馮 虎,張 穎,樊秀彩,姜建福,孫海生,劉崇懷
(中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所,鄭州450009)
刺葡萄抗白腐病轉(zhuǎn)錄因子VdWRKY53基因克隆及表達(dá)
馮 虎,張 穎,樊秀彩,姜建福,孫海生,劉崇懷*
(中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所,鄭州450009)
利用同源克隆的方法,分別獲得‘刺葡萄0943’的轉(zhuǎn)錄因子VdWRKY53基因的編碼區(qū)和啟動(dòng)子區(qū)域,分析其序列特征,通過實(shí)時(shí)熒光定量檢測(cè)其對(duì)白腐病菌侵染和水楊酸誘導(dǎo)的反應(yīng),并以感病品種歐亞種‘黑比諾’為對(duì)照,分析不同種質(zhì)中轉(zhuǎn)錄因子VdWRKY53基因序列及表達(dá)差異。結(jié)果表明:‘刺葡萄0943’的VdWRKY53基因,在其編碼區(qū)和啟動(dòng)子區(qū)域都有抗病基因的序列和位點(diǎn)特征,在DNA和氨基酸水平上與‘黑比諾’VvWRKY53有5處差異,這5處氨基酸差異可能造成了其功能的差異;‘刺葡萄0943’和‘黑比諾’中的WRKY53基因啟動(dòng)子受葡萄白腐病菌和水楊酸誘導(dǎo)后表達(dá)量增加,且VdWRKY53基因表達(dá)量和趨勢(shì)不同于‘黑比諾’VvWRKY53。生物信息學(xué)分析和實(shí)時(shí)熒光定量表明,在‘刺葡萄0943’抗病途徑中VdWRKY53轉(zhuǎn)錄因子具有重要的生物學(xué)作用。
中國野生‘刺葡萄0943’;轉(zhuǎn)錄因子;WRKY53;白腐菌;啟動(dòng)子分析
葡萄是中國栽培最廣泛的果樹之一,葡萄生產(chǎn)上面臨的病害主要有炭疽病、灰霉病、白粉病和白腐病等,其中白腐病是由真菌Coniothyrium diplodiella引起的病害,是危害葡萄最嚴(yán)重的病害之一。中國是葡萄的重要起源地之一,是葡萄屬植物種類和遺傳資源最為豐富的國家[1],經(jīng)過對(duì)中國野生葡萄系統(tǒng)的研究,發(fā)現(xiàn)在這些野生種中蘊(yùn)含大量的抗性資源,刺葡萄(Vitis davidii Foex)中存在對(duì)白腐病抗性極強(qiáng)的株系[2,3]。
植物先天免疫系統(tǒng)由2個(gè)免疫反應(yīng)組成,即病原相關(guān)分子模式激發(fā)的免疫反應(yīng)(PAMP-triggered immunity,PTI)和效應(yīng)蛋白激發(fā)的免疫反應(yīng)(effector triggered immunity,ETI)。PTI途徑中包含MAPK(mitogen-activated protein kinases)途徑,MAPK途徑參與WRKY轉(zhuǎn)錄因子激活[4-6],ETI中WRKY蛋白可以和抗病蛋白(R蛋白)中的NBSLRR(Nucleotide Binding Site-Leucine-Rich Repeat)結(jié)合并參與到植物抗逆反應(yīng)[7]。PTI和ETI都屬于系統(tǒng)獲得性抗性(systemic acquired resistance,SAR),SAR是水楊酸(SA)介導(dǎo)的植物對(duì)病原菌的抗病反應(yīng),WRKY轉(zhuǎn)錄因子是SA信號(hào)傳遞過程中的重要轉(zhuǎn)錄因子。WRKY轉(zhuǎn)錄因子廣泛的參與到植物防御反應(yīng)中,其在非生物逆境中起重要作用[8-10],在生物逆境中WRKY蛋白廣泛參與抵御植物病原體的侵襲,例如細(xì)菌[11,12]、真菌[13-15]和病毒[16,17]。葡萄全基因組中屬于WRKY家族有80個(gè)成員[18]。葡萄中已有的關(guān)于WRKY基因研究表明WRKY基因在抗逆途徑中具有重要作用[19-21]。
WRKY53是WRKY類轉(zhuǎn)錄因子重要的成員之一,廣泛的參與到植物的抗逆和衰老調(diào)控過程,是衰老和病原響應(yīng)的節(jié)點(diǎn)。AtWRKY53參與SA信號(hào)途徑能夠正調(diào)控?cái)M南芥的抗細(xì)菌斑點(diǎn)病反應(yīng)[22]。過表達(dá)SlWRKY53能增強(qiáng)番茄抵抗鹽脅迫的能力[23]。過表達(dá)OsWRKY53能引起病程相關(guān)蛋白的表達(dá)并能增強(qiáng)水稻抗稻瘟病的能力[24]。At-WRKY53參與擬南芥的衰老過程并可以被雙氧水誘導(dǎo),能夠負(fù)反饋調(diào)節(jié)自己的表達(dá)[25]。擬南芥中AtMEKK1可以與AtWRKY53直接作用也可以結(jié)合到AtWRKY53啟動(dòng)子區(qū)域調(diào)節(jié)葉片衰老[6]。分析并驗(yàn)證水稻OsWRKY53啟動(dòng)子發(fā)現(xiàn)其中W-box起重要作用,說明其上游受其它WRKY轉(zhuǎn)錄因子調(diào)控[26]。AtWRKY18能與AtWRKY53互作并在擬南芥衰老調(diào)控網(wǎng)絡(luò)中起作用[27]。
本實(shí)驗(yàn)以抗葡萄白腐病的中國野生種‘刺葡萄0943’為主要試材,對(duì)照為感病歐亞種黑比諾,從序列特征、啟動(dòng)子差異、病菌和水楊酸誘導(dǎo)后WRKY53基因表達(dá)差異和變化,探討WRKY53基因在‘刺葡萄0943’抗病過程的調(diào)控機(jī)制。
1.1 材 料
本實(shí)驗(yàn)材料為中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所國家葡萄種質(zhì)資源圃保存的‘刺葡萄0943’和‘黑比諾’。針刺法接種白腐菌到‘刺葡萄0943’和‘黑比諾’成齡葉片,保溫保濕,創(chuàng)造適合白腐菌發(fā)病的條件[5]。SA噴施葉片濃度為1mg/L[28]。在0、6、9、12、24和48h分別取白腐菌和SA處理過的葉片,迅速放到液氮中速凍,存放在-80℃冰箱中準(zhǔn)備提取總RNA。
1.2 方 法
1.2.1 DNA、RNA提取和cDNA第一條鏈合成
DNA提取采用CTAB法,總RNA提取采用Bio Teke植物RNA提取試劑盒提取。用Thermo Scientific Nanodrop 1000微量紫外可見光分光光度計(jì)測(cè)量濃度并進(jìn)行瓊脂糖電泳確定RNA完整性。采用Fermentas公司的First Strand cDNA Synthesis Kit反轉(zhuǎn)錄得到cDNA第一條鏈。
1.2.2 基因及啟動(dòng)子克隆 采用同源克隆法,根據(jù)NCBI中的VvWRKY53序列,使用Vector NTI中的primer find設(shè)計(jì)引物克隆mRNA序列,上游引物為5′-ATGGAGAACATGGGAAGTTGGG-3′,下游引物為5′-TTAAAAGAATCCCAGGTGGTCGA-3′。根據(jù)VvWRKY53序列,采用Blast搜索其上游1 500bp左右序列,使用Vector NTI中primer find設(shè)計(jì)引物,上游引物為5’-CATTTTGGCTTCCTTAGCATGTG-3’,下游引物為5’-GTTCCCAACTTCCCATGTTCTCC-3’。PCR擴(kuò)增使用NEB的PhusionTM超保真酶擴(kuò)增,反應(yīng)體系為HF緩沖液10μL,2.5mmol/L dNTPs 2.5μL,模板2μL,上下游引物(10mmol/L)各2.5μL,Phusion超保真酶0.5μL,雙蒸水補(bǔ)至50μL。PCR反應(yīng)程序?yàn)?8℃預(yù)變性3min;98℃變性10s,58℃退火10s,72℃延伸30s,共31個(gè)循環(huán);最后72℃延伸10min,4℃保存。PCR產(chǎn)物經(jīng)2%瓊脂糖膠電泳,使用Omega Gel extract回收試劑盒回收擴(kuò)增產(chǎn)物,純化后產(chǎn)物使用TaKaRa的EXTaqTM聚合酶加A。PCR產(chǎn)物平末端加A反應(yīng)體系為10×buffer 2μL,2.5mmol/L Mg2+2μL,2.5mmol/L dNTPs 2μL,模板14μL;反應(yīng)程序:72℃10min。參照pGEMT-easyTM載體構(gòu)建說明書構(gòu)建Vd-WRKY49-T載體,轉(zhuǎn)化E.coli DH5α大腸桿菌進(jìn)行藍(lán)白斑篩選,挑單克隆送生工生物工程(上海)股份有限公司測(cè)序,測(cè)序引物為T7和T7Terminal通用引物。
1.2.3 基因序列和蛋白序列分析 測(cè)序結(jié)果使用Vector NTI拼接比對(duì),得到CDS序列,并使用DNAman軟件分析。VdWRKY53一級(jí)結(jié)構(gòu)分析利用瑞士生物信息學(xué)研究所(Swiss Institute of Bioinformatics,SIB)提供的ProtParam軟件[29](http://web.expasy.org/protparam/)在線分析氨基酸殘基數(shù)目和組成、蛋白質(zhì)相對(duì)分子質(zhì)量、分子式、理論等電點(diǎn)及親水性等理化性質(zhì)。二級(jí)結(jié)構(gòu)分析預(yù)測(cè)采用phyre2[30](http://www.sbg.bio.ic.ac.uk/phyre 2/html/pagecgi?id=index)。核定位信號(hào)分析預(yù)測(cè)采用NucPred(http://www.sbc.su.se/~maccallr/nucpred/cgi-bin/single.cgi)。
1.2.4 啟動(dòng)子分析 使用PLACE的Plant Cisacting Regulatory DNA Elements[31,32](http://www.dna.affrc.go.jp/PLACE/signalscan.html)預(yù)測(cè)作用元件,選取起始密碼子前‘刺葡萄0943’的1 434bp,黑比諾的1 423bp用來分析。
1.2.5 VdWRKY53實(shí)時(shí)熒光定量PCR分析 實(shí)時(shí)熒光定量的儀器為羅氏480,試劑盒選擇Biotake的SYBR Real-time PCR Premixture,正向引物5′-GGAAGTTGGGAACAAAAG-3′,反向引物5′-CTTTTGGACCAAGGATTC-3′;內(nèi)參基因?yàn)镋F1,內(nèi)參基因正向引物5′-GAACTGGGTGCTTGATAGGC-3′,反向引物5′-AACCAAAATATCCGGAGTAAAAGA-3′。反應(yīng)體系為SYBR Realtime PCR Premixture(2×)10μL,上游和下游引物各2μL,cDNA模板2μL,無菌水4μL。每個(gè)樣品設(shè)置3次重復(fù)。反應(yīng)條件為95℃預(yù)變性5min;95℃變性20s,60℃退火20s,72℃延伸20s,共45個(gè)循環(huán)。數(shù)據(jù)分析方法采用相對(duì)定量的方法,采用2-△△CT方法分析相對(duì)基因表達(dá)差異。
2.1 基因序列和蛋白序列分析
VdWRKY53與VvWRKY53核酸序列比對(duì)分析顯示(圖1),可以看出有9處差異(細(xì)線框圈的為差異點(diǎn))。VdWRKY53與VvWRKY53蛋白序列比對(duì)分析結(jié)果(圖1)可以看出,氨基酸序列存在5處差異。在氨基酸序列中‘刺葡萄0943’中68位為組氨酸(H),‘黑比諾’為谷氨酰胺(Q);‘刺葡萄0943’73位為絲氨酸(S),‘黑比諾’為甘氨酸(G);‘刺葡萄0943’78位為纈氨酸(V),‘黑比諾’為異亮氨酸(I);‘刺葡萄0943’198位為H,‘黑比諾’為Q;‘刺葡萄0943’300位為G,‘黑比諾’為精氨酸(R)。73位的S和G都是極性不帶電氨基酸,78位都是非極性氨基酸,這2個(gè)位點(diǎn)不同對(duì)氨基酸的功能影響不大?!唐咸?943’中68和198位的H為極性帶正電荷氨基酸,300位G為極性不帶電荷氨基酸;‘黑比諾’68位的G和198位的Q為極性不帶電荷氨基酸,300位的R為極性帶正電荷氨基酸。Vd-WRKY53和VvWRKY53保守域和DNA結(jié)合域完全一致,氨基酸序列的差異位點(diǎn)不在WRKY蛋白的保守域,但是氨基酸極性的改變和所帶電荷的改變可能會(huì)改變蛋白結(jié)構(gòu)。73位的S和G都是極性不帶電氨基酸,78位都是非極性氨基酸,這2個(gè)位點(diǎn)不同對(duì)氨基酸的功能影響不大?!唐咸?943’中68和198位的H為極性帶正電荷氨基酸,300位G為極性不帶電荷氨基酸;‘黑比諾’68位的G和198位的Q為極性不帶電荷氨基酸,300位的R為極性帶正電荷氨基酸。VdWRKY53和VvWRKY53保守域和DNA結(jié)合域完全一致,氨基酸序列的差異位點(diǎn)不在WRKY蛋白的保守域,但是氨基酸極性的改變和所帶電荷的改變可能會(huì)改變蛋白結(jié)構(gòu)。
VdWRKY53蛋白氨基酸組成成分如圖2所示。通過ProtParam工具分析該蛋白分子量為39 978.2Da,分子式為C1734H2678N496O562S16,原子總數(shù)為5 486個(gè),理論等電點(diǎn)為5.51,消光系數(shù)27 180(280nm),不穩(wěn)定系數(shù)56.61,即該蛋白不穩(wěn)定,總平均親水性為-0.693,為親水性蛋白。氨基酸組分中,Ser和Gly含量最高,Trp和Cys含量最低;酸性氨基酸殘基總數(shù)(Asp+Glu)為40個(gè),堿性氨基酸(Arg+Lys)為31個(gè)。
圖3為葡萄與其他植物WRKY53蛋白序列比對(duì)結(jié)果,從圖中可以看出這些WRKY53的保守域具有較高的同源性。不同植物WRKY53共有序列在VdWRKY53二級(jí)結(jié)構(gòu)預(yù)測(cè)中為α螺旋和β折疊。說明WRKY53中含有非常保守的序列,結(jié)構(gòu)決定功能,這些保守域說明不同植物中WRKY53轉(zhuǎn)錄因子具有相似功能。從圖4系統(tǒng)發(fā)育樹中可以看出親源關(guān)系的遠(yuǎn)近,葡萄聚類到一起,相比擬南芥,麻風(fēng)樹與葡萄的親源關(guān)系更近。
2.2 啟動(dòng)子分析
將啟動(dòng)子序列分別提交到PLACE網(wǎng)站進(jìn)行分析,得到分析結(jié)果與抗逆相關(guān)的順式作用元件統(tǒng)計(jì)如表1。從統(tǒng)計(jì)結(jié)果可以看出,與逆境及轉(zhuǎn)錄增強(qiáng)相關(guān)的順式作用元件共有26個(gè),如與ABA、GA、SA和JA等激素調(diào)控相關(guān)的作用元件,而已有的研究表明這些激素都參與到植物的抗逆反應(yīng)之中。2種葡萄中WRKY53啟動(dòng)子區(qū)域順式作用元件基本一致,但是在‘刺葡萄0943’中特有MYBST1和PRECONSCRHSP70A等2個(gè)順式作用元件,而‘黑比諾’中特有PYRIMIDINEBOXHVEPB1順式作用元件。MYBST1為病原菌誘發(fā)響應(yīng)元件。‘刺葡萄0943’中的CAATBOX1增強(qiáng)子則比‘黑比諾’中少1個(gè),但是CTRMCAMV35S增強(qiáng)子則比‘黑比諾’中多6個(gè)。如圖5中二者的啟動(dòng)子序列比對(duì)有2處明顯差異,一處是VvWRKY53缺失,缺失部分對(duì)應(yīng)的VdWRKY53部分多了2個(gè)CTRMCAMV35S;另一處是二者序列差異較大,Vd-WRKY53中不含順式作用元件,而VvWRKY53中含有PYRIMIDINEBOXHVEPB1、GT1GMSCAM4和兩個(gè)GT1CONSENSUS。這些預(yù)測(cè)的順式作用元件位點(diǎn)表明葡萄中的WRKY53轉(zhuǎn)錄因子極有可能參與到植物抗逆抗病反應(yīng)。兩者之間的順式作用元件存在差異,從二者的統(tǒng)計(jì)情況可以看出WRKY53啟動(dòng)子中的順式作用元件表現(xiàn)出與抗逆相關(guān),這表明WRKY53轉(zhuǎn)錄因子可能參與到葡萄的抗逆途徑中。
2.3 實(shí)時(shí)熒光定量分析
從圖6中可以看出‘刺葡萄0943’在接種白腐菌6h后,VdWRKY53表達(dá)量達(dá)到最高值,其在噴施SA之后6h表達(dá)下調(diào)隨后表達(dá)量上升,24h達(dá)到最高值?!诒戎Z’在接種白腐菌后WRKY53表達(dá)量先下降后上升,噴施SA之后6h表達(dá)量達(dá)到最高值隨后下降?!诒戎Z’和‘刺葡萄0943’在接種白腐菌和SA之后WRKY53表達(dá)趨勢(shì)不一致。WRKY53在這2種葡萄中接種白腐菌之后表達(dá)量都增加,說明WRKY53對(duì)白腐菌侵染有響應(yīng),但是2種葡萄中響應(yīng)時(shí)間及趨勢(shì)不同。
VdWRKY53和VvWRKY53二者有5個(gè)氨基酸的差異,這種差異對(duì)WRKY53在這2種葡萄中的功能到底有什么影響?‘刺葡萄0943’中68和198位的H為極性帶正電荷氨基酸,300位G為極性不帶電荷氨基酸;‘黑比諾’中68位的G和198位的Q為極性不帶電荷氨基酸,300位的R為極性帶正電荷氨基酸。VdWRKY53和VvWRKY53保守域和DNA結(jié)合域完全一致,氨基酸序列的差異位點(diǎn)不在WRKY蛋白的保守域,但是氨基酸極性的改變和所帶電荷的改變可能會(huì)改變蛋白結(jié)構(gòu)。從二維結(jié)構(gòu)分析中可以看出VdWRKY53含有3個(gè)α螺旋,5個(gè)β轉(zhuǎn)角。VdWRKY53經(jīng)過比對(duì)分析,含有典型的WRKY域,2個(gè)半胱氨酸和兩個(gè)組氨酸,VdWRKY53屬于典型的WRKY基因第II家族成員。VdWRKY53預(yù)測(cè)的核定位信號(hào)RKRK得分為0.89,定位到細(xì)胞核中。通過對(duì)比不同植物中的WRKY53并結(jié)合VdWRKY53的二級(jí)結(jié)構(gòu)預(yù)測(cè)可以看出WRKY53具有相同的保守區(qū)域,Vd-WRKY53的功能和其它植物中的WRKY53相似。
通過分析VdWRKY53和VvWRKY53啟動(dòng)子區(qū)域的與抗逆相關(guān)的作用元件,存在差異。順式作用元件,表明WRKY53基因可能參與到植物的抗逆反應(yīng)。轉(zhuǎn)錄增強(qiáng)子CTRMCAMV35S數(shù)量存在差異,‘刺葡萄0943’中比‘黑比諾’中的多6個(gè),此外‘刺葡萄0943’啟動(dòng)子序列中特異含有與抗逆相關(guān)的MYBST1和PRECONSCRHSP70A兩個(gè)作用元件,其中MYBST1是病原菌誘發(fā)響應(yīng)元件,PRECONSCRHSP70A與熱休克蛋白相關(guān)?!诒戎Z’中特異含有PYRIMIDINEBOXHVEPB1,其與GA和ABA誘導(dǎo)相關(guān)。這兩種葡萄中都含有與JA相關(guān)的T/GBOXATPIN2順式作用元件,擬南芥中已有報(bào)道表明AtWRKY53受JA的負(fù)調(diào)控[33,34]。擬南芥中AtWRKY53能負(fù)反饋調(diào)節(jié)自身表達(dá)[25],2種葡萄WRKY53啟動(dòng)子序列中都含有W-box順式作用元件WBBOXPCWRKY1、WBOXATNPR1和WBOXNTERF3,葡萄中的WRKY53可能受到自身或其他WRKY轉(zhuǎn)錄因子的調(diào)控。擬南芥中的研究發(fā)現(xiàn)AtWRKY53依賴SA途徑中的NPR1調(diào)控[35,36],ASF1MOTIFCAMV和GT1CONSENSUS順式作用元件與SA相關(guān),SA介導(dǎo)SAR反應(yīng),葡萄中WRKY53可能參與SAR途徑。ABRELATERD 1、EBOXBNNAPA、MYB1AT、MYB2CONSENSUSAT、MYBCORE、MYCATRD22、PYRIMIDINEBOXHVEPB1等順式作用元件和ABA調(diào)控相關(guān),
PTI和ETI都屬于SAR,SA介導(dǎo)SAR途徑參與植物防御反應(yīng)。‘刺葡萄0943’和‘黑比諾’葉片噴施SA和接種白腐菌之后,WRKY53在這2個(gè)葡萄中的表達(dá)趨勢(shì)不一致,二者的啟動(dòng)子序列比對(duì)有2處明顯差異,一處是VvWRKY53缺失,缺失部分對(duì)應(yīng)的VdWRKY53部分多了2個(gè)CTRMCAMV35S,VdWRKY53接種白腐菌之后表達(dá)量比VvWRKY53多可能與CTRMCAMV35S相關(guān);另一處是二者序列差異較大,VdWRKY53中不含順式作用元件,而VvWRKY53中含有2個(gè)GT1CONSENSUS,GT1CONSENSUS與SAR相關(guān),SAR通過SA介導(dǎo),這可能是VvWRKY53噴施SA之后表達(dá)量比Vd-WRKY53高的原因。
WRKY基因家族龐大,多數(shù)對(duì)逆境響應(yīng),少數(shù)WRKY轉(zhuǎn)錄因子啟動(dòng)子區(qū)域可以被自身或其他WRKY轉(zhuǎn)錄因子調(diào)節(jié)。水稻中OsWRKY13可以結(jié)合到OsWRKY13啟動(dòng)子的順式作用元件上[37]。WRKY53的調(diào)控特點(diǎn),已有的關(guān)于WRKY53的研究表明,擬南芥AtWRKY53在核中能與MAP激酶MPK4結(jié)合[38],AtMEKK1也可以與AtWRKY53直接作用,也可以結(jié)合到AtWRKY53啟動(dòng)子區(qū)域調(diào)節(jié)葉片衰老[6]。AtWRKY53在擬南芥的衰老過程能被雙氧水誘導(dǎo),可以夠負(fù)反饋調(diào)節(jié)自己的表達(dá)[25]。AtWRKY46、AtWRKY53和AtWRKY70相互作用參與擬南芥抗病途徑[22]。AtWRKY18能與AtWRKY53互作并在擬南芥衰老調(diào)控網(wǎng)絡(luò)中起作用[27]。水稻中OsWRKY53受其他WRKY轉(zhuǎn)錄因子調(diào)控[26]。在小麥和玉米中WRKY53上游調(diào)控基因有GST,在氧脅迫逆境中WRKY53調(diào)控下游ORK10和POC1的表達(dá)[39]。擬南芥中E3泛素連接酶UPL5能抑制WRKY53的表達(dá)進(jìn)而調(diào)節(jié)衰老過程[40]。在研究擬南芥抗丁香假單胞菌研究中發(fā)現(xiàn)AtWRKY53是SA途徑的下游基因,被JA和乙烯負(fù)調(diào)控[35]。擬南芥中AD蛋白能正調(diào)節(jié)WRKY53的表達(dá),同時(shí)AD蛋白可以被過氧化氫誘導(dǎo)被JA抑制[41]。VdWRKY53啟動(dòng)子中存在與上述功能相關(guān)的多種順式作用元件,如與SAR、JA、ABA、水脅迫等相關(guān)的順式作用元件。這些順式作用元件可能在VdWRKY53的調(diào)控網(wǎng)絡(luò)中起重要作用。
通過同源克隆得到‘刺葡萄0943’的Vd-WRKY53CDS序列和啟動(dòng)序列,經(jīng)過生物信息學(xué)分析基因的一級(jí)結(jié)構(gòu)、二級(jí)結(jié)構(gòu)以及啟動(dòng)子中的順式作用元件,并與‘黑比諾’中的VvWRKY53作對(duì)比得出其在抗逆途徑具有重要功能,結(jié)合擬南芥和其他物種中對(duì)WRKY53的研究可以推導(dǎo)出葡萄中WRKY53在抗逆調(diào)控中具有重要功能,實(shí)時(shí)熒光定量驗(yàn)證得出,VdWRKY53參與葡萄中SA介導(dǎo)的抗白腐病途徑。終上所述得出:VdWRKY53在葡萄抗白腐病途徑中具有重要的生物學(xué)作用。
[1] LIU CH H(劉崇懷),KONG Q SH(孔慶山).Preservation condition of China wild grape resources and advice[J].Sino-Overseas Grapevine&Wine(中外葡萄與葡萄酒),2008,(1):42-46(in Chinese).
[2] HE P CH(賀普超),WANG Y J(王躍進(jìn)),WANG G(王 剛),et al.The studies on the disease-resistance of Vitis wild species originated in China[J].Scientia Agricultura Sinica(中國農(nóng)業(yè)科學(xué)),1991,24(3):50-56(in Chinese).
[3] LIU Y,SCHIFF M,DINESH-KUMAR S P.Involvement of MEK1MAPKK,NTF6MAPK,WRKY/MYB transcription factors,COI1and CTR1in N-mediated resistance to tobacco mosaic virus[J].The Plant Journal,2004,38(5):800-809.
[4] KIM C Y,ZHANG S.Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J].The Plant Journal,2004,38(1):142-151.
[5] ZHANG Y(張 穎),SUN H SH(孫海生),F(xiàn)AN X C(樊秀彩),et al.Identification and evaluation of resistance of Vitis to grape white rot[J].Journal of Fruit Science(果樹學(xué)報(bào)),2013,30(2):191-196(in Chinese).
[6] MIAO Y,LAUN T M,SMYKOWSKI A,et al.Arabidopsis MEKK1can take a short cut:it can directly interact with senescence-related WRKY53transcription factor on the protein level and can bind to its promoter[J].Plant Molecular Biology,2007,65(1-2):63-76.
[7] CHISHOLM S T,COAKER G,B DAY,et al.Host-microbe interactions:shaping the evolution of the plant immune response[J].Cell,2006,124(4):803-814.
[8] JIANG Y,DEYHOLOS M K.Functional characterization of Arabidopsis NaCl-inducible WRKY25and WRKY33transcription factors in abiotic stresses[J].Plant Molecular Biology,2009,69(1-2):91-105.
[9] TAO Z,KOU Y,LIU H,et al.OsWRKY45alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J].Journal of Experimental Botany,2011,62(14):4 863-4 874.
[10] LI H,GUO Q,LAN X,et al.Comparative expression analysis of five WRKY genes from Tibetan hulless barley under various abiotic stresses between drought-resistant and sensitive genotype[J].Acta Physiologiae Plantarum,2014,36(4):963-973.
[11] DELLAGI A,HELIBRONN J,AVROVA A O,et al.A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp.atrosepticaand Phytophthora infestans and is coregulated with class I endochitinase expression[J].Mol Plant Microbe Interact,2000,13(10):1092-101.
[12] DESLANDES L,OLIVIER J,THEULIERES F,et al.Resistance to Ralstonia solanacearumin Arabidopsis thalianais conferred by the recessive RRS1-R gene,a member of a novel family of resistance genes[J].Proc.Natl.Acad.Sci.USA,2002,99(4):2 404-2 409.
[13] LAN A,HUANG J,ZHAO W,et al.A salicylic acid-induced rice(Oryza sativa L.)transcription factor OsWRKY77is involved in dis-ease resistance of Arabidopsis thaliana[J].Plant Biol(Stuttg),2013,15(3):452-461.
[14] LEE H,KO Y J,CHA J,et al.The C-terminal region of OsWRKY30is sufficient to confer enhanced resistance to pathogen and activate the expression of defense-related genes[J].Plant Biotechnology Reports,2013,7(3):221-230.
[15] PAN L,JIANG L.Identification and expression of the WRKY transcription factors of Carica papayain response to abiotic and biotic stresses[J].Molecular Biology Reports,2014,41(3):1 215-1 225.
[16] ZHANG C,GROSIC S,WHITHAM S A,et al.The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to soybean mosaic virus[J].Molecular Plant-Microbe Interactions,2012,25(10):1 307-1 313.
[17] LIM J H,PARK C,HUH S U,et al.Capsicum annuum WRKYb transcription factor that binds to the CaPR-10promoter functions as a positive regulator in innate immunity upon TMV infection[J].Biochemical and Biophysical Research Communications,2011,411(3):613-619.
[18] ZHANG Y,F(xiàn)ENG J C.Identification and characterization of the grape WRKY family[J].BioMed Research Nternational(online),2014,2014(1):167-203.
[19] MZID R,MARCHIVE C,BLANCARD D,et al.Overexpression of VvWRKY2in tobacco enhances broad resistance to necrotrophic fungal pathogens[J].Physiol.Plant,2007,131(3):434-447.
[20] MARCHIVE C,MZID R,DELUC L,et al.Isolation and characterization of a Vitis vinifera transcription factor,VvWRKY1,and its effect on responses to fungal pathogens in transgenic tobacco plants[J].Journal of Experimental Botany,2007,58(8):1 999-2 010.
[21] ZHU Z,SHI J,CAO J,et al.VpWRKY3,a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata[J].Plant Cell Reports,2012,31(11):2 109-2 120.
[22] HU Y,DONG Q,YU D.Arabidopsis WRKY46coordinates with WRKY70and WRKY53in basal resistance against pathogen Pseudomonas syringae[J].Plant Science,2012,185(4):288-297.
[23] LIU CH(劉 暢),NIU X L(牛向麗),LIU J K(劉繼凱),et al.Isolation and functional characterization of tomato transcription factor SlWRKY53[J].Journal of Sichuan University(Natural Science Editon)(四川大學(xué)學(xué)報(bào)·自然科學(xué)版),2013,(6):1 347-1 354(in Chinese).
[24] CHUJO T,TAKAI R,AKIMOTO-TOMIYAMA C,et al.Involvement of the elicitor-induced gene OsWRKY53in the expression of defense-related genes in rice[J].Biochimica et Biophysica Acta(BBA)-Gene Structure and Expression,2007,1 769(7-8):497-505.
[25] MIAO Y,LAUN T,ZIMMERMANN P,et al.Targets of the WRKY53transcription factor and its role during leaf senescence in Arabidopsis[J].Plant Mol.Biol.,2004,55(6):853-867.
[26] CHUJO T,SUGIOKA N,MASUDA Y,et al.Promoter analysis of the elicitor-induced WRKY gene OsWRKY53,which is involved in defense responses in rice[J].Biosci.Biotechnol.Biochem.,2009,73(8):1 901-1 904.
[27] POTSCHIN M,SCHLIENGER S,BIEKER S,et al.Senescence networking:WRKY18is an upstream regulator,a downstream target gene,and a protein interaction partner of WRKY53[J].Journal of Plant Growth Regulation,2014,33(1):106-118.
[28] MANDAL S,MALLICK N,MITRA A.Salicylic acid-induced resistance to Fusariumoxysporumf.sp.lycopersici in tomato[J].Plant Physiology and Biochemistry,2009,47(7):642-649.
[29] GASTEIGER E,HOOGLAND C,GATTIKER A,et al.A protein identification and analysis tools on the ExPASy server,in the proteomics protocols handbook[J].Biochemistry,2005,71(6):696.
[30] KELLEY L A,STERNBERG M J E.Protein structure prediction on the Web:a case study using the Phyreserver[J].Nature Protocols,2009,4(3):363-371.
[31] HIGO K,UGAWA Y,IWAMOTO M,et al.Plant cis-acting regulatory DNA elements(PLACE)database:1999[J].Nucleic Acids.Res.,1999,27(1):297-300.
[32] PRESTRIDGE D S.SIGNAL SCAN:a computer program that scans DNA sequences for eukaryotic transcriptional elements[J].Comput Appl.Biosci.,1991,7(2):203-206.
[33] XIE Z,ZHANG Z L,ZOU X,et al.Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J].Plant Physiol.,2005,137(1):176-189.
[34] MIAO Y,ZENTGRAF U.The antagonist function of Arabidopsis WRKY53and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium[J].The plant cell online,2007,19(3):819-830.
[35] MURRAY S L,INGLE R A,PETERSEN L N,et al.Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein[J].Mol Plant Microbe Interact,2007,20(11):1 431-1 438.
[36] B U,IE S.WRKY transcription factors:from DNA binding towards biological function[J].Current Opinion in Plant Biology,2004,7(5):491-498.
[37] CAI M,QIU D,YUAN T,et al.Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of Os-WRKY13,agene regulating rice disease resistance[J].Plant,Cell&Environment,2008,31(1):86-96.
[38] ISHIHAMA N,YOSHIOKA H.Post-translational regulation of WRKY transcription factors in plant immunity[J].Current Opinion in Plant Biology,2012,15(4):431-437.
[39]L V E,RM D,S W,et al.The transcriptional network of WRKY53in cereals links oxidative responses to biotic and abiotic stress inputs.[J].Functional &Integrative Genomics,2014,14(2):351-362.
[40] MIAO Y,ZENTGRAF U.A HECT E3ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53[J].The Plant Journal,2010,63(2):179-188.
[41] MIAO Y,SMYKOWSKI A,ZENTGRAF U.A novel upstream regulator of WRKY53transcription during leaf senescence in Arabidopsis thaliana[J].Plant Biol.(Stuttg),2008,10(1):110-120.
(編輯:宋亞珍)
Cloning and Expression of Transcription Factor VdWRKY53in Vitis davidii
FENG Hu,ZHANG Ying,F(xiàn)AN Xiucai,JIANG Jianfu,SUN Haisheng,LIU Chonghuai*
(Zhengzhou Fruit Research Institute,Chinese Academy of Agricultural Sciences,Zhengzhou 450009,China)
In order to clone VdWRKY53transcription factor from‘Vitis davidii 0943’,reveal the relationships between its sequence signature,gene function and the resistance to white rot fungi and reveal the molecular regulatory mechanisms of resistant germplasm preliminary,we designed primers and cloned Vd-WRY53of‘Vitis davidii 0943’based on the known homologous sequences VvWRKY53.Its expression was verified through bioinformatic analysis of genes,promoters and real-time fluorescence quantitative PCR after inoculating white rot fungi and spraying salicylic acid.The expression of WRKY53can be monitored in both‘Vitis davidii 0943’and‘Pinot Noir’grape which inoculate white rot fungi or salicylic acid by real-time fluorescence quantitative PCR verification.The CDS and promoter of the Chinese wild grape‘Vitis davidii 0943’VdWRKY53both have the resistance genes feature.At the same time VdWRKY53is different from the‘Pinot Noir’grape and the nucleic and animo acids are also different.These differences may cause different functions.VdWRKY53plays an important biological function in grape disease resistance by bioinformatic analysis and real-time fluorescence quantitative PCR.
Chinese wild grape Vitis davidii 0943;transcription factor;VdWRKY53;white rot fungi;promoter analysis
Q786;Q789
A
1000-4025(2015)08-1497-09
10.7606/j.issn.1000-4025.2015.08.1497
2015-04-23;修改稿收到日期:2015-07-21
國家自然科學(xué)基金(31201599),國家葡萄產(chǎn)業(yè)技術(shù)體系(CARS-30),中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(xiàng)經(jīng)費(fèi)(CAAS-ASTIP-2015-ZFRI)
馮 虎(1990-),男,在讀碩士研究生,主要從事葡萄抗白腐病方向研究。E-mail:fenghu01@126.com
*通信作者:劉崇懷,博士,研究員,主要從事葡萄資源育種方向研究。E-mail:liuchonghuai@caas.net.cn