片| av在线天堂中文字幕| 欧美潮喷喷水| 国产精品av视频在线免费观看| 精品无人区乱码1区二区| 大香蕉久久网| 国产黄片视频在线免费观看| a级一级毛片免费在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩精品有码人妻一区| 亚洲国产精品成人久久小说 | av在线播放精品| 精品久久久久久久人妻蜜臀av| 亚州av有码| 午夜久久久久精精品| 五月伊人婷婷丁香| 51国产日韩欧美| 国产爱豆传媒在线观看| 男人和女人高潮做爰伦理| .国产精品久久| 国产黄片视频在线免费观看| 麻豆一二三区av精品| 变态另类丝袜制服| 亚洲在线观看片| 九九久久精品国产亚洲av麻豆| 亚洲av电影不卡..在线观看| 婷婷色综合大香蕉| 又爽又黄无遮挡网站| 国产一区二区三区av在线 | 一区二区三区高清视频在线| 老司机影院成人| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 黄色日韩在线| 免费搜索国产男女视频| 网址你懂的国产日韩在线| 久久午夜福利片| 日本成人三级电影网站| 在线观看午夜福利视频| 精品不卡国产一区二区三区| 午夜福利在线观看吧| 小说图片视频综合网站| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| av卡一久久| 成人亚洲欧美一区二区av| 一本久久精品| 永久网站在线| 久久久国产成人免费| 在线观看av片永久免费下载| 国产麻豆成人av免费视频| 波多野结衣高清无吗| 99热这里只有是精品在线观看| 自拍偷自拍亚洲精品老妇| 夜夜夜夜夜久久久久| 国产真实伦视频高清在线观看| 午夜福利成人在线免费观看| 亚洲欧美成人综合另类久久久 | 日韩欧美在线乱码| 日日干狠狠操夜夜爽| 在线观看免费视频日本深夜| 老司机影院成人| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 亚洲成人精品中文字幕电影| 国产精品蜜桃在线观看 | 午夜福利视频1000在线观看| 欧美一区二区精品小视频在线| 热99re8久久精品国产| 91aial.com中文字幕在线观看| 人妻久久中文字幕网| 免费av毛片视频| 黄色欧美视频在线观看| 欧美性猛交黑人性爽| 亚洲性久久影院| 天天躁日日操中文字幕| 免费观看在线日韩| 精品人妻熟女av久视频| 2021天堂中文幕一二区在线观| 精品日产1卡2卡| 一区福利在线观看| 丝袜喷水一区| 成人特级av手机在线观看| 国产免费男女视频| 六月丁香七月| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 人妻制服诱惑在线中文字幕| 99久久无色码亚洲精品果冻| 99视频精品全部免费 在线| 日本一二三区视频观看| 99久久久亚洲精品蜜臀av| 人妻系列 视频| 看非洲黑人一级黄片| 久久久久久久久久久丰满| 久久久久久久久久黄片| 大又大粗又爽又黄少妇毛片口| 舔av片在线| 亚洲经典国产精华液单| 男人和女人高潮做爰伦理| 亚洲精品乱码久久久久久按摩| 99热全是精品| www日本黄色视频网| 中文字幕人妻熟人妻熟丝袜美| 亚洲熟妇中文字幕五十中出| 亚洲精华国产精华液的使用体验 | 亚洲最大成人中文| 亚洲欧美日韩卡通动漫| 高清午夜精品一区二区三区 | 在线观看av片永久免费下载| 美女高潮的动态| 搡女人真爽免费视频火全软件| 日本一本二区三区精品| 亚洲无线在线观看| 伦精品一区二区三区| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 亚洲国产精品成人久久小说 | 国产精华一区二区三区| 天堂中文最新版在线下载 | 女人被狂操c到高潮| 日本成人三级电影网站| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 久久精品国产亚洲网站| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| av又黄又爽大尺度在线免费看 | 欧美性猛交黑人性爽| 精品久久久久久久久久免费视频| 成年女人永久免费观看视频| 国产伦在线观看视频一区| 99久久无色码亚洲精品果冻| 国产成人精品久久久久久| 熟女人妻精品中文字幕| 中文欧美无线码|