劉 秋,許治良,周 軍,李 娜,畢宇安,王振中,蕭 偉(中藥制藥過程新技術(shù)國家重點實驗室,江蘇康緣藥業(yè)股份有限公司,江蘇連云港 222001)
?
銀杏二萜內(nèi)酯葡胺注射液對缺糖缺氧損傷的SH-SY5Y細(xì)胞保護(hù)作用
劉秋,許治良,周軍,李娜,畢宇安,王振中,蕭偉
(中藥制藥過程新技術(shù)國家重點實驗室,江蘇康緣藥業(yè)股份有限公司,江蘇連云港222001)
中國圖書分類號: R282.71; R284.1; R285.5; R329. 25; R845. 220. 1
摘要:目的探討銀杏二萜內(nèi)酯葡胺注射液(YXETNZ)對缺糖缺氧(oxygen-glucose deprivation,OGD)損傷的人神經(jīng)母細(xì)胞瘤細(xì)胞(SH-SY5Y)的保護(hù)作用及可能的機(jī)制。方法SHSY5Y細(xì)胞OGD損傷4 h后,與藥物一起復(fù)氧1 h,然后測定細(xì)胞存活率(CCK-8法)、caspase-3/7酶活力、細(xì)胞質(zhì)中核小體含量;蛋白質(zhì)免疫印跡檢測細(xì)胞中p-Akt、p-PKA、p-Bad蛋白量的變化。結(jié)果OGD明顯提高SH-SY5Y細(xì)胞caspase-3/7酶活力和細(xì)胞質(zhì)中核小體含量,明顯降低細(xì)胞的存活率。YXETNZ能明顯提高OGD損傷的SH-SY5Y細(xì)胞的存活率,抑制caspase-3/7酶活性,減少細(xì)胞核核小體的釋放量,上調(diào)p-Akt、p-PKA和p-Bad激酶蛋白量,提高Akt和PKA活性,保護(hù)神經(jīng)細(xì)胞。結(jié)論YXETNZ對OGD損傷的SHSY5Y細(xì)胞具有明顯的保護(hù)作用,其保護(hù)機(jī)制可能與細(xì)胞內(nèi)PI3K/Akt/Bad/caspase-3/7、cAMP/PKA/Bad/caspase-3/7細(xì)胞通路的激活有關(guān)。
關(guān)鍵詞:銀杏二萜內(nèi)酯葡胺注射液;缺糖缺氧損傷;細(xì)胞凋亡; PKA; Akt;Bad
網(wǎng)絡(luò)出版時間:2015-6-5 11:22網(wǎng)絡(luò)出版地址: http://www.cnki.net/kcms/detail/34.1086.R.20150605.1122.021.html
蕭偉(1959-),男,博士,高級工程師,研究方向:中藥新藥的研究與開發(fā),通訊作者,Tel: 0518-81152333,E-mail: kanionlunwen@163.com
缺血性腦卒中是常見多發(fā)的神經(jīng)系統(tǒng)疾病,治療的選擇性小,致死、致殘率高,可由多種原因誘發(fā)。目前已有研究表明,在缺血性腦卒中急性期,細(xì)胞生物能量代謝障礙引起的細(xì)胞去極化、興奮性神經(jīng)毒性和氧化應(yīng)激損傷為主要損害,亞急性期的損害主要是炎癥反應(yīng),因此造成的神經(jīng)細(xì)胞的壞死和凋亡是產(chǎn)生各種臨床癥狀與體征的根源,死亡的神經(jīng)元已無法修復(fù),拯救腦缺血半暗帶區(qū)神經(jīng)元的凋亡是治療腦卒中的關(guān)鍵因素[1]。銀杏二萜內(nèi)酯葡胺注射液(YXETNZ)是含銀杏內(nèi)酯B(GB,60%)、銀杏內(nèi)酯A(GA,35%)、銀杏內(nèi)酯K(GK,2%)、銀杏內(nèi)酯C(GC,2%)(Fig 1)的5類新藥,用于腦卒中的治療。研究表明銀杏二萜內(nèi)酯各單體除作為是血小板活化因子(platelet activating factor,PAF)的拮抗劑治療腦卒中外[2],GA和GB可通過抑制線粒體凋亡途徑來保護(hù)永久性腦缺血大鼠神經(jīng)元[3],GA和GB還可通過抑制NF-κB活性,降低腦缺血小鼠神經(jīng)元的炎癥和凋亡反應(yīng)發(fā)揮神經(jīng)保護(hù)作用[4-5],GK通過拮抗急性缺血性腦卒中大鼠神經(jīng)元的氧化應(yīng)激保護(hù)神經(jīng)元[6]。本研究采用SH-SY5Y細(xì)胞OGD模型模擬腦缺血性損傷,檢測YXETNZ對體外腦缺血神經(jīng)細(xì)胞的抗凋亡作用及相關(guān)的信號傳導(dǎo)通路,進(jìn)一步闡明了YXETNZ保護(hù)腦缺血損傷神經(jīng)細(xì)胞的分子機(jī)制。
Fig 1 Chemical structural formula of ginkgolides
1.1材料與儀器SH-SY5Y購自中科院上海細(xì)胞庫; RPMI 1640培養(yǎng)基、胎牛血清購自美國Gibco公司;青鏈霉素混合液購自Biotopped公司;胰蛋白酶購自美國Amresco公司; CCK-8試劑盒購自上海貝博公司; caspase-Glo3/7試劑盒購自美國Promega公司; Cell death detection ELISA購自瑞士Roche公司; p-Akt(Ser473)antibody、Akt(pan)antibody、p-PKA(Thr197)antibody、PKA C-alpha antibody、p-Bad(Ser112)antibody、p-Bad(Ser136)antibody、Bad antibody、actin antibody、HRP標(biāo)記二抗購自美國CST公司; CO2細(xì)胞培養(yǎng)箱購自美國Thermo公司;缺氧小室購自加拿大Stemcell公司;微孔板檢測系統(tǒng)Flex Station 3購自美國MD公司; ChemiDoc XRS系統(tǒng)購自美國Bio-Rad公司;銀杏二萜內(nèi)酯葡胺注射液(YXETNZ)為江蘇康緣藥業(yè)生產(chǎn),產(chǎn)品批號為130901;金納多注射液(JND)產(chǎn)品批號為H6138。
1.2方法
1.2.1細(xì)胞培養(yǎng),OGD模型和給藥SH-SY5Y細(xì)胞培養(yǎng)于RPMI 1640培養(yǎng)基(含體積分?jǐn)?shù)為10%胎牛血清,100 kU·L-1青霉素,100 mg·L-1鏈霉素)中,置于37℃,含5% CO2的細(xì)胞培養(yǎng)箱中培養(yǎng),選取對數(shù)生長期細(xì)胞進(jìn)行實驗。將SH-SYSY細(xì)胞接種至細(xì)胞板中培養(yǎng)24 h,以無糖平衡鹽溶液完全置換RPMI 1640培養(yǎng)基置于缺氧小室中,將小室用95% N2和5% CO2混合氣,以20 L·min-1的氣流速度充氣20 min以排出空氣,密封小室,將小室和對照組細(xì)胞置于37℃、5% CO2的細(xì)胞培養(yǎng)箱中。將細(xì)胞在缺氧小室中培養(yǎng)一定的時間后,取出細(xì)胞板置于細(xì)胞培養(yǎng)箱中,和YXETNZ、JND藥物一起復(fù)氧一定時間。然后進(jìn)行細(xì)胞活力、細(xì)胞凋亡和相關(guān)激酶活性的測定。
1.2.2細(xì)胞存活率的測定將SH-SY5Y細(xì)胞以每孔2×104的密度接種至96孔板中,OGD 4 h后加入終濃度為0. 39、0. 78、1. 56、3. 12、6. 25、12. 50、25. 00、50. 00 mg·L-1的YXETNZ和JND,一起復(fù)氧1 h后,采用CCK-8試劑盒,按說明書每孔加入底物10 μL,細(xì)胞培養(yǎng)箱中孵育2 h后,于450 nm處測定各組吸光度值OD450 nm,計算藥物的保護(hù)率(Effection)/% =(藥物組細(xì)胞存活率-模型組細(xì)胞存活率)/模型組細(xì)胞存活率×100%。應(yīng)用GraphPad Prism 5軟件計算藥物的EC50值,同時確定藥物最佳給藥劑量。
1.2.3 caspase-3/7活性的測定將SH-SY5Y細(xì)胞以每孔2×104的密度接種至96孔底部不透明白板中,OGD 4 h后分別加入終濃度為25 mg·L-1的藥物,一起復(fù)氧培養(yǎng)1 h,應(yīng)用caspase-Glo3/7試劑盒,參考說明書每孔加入100 μL的酶作用底物,室溫孵育30 min后,用微孔板檢測系統(tǒng)Flex Station 3讀取各組luminescence值。
1.2.4細(xì)胞質(zhì)中核小體含量的測定將SH-SY5Y細(xì)胞以每孔2×104的密度接種至96孔板中,OGD 4 h后分別加入終濃度為25 mg·L-1的藥物,一起復(fù)氧培養(yǎng)1 h,應(yīng)用Cell death detection ELISA試劑盒,參考說明書,測定細(xì)胞胞質(zhì)中核小體的含量。將各組細(xì)胞室溫裂解30 min后,200×g離心10 min,取上清,與生物素標(biāo)記的抗組蛋白抗體和HRP標(biāo)記的抗DNA抗體混合后加入到包被有鏈霉親和素的酶標(biāo)板中,室溫震蕩孵育2 h,洗滌酶標(biāo)板,加入顯色底物后用微孔板檢測系統(tǒng)測定405 nm處各孔的吸光度,計算各組細(xì)胞胞質(zhì)中核小體的含量,濃縮因子(Enrichment factor)=(OD405 nm藥物組-OD405 nm空白組)/(OD405 nm對照組-OD405 nm空白組)。
1.2.5 Western blot檢測蛋白質(zhì)水平將SH-SY5Y細(xì)胞以每孔1×106的密度接種于6孔板中,收集各組細(xì)胞,加入蛋白裂解液提取總蛋白,應(yīng)用BCA法測定樣品蛋白濃度。經(jīng)SDS-PAGE電泳后,電轉(zhuǎn)蛋白至PVDF膜,封閉,分別加入1∶1 000稀釋的兔抗人的一抗,4℃孵育過夜,TBST洗滌3次,加入HRP標(biāo)記的羊抗兔二抗(1∶3 000)溶液室溫孵育2 h后洗滌膜,ECL法顯影,應(yīng)用ChemiDoc XRS系統(tǒng)拍照,采用Gel-Pro analyzer 4圖像分析軟件進(jìn)行顯影條帶灰度值分析。1.2.6統(tǒng)計學(xué)分析所有數(shù)據(jù)以±s表示,采用GraphPad Prism 5軟件進(jìn)行統(tǒng)計學(xué)處理,One-way ANOVA分析比較各組均數(shù)之間的差異。
2.1 YXETNZ明顯提高OGD細(xì)胞的存活率應(yīng)用CCK-8試劑盒測定OGD 1、2、4、6、8、10 h時SHSY5Y細(xì)胞活力的結(jié)果顯示,與對照組相比,OGD 4 h組細(xì)胞存活率降低至54. 07%(Fig 2A)。隨著OGD時間的延長,SH-SY5Y細(xì)胞存活率進(jìn)一步下降,OGD 10 h后,細(xì)胞存活率只有18. 68%,由結(jié)果看出氧糖剝奪可明顯造成神經(jīng)細(xì)胞的損傷,SHSY5Y細(xì)胞OGD 4 h為最佳氧糖剝離時間點。將細(xì)胞OGD 4 h,加入不同濃度藥物一起復(fù)氧1 h,結(jié)果顯示,YXETNZ可明顯提高OGD損傷細(xì)胞的存活率(Fig 2B),且其保護(hù)作用隨濃度升高而升高,呈濃度依賴性,EC50值分別為2. 906、3. 251 mg·L-1,同時確定最佳給藥濃度為25 mg·L-1。
2.2 YXETNZ抑制OGD誘導(dǎo)的SH-SY5Y細(xì)胞的凋亡為了明確YXETNZ對細(xì)胞凋亡的抑制作用,本研究檢測了細(xì)胞凋亡指標(biāo)caspase-3/7酶活力和細(xì)胞質(zhì)histone-DNA復(fù)合小體含量。實驗結(jié)果顯示,與對照組相比,SH-SY5Y細(xì)胞OGD損傷后,caspase-3/7酶活力和細(xì)胞質(zhì)中核小體含量明顯升高(Fig 3A、B),YXETNZ可明顯降低caspase-3/7酶活力和抑制細(xì)胞核中核小體向細(xì)胞質(zhì)中釋放,抑制OGD誘導(dǎo)的SH-SY5Y細(xì)胞的凋亡。
Fig 2 Effects of YXETNZ on improvement of the viabilities of SH-SY5Y cells damaged by OGD(±s,n =4)A: The cell viabilities of SH-SY5Y cells damaged by OGD for different times; B: Concentration-dependent improvement of cell viabilities of the OGD-induced SH-SY5Y cells treated with YXETNZ and JND.
2.3 YXETNZ激活A(yù)kt信號通路Akt信號通路是對神經(jīng)細(xì)胞有保護(hù)作用的信號通路,本研究檢測了YXETNZ對此信號通路的影響。蛋白質(zhì)分析結(jié)果顯示,與OGD組相比,YXETNZ組磷酸化的Akt(Ser473)蛋白質(zhì)水平及下游磷酸化的Bad(Ser136)蛋白質(zhì)水平明顯升高,各組Akt總蛋白質(zhì)和Bad總蛋白質(zhì)無差異(Fig 4)。說明YXETNZ能通過活化Akt通路保護(hù)神經(jīng)細(xì)胞,并通過磷酸化下游的Bad蛋白質(zhì)抑制其活性,抑制細(xì)胞凋亡。
2.4 YXETNZ激活PKA信號通路本研究檢測了YXETNZ對PKA信號通路的影響。蛋白質(zhì)分析結(jié)果顯示,與OGD組相比,YXETNZ組中磷酸化PKA(Thr197)及PKA下游的磷酸化的Bad(Ser112)蛋白質(zhì)水平明顯升高,各組PKA總蛋白質(zhì)和Bad總蛋白質(zhì)無差異(Fig 5)。說明YXETNZ能通過活化PKA信號通路抑制凋亡保護(hù)神經(jīng)細(xì)胞。
Fig 3 Effects of YXETNZ on inhibition of apoptosis of SH-SY5Y cells induced by OGD(±s,n =3)
缺血性腦卒中是常見多發(fā)的神經(jīng)系統(tǒng)性疾病,約占腦卒中的60%~80%[7],是世界范圍內(nèi)危害人 類健康的重要疾病之一。SH-SY5Y細(xì)胞的OGD模型是模擬缺血性腦卒中的經(jīng)典模型,已成為離體水平研究腦缺血損傷機(jī)制及藥物作用的重要手段。SH-SY5Y細(xì)胞OGD損傷后,細(xì)胞活性明顯降低,細(xì)胞凋亡水平明顯增加。YXETNZ可濃度依賴性地提高OGD損傷神經(jīng)細(xì)胞的活性,明顯降低OGD神經(jīng)細(xì)胞的凋亡。JND是以銀杏萜類內(nèi)酯、銀杏黃酮類即銀杏葉提取物為主要成分的注射液,雖然銀杏黃酮可抑制腦缺血細(xì)胞凋亡[8],但對于PI3K/Akt/Bad、PKA/Bad通路的活化,YXETNZ作用明顯優(yōu)于JND,這可能與其銀杏二萜內(nèi)酯含量高于JND有關(guān)。
Fig 4 Protein levels of the OGD-induced SH-SY5Y cells treated with YXETNZ(±s,n =3)A: Protein levels of p-Akt(Ser473)and p-Bad(ser136); B-C: The protein levels quantified by band gray-value ratio to actin; B: p-Akt(Ser473); C: p-Bad(Ser136).**P<0. 01 vs OGD group.
腦缺血神經(jīng)細(xì)胞凋亡主要通過外源性死亡受體通路、內(nèi)源性線粒體通路和內(nèi)質(zhì)網(wǎng)通路進(jìn)行信號傳導(dǎo)[9]。當(dāng)神經(jīng)細(xì)胞發(fā)生氧糖剝奪時,線粒體ATP能量代謝障礙,線粒體膜通透性增加,導(dǎo)致細(xì)胞色素C由線粒體內(nèi)膜釋放入細(xì)胞質(zhì)中[10],并與Apaf-1、 procaspase-9蛋白形成復(fù)合物,此復(fù)合物促使procaspase-9從沒有活性的酶原轉(zhuǎn)變成活化狀態(tài)[11],隨后caspase-9活化caspase-3執(zhí)行凋亡程序。研究表明Bad、Bcl-2、Bcl-xL等凋亡相關(guān)Bcl-2家族蛋白在腦缺血線粒體凋亡信號傳導(dǎo)中發(fā)揮重要作用[9]。當(dāng)神經(jīng)細(xì)胞發(fā)生缺血損傷時,Bad由磷酸化的無活性狀態(tài)去磷酸化激活,并與14-3-3分子伴侶蛋白解離轉(zhuǎn)移到線粒體外膜上,與Bcl-2、Bcl-xL結(jié)合抑制其的抗凋亡活性,促進(jìn)線粒體膜去極化,增強膜的通透性,促進(jìn)細(xì)胞色素C的釋放誘導(dǎo)細(xì)胞凋亡[12]。當(dāng)Bad的Ser112、Ser136或Ser155殘基磷酸化時,就能與14-3-3蛋白形成復(fù)合物,抑制Bad與Bcl-2/BclxL結(jié)合,促進(jìn)細(xì)胞存活[13-14]。
Fig 5 Protein levels of the OGD-induced SH-SY5Y cells treated with YXETNZ(±s,n =3)A: Protein levels of p-PKA(Thr197)and p-Bad(Ser112); B-C: The protein levels quantified by band gray-value ratio to actin; B: p-PKA(Thr197); C: p-Bad(Ser112).*P<0. 05,**P<0. 01 vs OGD group.
PI3K/Akt通路和PKA通路是機(jī)體內(nèi)調(diào)控細(xì)胞存活、凋亡、生長等多種生理功能的激酶傳導(dǎo)通路。研究報道活化的PI3K/Akt、PKA通路均可通過磷酸化Bad抑制腦卒中神經(jīng)細(xì)胞的凋亡損傷[9,15],Akt磷酸化Bad的Ser136殘基,PKA磷酸化Bad的Ser112和Ser155殘基[13,16-18]。由本研究結(jié)果看出,銀杏二萜內(nèi)酯葡胺注射液可磷酸化激活OGD損傷SH-SY5Y細(xì)胞Akt和PKA激酶,分別促進(jìn)Bad(Ser136)、Bad(Ser112)磷酸化,通過調(diào)控線粒體凋亡途徑下調(diào)caspase-3/7酶活力促進(jìn)在腦缺血條件下神經(jīng)細(xì)胞的存活。銀杏二萜內(nèi)酯葡胺注射液激活PI3K/Akt/Bad/caspase-3/7和cAMP/PKA/Bad/caspase-3/7通路是其除了通過PAF受體拮抗抑制血栓形成之外,在缺血性腦卒中治療過程中發(fā)揮作用的重要機(jī)制之一。
參考文獻(xiàn):
[1]Fann D Y,Lee S Y,Manzanero S,et al.Pathogenesis of acute stroke and the role of inflammasomes[J].Ageing Res Rev,2013,12(4): 941-66.
[2]Koch E.Inhibition of platelet activating factor(PAF)-induced aggregation of human thrombocytes by ginkgolides: considerations on possible bleeding complications after oral intake of Ginkgo biloba extracts[J].Phytomedicine,2005,12(1-2): 10-6.
[3]Wang X,Jiang C M,Wan H Y,et al.Neuroprotection against permanent focal cerebral ischemia by ginkgolides A and B is associated with obstruction of the mitochondrial apoptotic pathway via inhibition of c-Jun N-terminal kinase in rats[J].J Neurosci Res,2014,92(2): 232-42.
[4]Gu J H,Ge J B,Li M,et al.Inhibition of NF-kappaB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury[J].Eur J Pharm Sci,2012,47(4): 652-60.
[5]葛建彬,顧錦華,李梅,等.銀杏內(nèi)酯A對小鼠腦缺血/再灌注損傷的保護(hù)作用及其抑制NF-κB信號通路下調(diào)p53、Caspase-3表達(dá)的機(jī)制[J].中國藥理學(xué)通報,2012,28(8): 1105-10.
[5]Ge J B,Gu J H,Li M,et al.Neuroprotective effects of gikgolide A on a mouse model of transient focal cerebral ischemia associated with inhibition of NF-κB signaling pathway and down-regulation of the levels of p53 and Caspase-3[J].Chin Pharmacol Bull,2012,28(8): 1105-10.
[6]Ma S,Yin H,Chen L,et al.Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats[J].J Nat Med,2012,66(1): 25-31.
[7]Agudo-Lopez A,Miguel B G,F(xiàn)ernandez I,et al.Involvement of mitochondria on neuroprotective effect of sphingosine-1-phosphate in cell death in an in vitro model of brain ischemia[J].Neurosci Lett,2010,470(2): 130-3.
[8]王海波,殷淑蘭,林靜,等.鼠腦缺血后再灌注c-fos基因表達(dá)及銀杏黃酮的影響[J].中華老年心腦血管病雜志,2005,2(5): 339-42.
[8]Wang H B,Yin S L,Lin J,et al.Study on the effects of EGB on the expression of c-fos gene in rat brain after ischemia and reperfusion[J].Chin J Geriatr Cardiov Cerebrov Dis,2005,2(5):339-42.
[9]Nakka V P,Gusain A,Mehta S L,et al.Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities[J].Mol Neurobiol,2008,37(1):7-38.
[10]Sugawara T,F(xiàn)ujimura M,Morita-Fujimura Y,et al.Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia[J].J Neurosci,1999,19(22): RC39.
[11]Krajewski S,Krajewska M,Ellerby L M,et al.Release of caspase -9 from mitochondria during neuronal apoptosis and cerebral ischemia[J].Proc Natl Acad Sci USA,1999,96(10): 5752-7.
[12]Zha J,Harada H,Yang E,et al.Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)[J].Cell,1996,87(4): 619-28.
[13]Yang X,Liu L,Sternberg D,et al.The FLT3 internal tandem duplication mutation prevents apoptosis in interleukin-3-deprived BaF3 cells due to protein kinase A and ribosomal S6 kinase 1-mediated BAD phosphorylation at serine 112[J].Cancer Res,2005,65(16): 7338-47.
[14]Yin H,Chao L,Chao J.Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways[J].J Biol Chem,2005,280(9): 8022-30.
[15]Chan P H.Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke[J].Ann N Y Acad Sci,2005,1042:203-9.
[16]Datta S R,Dudek H,Tao X,et al.Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery[J].Cell,1997,91(2): 231-41.
[17]Datta S R,Brunet A,Greenberg M E.Cellular survival: a play in three Akts[J].Genes Dev,1999,13(22): 2905-27.
[18]Harada H,Becknell B,Wilm M,et al.Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A[J].Mol Cell,1999,3(4): 413-22.
Neuroprotective effects of YXETNZ injection on SH-SY5Y cells against injury induced by oxygen-glucose deprivation
LIU Qiu,XU Zhi-liang,ZHOU Jun,LI Na,BI Yu-an,WANG Zhen-zhong,XIAO Wei
(State Key Laboratory of New Pharmaceutical Process for Traditional Chinese Medicine,Jiangsu Kanion Pharmaceutical Co.Ltd,Lianyungang Jiangsu 222001,China)
Abstract:Aim To investigate the protective effects of YXETNZ injection on SH-SY5Y cells damaged by oxygen-glucose deprivation(OGD),and explore its functional mechanisms.Methods After 4 h of OGD, the cells were treated with 25 mg·L-1drugs for 1 h.Subsequently,cell viabilities were measured by cell counting kit-8(CCK-8 kit)and cell apoptosis was measured by caspase-3/7 assay kit according to manu-facturer’s instructions.Furthermore,cell death was also detected by ELISA.The levels of phospho-Akt,phospho-PKA,phospho-Bad were evaluated by western blot.Results Oxygen-glucose deprivation significantly decreased the cell viabilities of SH-SY5Y cells,while YXETNZ injection significantly increased cell viabilities,phospho-Akt,phospho-PKA and phospho-Bad.Furthermore,YXETNZ injection also reduced the activities of caspase-3/7 and cytoplasmic histone-associated-DNA-fragments contents.Conclusion Our researches demonstrat that YXETNZ injection shows good neuroprotective effects on SH-SY5Y cells after oxygenglucose deprivation.The underlying mechanisms may be associated with activation of PI3K/Akt/Bad/caspase-3/7,cAMP/PKA/Bad/caspase-3/7 signaling pathway.
Key words:YXETNZ injection; oxygen-glucose deprivation; apoptosis; PKA; Akt; Bad
基金項目:現(xiàn)代中藥創(chuàng)新集群與數(shù)字制藥技術(shù)平臺(No 2013ZX09402203);國家工信部重大科技成果轉(zhuǎn)化項目
作者簡介:劉秋(1988-),女,碩士,助理研究員,研究方向:藥物分子藥理學(xué),E-mail: l.q1988@163.com;
收稿日期:2015-02-20,修回日期:2015-04-02
文獻(xiàn)標(biāo)志碼:A
文章編號:1001-1978(2015)07-0994-06
doi:10.3969/j.issn.1001-1978.2015.07.021