郭楠楠,陳學(xué)林,張 繼,陳金元,朱愿軍,丁映童
(西北師范大學(xué)生命科學(xué)學(xué)院,蘭州730070)
檉柳組培苗抗氧化酶及滲透調(diào)節(jié)物質(zhì)對(duì)NaCl脅迫的響應(yīng)
郭楠楠,陳學(xué)林*,張 繼,陳金元,朱愿軍,丁映童
(西北師范大學(xué)生命科學(xué)學(xué)院,蘭州730070)
以檉柳種子為材料,利用組培方法建立其無菌離體培養(yǎng)體系而獲得組培苗。向培養(yǎng)基(MS+1.0mg/L 6-BA+0.1mg/L NAA)中添加不同濃度NaCl(0、50、80、100、120、150和200mmol/L)建立脅迫條件,測定各濃度NaCl脅迫下檉柳組培苗抗氧化酶活性、滲透調(diào)節(jié)物質(zhì)含量、質(zhì)膜透性及超氧陰離子(O-·2)生成速率等的變化,探討檉柳組培苗應(yīng)對(duì)NaCl脅迫的生理機(jī)制。結(jié)果顯示:(1)隨著NaCl脅迫濃度的增加,檉柳組培苗超氧化物歧化酶(SOD)和過氧化物酶(POD)活性表現(xiàn)出先增加后降低的趨勢,并均在100mmol/L NaCl的脅迫下達(dá)到最大值,而抗壞血酸過氧化物酶(APX)活性則表現(xiàn)出逐漸下降的趨勢;(2)隨著NaCl脅迫濃度的增加,組培苗體內(nèi)有機(jī)滲透調(diào)節(jié)物質(zhì)游離脯氨酸(Pro)、可溶性蛋白(Pr)和可溶性糖的含量逐漸升高且顯著高于同期對(duì)照,在200mmol/L濃度下分別比對(duì)照顯著增加53.77%、47.38%和67.65%;(3)組培苗過氧化氫(H2O2)、超氧陰離子(O-·2)生成速率、丙二醛(MDA)含量以及細(xì)胞質(zhì)膜透性也隨著NaCl脅迫濃度的增加均表現(xiàn)出逐漸增加的趨勢且顯著高于同期對(duì)照,在200mmol/L濃度下分別比對(duì)照顯著增加36.42%、58.71%、82.60%和42.54%。研究表明,檉柳組培苗抗氧化酶系統(tǒng)在低濃度NaCl(≤100mmol/L)脅迫下表現(xiàn)出良好的活性氧清除活性,而其體內(nèi)滲透調(diào)節(jié)物質(zhì)在各濃度脅迫下均發(fā)揮著積極的調(diào)節(jié)作用,從而使檉柳表現(xiàn)出較強(qiáng)的耐鹽性。
檉柳;組培苗;鹽脅迫;抗氧化酶系統(tǒng);滲透調(diào)節(jié)物質(zhì)
檉柳(Tamarix chinensis Lour.)是檉柳科(Tamaricaceae)檉柳屬(Tamarix)的灌木或小喬木,廣泛分布于中國生態(tài)環(huán)境條件十分脆弱,土壤沙漠化、鹽漬化日趨嚴(yán)重的西北干旱、半干旱地區(qū),是典型的鹽生植物[1-2]。檉柳屬植物具有抗干旱、耐貧瘠、耐鹽堿、耐風(fēng)蝕沙埋、根系發(fā)達(dá)、壽命長等特性,在維持荒漠生態(tài)系統(tǒng)的生物多樣性、生態(tài)服務(wù)功能及穩(wěn)定性等方面具有重要的作用,是水土保持、荒漠化防治和土壤改良的優(yōu)良造林樹種[3],同時(shí),它還是重要的工業(yè)用材和薪材、優(yōu)良的飼料源、中藥[4]和鞣料原料,也是觀賞價(jià)值極高的景觀樹種,研究植物耐鹽性和耐鹽基因克隆的理想材料[5]。目前關(guān)于檉柳的研究主要包括組織培養(yǎng)及快繁的研究,韋小敏等[6]、韓琳娜等[7]、李先芳等[8]均對(duì)MS培養(yǎng)基附加激素6-BA和NAA檉柳不定芽的誘導(dǎo)、生根及叢生芽繁殖最佳激素水平進(jìn)行了探究,研究結(jié)果有所不同,可能與其檉柳產(chǎn)地及品種特性有關(guān)。還有對(duì)檉柳耐鹽機(jī)理方面的研究,許多學(xué)者研究了檉柳屬植物中與耐鹽有關(guān)的形態(tài)學(xué)適應(yīng)特征、泌鹽適應(yīng)機(jī)理,包括鹽腺的結(jié)構(gòu)、發(fā)育、分泌離子種類以及保護(hù)性物質(zhì)等,例如不同濃度NaCl對(duì)檉柳插穗芽萌發(fā)和新梢生長的影響,檉柳插穗單鹽脅迫水培試驗(yàn),以及對(duì)檉柳泌鹽機(jī)理和耐鹽機(jī)制進(jìn)行的專項(xiàng)研究[9-10],各項(xiàng)研究均顯示,檉柳屬植物的泌鹽腺在調(diào)節(jié)體內(nèi)離子平衡、維持滲透壓穩(wěn)定、完成正常生理活動(dòng)及提高植物耐鹽性能等方面發(fā)揮重要作用。但關(guān)于NaCl脅迫下檉柳組培苗抗鹽性及抗氧化系統(tǒng)的研究未見報(bào)道。本研究以檉柳組培苗為試材,通過測定不同濃度NaCl脅迫下檉柳組培苗抗氧化酶活性、滲透調(diào)節(jié)物質(zhì)含量、質(zhì)膜透性及超氧陰離子(O-·2)生成速率等的變化,探討檉柳組培苗應(yīng)對(duì)NaCl脅迫的生理機(jī)制,為其它的植物耐鹽生理研究及耐鹽分子生物學(xué)研究提供理論依據(jù)和參考。
1.1 實(shí)驗(yàn)材料
本實(shí)驗(yàn)以采自甘肅省金昌市的檉柳種子為材料,通過常規(guī)組培方法(溫度25℃,光照時(shí)間16h/d,光照強(qiáng)度2 000lx)待嫩芽長至1cm左右,取其芽尖,進(jìn)行無菌消毒,轉(zhuǎn)移接種在不含任何植物激素的MS培養(yǎng)基上獲得無菌苗,然后在MS+6-BA 1.0mg/L+NAA 0.1mg/L培養(yǎng)基上增殖培養(yǎng),獲得大量組培苗。
1.2 實(shí)驗(yàn)方法
1.2.1 材料處理 將生長良好的檉柳組培苗在無菌的條件下轉(zhuǎn)接在含不同濃度NaCl的MS+6-BA 1.0mg/L+NAA 0.1mg/L培養(yǎng)基上,NaCl濃度梯度為0、50、80、100、120、150、200mmol/L。培養(yǎng)基pH值均調(diào)至5.8,培養(yǎng)3d后取其幼苗用去離子水沖洗干凈并吸干水分,稱得鮮質(zhì)量測定相關(guān)指標(biāo),每個(gè)處理做3次重復(fù)。
1.2.2 生理指標(biāo)測定 SOD活性采用NBT光化學(xué)還原反應(yīng)法測定;POD活性采用愈創(chuàng)木酚比色法測定;APX活性檢測參照文獻(xiàn)[11-12],采用考馬斯亮藍(lán)G-250染色法測定可溶性蛋白含量;采用茚三酮比色法測定游離脯氨酸含量[13];可溶性糖按照李合生蒽酮比色法測定[14],采用硫代巴比妥酸比色法測定丙二醛含量;電導(dǎo)率法測定質(zhì)膜透性;超氧陰離子(O-·2)的生成參照王愛國等[15]的方法。H2O2的含量檢測參照Sergiev方法[16]。
1.3 數(shù)據(jù)統(tǒng)計(jì)
所有實(shí)驗(yàn)均做3次重復(fù),所涉及的統(tǒng)計(jì)分析均使用Excel、SPSS18.0進(jìn)行數(shù)據(jù)處理和統(tǒng)計(jì)分析,多重比較采用Duncan法。
2.1 不同濃度NaCl脅迫對(duì)檉柳組培苗抗氧化酶活性的影響
圖1結(jié)果顯示,各濃度NaCl脅迫下檉柳組培苗3種抗氧化酶(SOD、POD、APX)活性均有不同程度變化。其中,隨著NaCl濃度的增加,SOD和POD活性均呈先升后降的趨勢,均在100mmol/L時(shí)出現(xiàn)峰值,此時(shí)比CK分別顯著增加了35.17%、27.30%;而APX活性則一直呈下降趨勢,且隨著處理濃度的升高其下降幅度增大,并顯著低于對(duì)照,在NaCl濃度達(dá)到200mmol/L時(shí),其活性與對(duì)照相比顯著下降了22.11%。結(jié)果表明:檉柳抗氧化酶活性在低濃度(<100mmol/L)鹽脅迫下有相應(yīng)的適應(yīng)能力,從而使活性氧的產(chǎn)生和清除保持一種動(dòng)態(tài)平衡,減少膜脂發(fā)生過氧化;而在高濃度(>100 mmol/L)的鹽脅迫下抗氧化酶活性下降,而APX活性持續(xù)下降,說明自由基的積累增加,活性氧代謝的動(dòng)態(tài)平衡被打破,植物體受到一定的程度的傷害??梢?,抗氧化酶活性的調(diào)節(jié)是檉柳組培苗應(yīng)對(duì)鹽分脅迫的主要對(duì)策之一。
2.2 不同濃度NaCl脅迫對(duì)檉柳組培苗滲透調(diào)節(jié)物質(zhì)含量的影響
圖2結(jié)果顯示,隨NaCl濃度增加,檉柳組培苗可溶性蛋白、脯氨酸和可溶性糖含量均呈現(xiàn)逐漸上升趨勢,并顯著高于對(duì)照,如在200mmol/L NaCl脅迫下,檉柳組培苗的可溶性蛋白、脯氨酸和可溶性糖含量分別比對(duì)照顯著增加了47.38%、53.77%和67.65%。說明不同濃度鹽脅迫下檉柳組培苗均能通過增加可溶性蛋白、脯氨酸和可溶性糖含量來加強(qiáng)其滲透調(diào)節(jié)能力,并以可溶性糖為主??梢?,滲透調(diào)節(jié)物質(zhì)的積累是檉柳組培苗應(yīng)對(duì)鹽分脅迫的另一主要對(duì)策,主要通過調(diào)節(jié)細(xì)胞內(nèi)的滲透壓來維持細(xì)胞滲透平衡,在整個(gè)脅迫過程中對(duì)檉柳組培苗起著積極的滲透調(diào)節(jié)作用;當(dāng)其受到鹽分脅迫時(shí)滲透調(diào)節(jié)物質(zhì)含量增加,在一定程度上反映了檉柳組培苗受脅迫程度和組培苗對(duì)鹽分脅迫的忍受和抵抗能力。
2.3 不同濃度NaCl脅迫對(duì)檉柳組培苗氧自由基產(chǎn)生速率和H2O2含量的影響
從圖3可以看出,隨著NaCl脅迫濃度的增加,檉柳組培苗的超氧陰離子產(chǎn)生速率和過氧化氫含量呈現(xiàn)明顯增加的趨勢,且顯著高于對(duì)照;當(dāng)NaCl濃度達(dá)到200mmol/L時(shí),組培苗的超氧陰離子產(chǎn)生速率和過氧化氫含量比對(duì)照分別顯著增加了58.71%、36.42%。說明隨著NaCl脅迫濃度的升高,抗氧化酶對(duì)活性氧的清除與O-·2和H2O2等活性氧的產(chǎn)生積累之間的平衡被打破,最終表現(xiàn)為抗氧化酶的活性逐漸下降,從而超氧陰離子、過氧化氫等代謝產(chǎn)物的含量逐漸增加,對(duì)組培苗個(gè)體產(chǎn)生不利的影響,甚至有傷害作用。
2.4 不同濃度NaCl脅迫對(duì)檉柳組培苗丙二醛含量的影響
圖4結(jié)果顯示,在不同濃度NaCl脅迫下,檉柳組培苗的MDA含量和質(zhì)膜透性與對(duì)照相比均顯著增加,并隨鹽脅迫濃度呈現(xiàn)逐漸增加趨勢;如在NaCl濃度達(dá)到200mmol/L時(shí),組培苗的MDA含量和質(zhì)膜透性與對(duì)照相比分別顯著增加了82.60%和42.54%。說明隨著鹽脅迫程度的加深,組培苗體內(nèi)不斷有大量的自由基積累,并且與膜質(zhì)發(fā)生了過氧化反應(yīng),對(duì)生物膜造成了嚴(yán)重的破壞,膜的通透性隨之增加,植物細(xì)胞受到不同程度的傷害,導(dǎo)致代謝紊亂,生長明顯衰退。從而反映出不同濃度鹽脅迫下檉柳組培苗膜脂過氧化程度和系統(tǒng)受傷害程度。
植物在鹽脅迫條件下,體內(nèi)保護(hù)性酶(SOD、POD、APX)能相互協(xié)調(diào)以降低植物體內(nèi)氧自由基水平,維持植物體正常生長、代謝。鹽脅迫條件下,紅砂植株的活性氧傷害主要依靠SOD、POD、APX等抗氧化酶的協(xié)調(diào)來防御[17];洋甘菊體內(nèi)抗氧化酶活性的增加可清除由于NaCl脅迫產(chǎn)生的過量活性氧[18];低濃度鹽處理下,多枝檉柳可通過提高抗氧化酶活性來清除多余的活性氧自由基,減少M(fèi)DA對(duì)生物膜的氧化損傷[19]。所以抗氧化酶活性的高低既是對(duì)環(huán)境中是否存在活性氧誘因的體現(xiàn),又是植物體在活性氧誘導(dǎo)下如何啟動(dòng)自身防御機(jī)制的反映[20-21]。SOD是活性氧清除反應(yīng)中一種重要酶,在保護(hù)細(xì)胞免受氧化損傷方面發(fā)揮重要作用。SOD使植物體清除自由基的功能得以維持,從而使植物細(xì)胞免受毒害[22-24]。本研究發(fā)現(xiàn),檉柳組培苗中POD和SOD的活性均隨NaCl脅迫濃度的增加呈先升高后降低的變化趨勢,而其葉片APX活性隨NaCl處理濃度的增加而降低,這與脅迫下氧自由基的積累有關(guān)。
植物細(xì)胞的滲透調(diào)節(jié)作用是植物適應(yīng)環(huán)境,增強(qiáng)抗逆性的基礎(chǔ),也是植物對(duì)鹽分和水分脅迫的重要適應(yīng)手段之一。大多數(shù)作物遭受環(huán)境脅迫時(shí)在體內(nèi)積累可溶性物質(zhì)如可溶性蛋白和可溶性糖等,它們對(duì)調(diào)節(jié)滲透均具有重要的作用[25-27]。本研究表明,隨著NaCl脅迫濃度的增加,可溶性蛋白、游離脯氨酸以及可溶性糖這些滲透調(diào)節(jié)物質(zhì)含量隨著脅迫程度增大而顯著增加,其中可溶性糖與對(duì)照相比極顯著增加,這與王聰?shù)龋?8]實(shí)驗(yàn)結(jié)果一致,從而表明滲透調(diào)節(jié)物質(zhì)在鹽脅迫適應(yīng)過程中起著重要作用。檉柳組培苗可通過合成和積累滲透調(diào)節(jié)物質(zhì)以適應(yīng)鹽脅迫,從而更好地調(diào)節(jié)細(xì)胞內(nèi)的滲透勢,維持水分平衡,緩解鹽脅迫對(duì)植株造成的傷害。
細(xì)胞電導(dǎo)率與受傷害程度呈正相關(guān),膜透性的大小反映細(xì)胞膜受損的程度,電導(dǎo)率越高說明細(xì)胞膜受到的傷害越大。而MDA是膜脂過氧化產(chǎn)物,常作為判斷膜脂過氧化作用的一種主要指標(biāo)。本研究發(fā)現(xiàn):隨著NaCl濃度增加,檉柳細(xì)胞電導(dǎo)率也逐漸增大,這與劉錦川的實(shí)驗(yàn)結(jié)果一致[29];同時(shí)其MDA的含量也呈緩慢上升的趨勢。MDA和電導(dǎo)率的顯著增加,表明隨著脅迫程度增強(qiáng),植物組織中活性氧增加,膜質(zhì)過氧化作用增強(qiáng),膜的穩(wěn)定性降低,細(xì)胞內(nèi)物質(zhì)大量滲漏,膜的穩(wěn)定性降低,植物體受到一定的傷害。這與李瓊等[30]對(duì)6種禾本科牧草幼苗葉片膜脂過氧化作用的研究中MDA隨鹽濃度增加呈先上升后下降的趨勢有所不同,其原因可能與不同植物對(duì)鹽脅迫的耐受機(jī)制不同有關(guān)。H2O2的積累可導(dǎo)致膜的傷害,當(dāng)細(xì)胞內(nèi)的氧分子只接受一個(gè)電子時(shí)就會(huì)轉(zhuǎn)變成,本研究中H2O2含量與產(chǎn)生速率都表現(xiàn)出增加的趨勢,這與卞彥等[31]的實(shí)驗(yàn)結(jié)果一致。鹽脅迫3d后,H2O2和大量積累,這與檉柳組培苗內(nèi)SOD和POD活性的變化密切相關(guān)。即氧化酶活性的降低,使得體內(nèi)的自由基大量積累,引起膜脂過氧化作用,從而增加了膜系統(tǒng)的破壞程度[32-33]。
綜上所述,通過對(duì)檉柳組培苗抗氧化酶、滲透調(diào)節(jié)物質(zhì)以及MDA等生理指標(biāo)的綜合分析可知,在NaCl脅迫下,滲透調(diào)節(jié)物質(zhì)可溶性蛋白、游離脯氨酸、可溶性糖含量均隨NaCl脅迫濃度的增加而在植物體內(nèi)呈明顯上升趨勢。而檉柳組培苗內(nèi)SOD和POD活性均呈先升后降的趨勢,且在100mmol/L時(shí)活性達(dá)到最大值,使NaCl脅迫下過量產(chǎn)生的H2O2和O2-·被及時(shí)清除,使細(xì)胞膜脂過氧化程度維持在較低水平,植物生長未受顯著影響??梢?,維持活性較高且相對(duì)平衡的抗氧化酶系統(tǒng)以及較強(qiáng)的滲透調(diào)節(jié)物質(zhì)對(duì)提高檉柳抗NaCl脅迫具有重要作用。
[1] BAO A M(包安明),CHEN Y H(陳云浩),SHI J K(史建康),et al.Study on the temporal and spatial characteristics of fractal of land use types in arid area:Taking Tarim river basin as an example[J].Arid Land Geography(干旱區(qū)地理),2007,30(1):108-114(in Chinese).
[2] FU A H(付愛紅),CHEN Y N(陳亞寧),LI W H(李衛(wèi)紅).Stems water potential of Tamarix ramosissima Lbd.and influencing factors in the lower reaches of Tarim River,Xinjiang[J].Arid Land Geography(干旱區(qū)地理),2007,30(1):108-114(in Chinese).
[3] ZHANG L B(張立賓),SONG Y R(宋曰榮),WU X(吳 霞).Salt tolerance capability of Tamarix chinensis and the effect on the improvement of coastal saline soil[J].Journal of Anhui Agri.Sci.(安徽農(nóng)業(yè)科學(xué)),2008,36(13):5 424-5 426(in Chinese).
[4] LI J(李 娟),LI W Q(李瑋琪),ZHENG P(鄭 萍),et al.Phenolic compounds in branches of Tamarix rasissima[J].Chinese Materia Medica(中國中藥雜志),2014,39(11):2 047-2 050(in Chinese).
[5] ZHANG ZH Y(張志毅),LIN SH ZH(林善枝),QIAO M J(喬夢吉).Establishment of tissue culture system and research on salt tolerance mechanism of Tamarix chinensis Lour[D].Beijing Forestry University(北京林業(yè)大學(xué)),2007,(6):1-4(in Chinese).
[6] WEI X M(韋小敏),LI X F(李先芳),LI L H(李利紅),et al.Coparison on the effect of two different rapid propagation methods of Tamarix chinensis[J].Journal of Fujian Forestry Science and Technology(福建農(nóng)林科技),2006,33(3):87-91(in Chinese).
[7] HAN L N(韓琳娜),LIU H(劉 會(huì)),MA M M(馬萌萌),et al.Rapid propagation of Tamarix chinensis Lour[J].Forestry Science and Technology(林業(yè)科技開發(fā)),2009,23(3):107-109(in Chinese).
[8] LI X F(李先芳),WEI X M(韋小敏),LI L H(李利紅).Application of BA and NAA in the rapid propagationin vitro of Tamarix chinensis[J].Jouenal of Anhui Anriculture Sciences(安徽農(nóng)業(yè)科學(xué)),2009,37(10):4 396-4 398(in Chinese).
[9] PANG X A(龐新安),JIANG X(姜 喜),WANG J X(王建勛),et al.Recent progress in the research of TamarixL.in China[J].JournalofTarimUniversity(塔里木大學(xué)學(xué)報(bào)),2008,20(4):84-90(in Chinese).
[10] ZHANG D Y(張道遠(yuǎn)),YIN L K(尹林克),PAN B R(潘伯榮).A review on the study of salt glands of Tamarix[J].Acta Bot.Boreal.-Occident.Sin.(西北植物學(xué)報(bào)),2003,23(1):190-194(in Chinese).
[11] 陳建勛,王曉峰.植物生理學(xué)指導(dǎo)(第2版)[M].廣州:華南理工大學(xué)出版社,2002:24-25,64-74.
[12] NAKANO Y,ASADA K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant and Cell Physiology,1981,22:867-880.
[13] 王學(xué)奎.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高等教育出版社,2006,45-51.
[14] 李合生.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高等教育出版社,2003:112-116.
[15] LUO G H(羅廣華),WANG A G(王愛國),SHAO C B(邵從本),et al.The injury of high oxgen concentration to seeds germination and seedlings growth[J].Acta Phytophysiologica Sinica(植物生理學(xué)報(bào)),1987,13(2):161-167(in Chinese).
[16] SERGIEV I,ALEXIEVA V,KARANOV E.Effect of spermine,atrazine and combination between them on some endogenous protective systems and stress markers in plants[J].Comptes rendusde I Acadmie Bulgare Sciences,1997,51:121-124.
[17] TAN H J(譚會(huì)娟),LI X R(李新榮),ZHAO X(趙 昕),et al.Study on mechanisms of osmotic regulation of Reaumuria soongoricacallus in adapting to salt stress[J].Journal of Desert Research(中國沙漠),2011,31(5):1 119-1 123(in Chinese).
[18] TAI Y L(邰玉玲),YANG X M(楊秀梅),YUAN Y(袁 藝),et al.Effect of NaCl stress on seed germination and seedling growth,physiological index and anatomical structure of Matricaria chamomilla[J].Journal of Plant Resources and Environment(植物資源與環(huán)境學(xué)報(bào)),2013,22(2):78-85(in Chinese).
[19] LU Y(魯 艷),LEI J Q(雷加強(qiáng)),ZENG F J(曾凡江),et al.Effect of NaCl treatments on growth and eco-physiological characteristics of Tamarix ramosissima[J].Journal of Desert Research(中國沙漠),2014,34(6):1 509-1 515(in Chinese).
[20] ZHANG Y X(張義賢).Toxicity of heavy metals to Hordeum vulgare[J].Acta Scientiae Circumstantiae(環(huán)境科學(xué)學(xué)報(bào)),1997,17(2):199-205(in Chinese).
[21] LIU D Y(劉登義),WANG Y B(王友保),ZHANG X X(張徐祥),et al.Effect on sewage irrigation on wheat growth and its activate oxygen[J].Chinese Journal of Applied Ecology(應(yīng)用生態(tài)學(xué)報(bào)),2002,13(10):1 319-1 322(in Chinese).
[22] MALLICK N.Copper induced oxidative stress in the chloro-phycean microalgaChlorella vulgaris response of the antioxidant system[J].Journal of Plant Physiology,2004,161:591-597.
[23] VALENTINA M.Activities of SOD and the ascorbate glutathion cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii[J].Plant Physiology,2000,33:65-77.
[24] HAN ZH P(韓志平),GUO SH R(郭世榮),YOU X N(尤秀娜),et al.Metabolism of reactive oxygen species and contents of osmotic substances in watermelon seedlings under salinity stress[J].Acta Bot.Boreal.-Occident.Sin.(西北植物學(xué)報(bào)),2010,30(11):2 201-2 218(in Chinese).
[25] ZHU J F(朱金方),LU ZH H(陸兆華).Changes of osmotic adjusting substances in leaves of Tamarix chinensis seedlings under salt and drought stress[J].Acta Bot.Boreal.-Occident.Sin.(西北植物學(xué)報(bào)),2013,33(2):357-363(in Chinese).
[26] SONG F N(宋福南),YANG C P(楊傳平),LIU X M(劉雪梅),et al.Effect of salt stress on superoxide dismutase activity of Tamarix chinensis[J].Journal of Northeast Forestry University(東北林業(yè)大學(xué)學(xué)報(bào)),2003,13(11):24-26(in Chinese).
[27] WANG K(王 鍇),ZHANG L X(張立新),GAO M(高 梅),et al.Effect of salinity stress on growth and organic osmolytes accumulation of callus and tissue culture seedlings of two Malue[J].Acta Agriculture Boreali-Occidentalis Sinica(西北農(nóng)業(yè)學(xué)報(bào)),2013,22(2):112-118(in Chinese).
[28] WANG C(王 聰),ZHU Y L(朱月林),et al.Effect of NaCl stress on antioxidant system and osmotic regulation substances during seed filling period of two vegetable soybean cultivars[J].Acta Bot.Boreal.-Occident.Sin.(西北植物學(xué)報(bào)),2012,32(2):297-305(in Chinese).
[29] LIU J CH(劉錦川),YUN J F(云錦鳳),ZHANG L(張 磊).Physiological characteristics of three Elymus grass under NaCl stress[J].Acta Agrectir Sinica(草地學(xué)報(bào)),2010,18(5):694-697(in Chinese).
[30] LI Q(李 瓊),LIU G D(劉國道),XUN SH G Q(郇樹乾).The activities of protective enzymes of grass seedlings to long salinity and their relationship to salinity tolerance[J].Acta Ecologiae Animalis Domastici(家畜生態(tài)學(xué)報(bào)),2005,26(5):63-67(in Chinese).
[31] BIAN Y(卞 彥),TAN J K(談建康),ZHANG J L(張紀(jì)林).The contents of H2O2and nucleic acid in wheat leaves under Na-salt stress[J].Journal of Nanjing Forestry University(南京林業(yè)大學(xué)學(xué)報(bào)),2000,24(3):65-67(in Chinese).
[32] CHEN Q(陳沁),LIU Y L(劉友良),CHEN Y H(陳亞華).Relationship between active oxygen damage and tonoplast H+-ATPase activity in leaves of barley seedling under salt stress[J].Journal of Nanjing Agricultureal University(南京農(nóng)業(yè)大學(xué)學(xué)報(bào)),1998,21(3):21-25(in Chinese).
[33] LEI H L(雷紅靈),HU X L(胡雪雷),WU Y X(吳永堯).Effect of selenium on the antioxidant enzyme activity of Cardamine enshiensis
leaves[J].Journal of Huazhong University of Science and Technology(華中科技大學(xué)學(xué)報(bào)),2010,3(38):78-85(in Chinese).
(編輯:裴阿衛(wèi))
Changes in Antioxidase Activity and Osmotic Adjusting Substance of TamarixchinensisSeedlings under NaCl Stress
GUO Nannan,CHEN Xuelin*,ZHANG Ji,CHEN Jinyuan,ZHU Yuanjun,DING Yingtong
(College of Life Science,Northwest Normal University,Lanzhou 730070,China)
To obtain tissue-cultured plant,We used Tamarix chinensis seeds as materials and established their sterile solated culture system by tissue culture method.A stress condition was formed through adding different concentrations of NaCl(0,50,80,100,120,150and 200mmol/L)to the medium(MS+1.0mg/L 6-BA+0.1mg/L NAA).To explore the physiological mechanism of T.chinensis tissue-cultured plant response to NaCl-stress,We investigated the changes of activities of T.chinensis tissue-cultured plant antioxidases,contents of osmotica,plasma membrane permeability and production rate of super oxygen anion(O2-·)under different concentrations of NaCl-stress.The results indicated that:(1)The activities of superoxide dismutase(SOD)and peroxidase(POD)of T.chinensis tissue-cultured plant were rising and thengoing down as concentrations of NaCl-stress were increasing,and both at 100mmol/L NaCl-stress reached a maximum,whereas,the activity of ascorbic acid peroxidase(APX)was gradually declining.(2)The contents of osmotica such as free proline(Pro),soluble protein(Pr)and soluble sugar of tissue-cultured plant were gradually rising and significantly higher than that of the concurrent control as concentrations of NaClstress were increasing,and at 200mmol/L concentration notably increased 53.77%,47.38%and 67.65%,respectively.(3)The production rates of hydrogen peroxide(H2O2)and super oxygen anion(O-·2),content of malonic dialdehyde(MDA)and plasma membrane permeability of tissue-cultured plant were all gradually rising and significantly higher than that of the concurrent control as concentrations of NaCl-stress were increasing,and at 200mmol/L concentration notably increased 36.42%,58.71%,82.60%and 42.54%,respectively.The study confirmed that antioxidases system of T.chinensis tissue-cultured plant showed favorable active oxygen scavenging activity under a low concentration of NaCl-stress(≤100mmol/L)and the osmotica played positively regulated functions under different concentrations of NaCl-stress.Accordingly,T.chinensis showed a strong salt tolerance.
Tamarix chinensis;tissue-cultured plant;NaCl-stress;antioxidase system;osmotica
Q945.78
A
1000-4025(2015)08-1620-06
10.7606/j.issn.1000-4025.2015.08.1620
2015-03-12;修改稿收到日期:2015-06-12
國家自然科學(xué)基金(31200255);西南突發(fā)性災(zāi)害應(yīng)急與防控技術(shù)集成與示范(2012BAD20B06)
郭楠楠(1987-),女,在讀碩士研究生,主要從事系統(tǒng)與進(jìn)化植物學(xué)研究。E-mail:guonannan2014@163.com
*通信作者:陳學(xué)林,博士,教授,碩士生導(dǎo)師,主要從事系統(tǒng)與進(jìn)化植物學(xué)和種子生態(tài)學(xué)研究。E-mail:chenxuelin63@gmail.com