• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement parameters in dynamic compaction adjacent to the slopes

    2015-02-08 09:03:04ElhamGhanbariAmirHamidi

    Elham Ghanbari,Amir Hamidi

    School of Engineering,Kharazmi University,Tehran,Iran

    Improvement parameters in dynamic compaction adjacent to the slopes

    Elham Ghanbari,Amir Hamidi*

    School of Engineering,Kharazmi University,Tehran,Iran

    A R T I C L E I N F O

    Article history:

    Received 9 December 2014

    Received in revised form

    7 February 2015

    Accepted 10 February 2015

    Available online 23 February 2015

    Dynamic compaction

    Slopes and trenches

    Crater depth

    Improvement depth

    Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils.A number of researchers have investigated experimentally and numerically the improvement parameters of soils using dynamic compaction,such as crater depth,improvement depth,and radial improvement, however,these parameters are not studied for improvement adjacent to the slopes or trenches.In this research,four different slopes with different inclinations are modeled numerically using the f nite element code ABAQUS,and impact loads of dynamic compaction are applied.The static factors of safety are kept similar for all trenches and determined numerically by application of gravity loads to the slope using strength reduction method(SRM).The analysis focuses on crater depth and improvement region which are compared to the state of f at ground.It can be observed that compacted area adjacent to the slopes is narrower and slightly away from the slope compared to the f at state.Moreover,crater depth increases with increase in slope inclination.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Dynamic compaction pioneered by Menard and Broise(1975) has been used for improvement of deep soil layers for decades.In this method,through falling a tamper of 5-30 t from 10 to 30 m height,improvement depths of 3-9 m are obtained(Lukas,1995). Soil improvement has been investigated by assessing the experimental tests like standard penetration test(SPT),cone penetration test(CPT)and pressure meter test(PMT)before and after compaction(Mayne et al.,1984;Rollins et al.,1998;Zou et al.,2005; Rollins and Kim,2010;Zekkos et al.,2013).Also numerical modeling has been performed to investigate soil improvement after compaction(Pan and Selby,2002;Lee and Gu,2004; Ghassemi et al.,2010;Mostafa,2010;Ghanbari and Hamidi, 2014).Dynamic compaction has not been applied near the slopes due to the instability problems.Zou et al.(2005)reported an application of dynamic compaction in placement of a road embankment with 41 m height made of loessial silty clay in China, wherein dynamic compaction was performed at distance of 6 m from the slope heel in soil layers.Few researchers studied the dynamic compaction process near the slopes experimentally(Zhou et al.,2010;Vahidipour,2014).To the authors’knowledge,there is rare numerical investigation of dynamic compaction near the slopes in the literature.In this study,simulation of dynamic compaction method is performed near the sandy slopes with the same initial factors of safety.

    2.Numerical modeling

    In this study,two-dimensional(2D)plain strain slope models are used in a f nite element code,ABAQUS.Slope models consist of 4 different slope inclinations of 45°,60°,75°and 90°with a height of 6 m and appropriate compaction energy of 4000 kN m. Compaction is performed in two steps:the f rst step is application of gravity load to the whole model in a static manner,and the second one is to apply impact load of the tamper in an implicit dynamic analysis,wherein the tamper is simulated as a rigid body free-falling from a speci f ed height.The latter method was used in previous studies(Pourjenabi et al.,2013;Ghanbari and Hamidi, 2014).In order to keep the similar stability conditions of slopes, the static factors of safety for 4 slope models are kept constant as 1.2,and for this purpose friction angle of soil models is kept to be 30°as a typical value for loose sandy soils and cohesion of soil is changed.Indeed,the soil cohesion has more in f uence on the factor of safety of the slope,e.g.keeping the factor of safety as 1.2 for 45°and 60°slopes,the soil cohesion changes from 4.5 kPa to 8.0 kPa. Hence the slope model with larger slope inclination should have higher soil cohesion.To determine the static factors of safety in the f nite element method(FEM),strength reduction method(SRM)f rst applied by Matsui and San(1992)is used in this study.In this method,the soil gravity is f rstly applied to the whole slope model, and then the soil parameters are reduced gradually by different trial factors of safety to reach the failure.Initial parameters at which slope failure occurs at factor of safety of 1.2 are picked.The onset of failure in slope models is assumed when a sudden increment in nodal displacements is observed.This criterion was used by previous researchers(Grif f ths and Lane,1999;Khosravi and Khabbazian,2012).

    For each slope model,there is a relevant f at model with the same soil properties for comparison.Compaction is simulated for each model at distances of 1-33 m per 4-m interval.Table 1 presents geometry variables of slope models and the compaction energy.Fig.1 shows de f nition of slope geometry variables used in numerical analysis,in whichxis the tamping distance between tamper edge and slope heel.Lateral and f xed boundaries are also shown in this f gure.

    The mesh type is quadrilateral 4-noded plain strain elements. The mesh size is f ner around the tamper and adjacent to slope with the size of 0.2 m and gradually increases to 1 m at boundaries.Fig.2 shows mesh type used in the analysis.

    3.Constitutive model

    Cap plasticity model has been used successfully for simulation of dynamic compaction(Thilakasiri et al.,2001;Gu and Lee,2002; Pak et al.,2005;Ghassemi et al.,2010;Ghanbari and Hamidi,2014). The model has a number of advantages compared with Mohr-Coulomb model,especially for simulation of compaction phenomenon of soils(Pourjenabi et al.,2013).In this study,the cap plasticity model is used with two yield surfaces,consisting of the f xed yield surface of Drucker-Prager model to indicate shear failure,and the moving caps de f ning hardening with change in volumetric strains.The yield surfaces are shown in Fig.3.The f xed and moving yield surfaces for this model can be expressed as follows,respectively:

    wherewandDare the cap plasticity parameters which are dependent on soil compressibility.These parameters were previously calculated by curve f tting with oedometer test results of Oshima and Takada(1997)on a loose sandy soil by Gu and Lee (2002).

    Table 1Geometry variables of slope models and compaction energy.

    Fig.1.Slope geometry variables.

    Fig.2.Mesh type used in numerical analysis.

    As mentioned above,the soil cohesion in each slope model is varied in order to maintain the slope in the same initial factor of safety.The soil cohesions calculated by SRM in f nite element are given in Table 2 together with the soil strength parameters and static factors of safety calculated by a limit equilibrium method(LEM).The LEM presented by Morgenstern and Price(1965)has been applied in the program of Geo-Studio software.As it can be seen,the factors of safety obtained by LEM are in good agreement with those obtained by SRM,and the maximum difference is less than 3%.

    4.Crater depth results

    Fig.4 shows variation of crater depth versus compaction energy in each blow at different compaction distances from the slope heel.As is observed,the crater depth increases with increase in compaction energy.At the distance of 1 m,the crater depth is higher than that at further distances.As the compaction distance from the slope heel increases,values of crater depth gradually decrease until reaching the values of f at models.It shows that the effects of slopes gradually disappear.Comparingthe slope models with different inclinations indicates that the crater depth values at steeper slopes are much higher,also the differences between f at model and slope model at near distances are larger.

    Fig.3.Yield surface of cap plasticity model in stress space.

    Table 2Comparisons of factor of safety by different methods.

    5.Relative density contours

    Since the total failure has not been observed close to the slope models,the improved region around the slope should be investigated.The contours of relative density in a slope model at distance of 1 m from the slope top and the f at model are shown in Fig.5.The relative density(Dr)can be obtained by

    whereemaxandeminare the maximum and minimum void ratios of soil,respectively,obtained from experimental results of Oshima and Takada(1997);andeis the void ratio of soil aftercompaction,which can be obtained as follows based on volumetric plastic strains produced within the compaction:

    Fig.4.Results of crater depth values versus compaction energy with different tamping distances at slope inclination of(a)45°,(b)60°,(c)75°,and(d)90°.

    Fig.5.Results of relative density contours.(a)Slope model;and(b)Flat model.

    wheree0is the initial void ratio.

    As it can be seen from Fig.5,the improved region of f at model consists of relative density contours between 60%and 100%after 10 blows,but at distance of 1 m from the slope top,these contours consist of relative density between 60%and 80%and a small region of 80%-85%.The improved region close to the slope is narrower and it is not completely created compared to the f at models.Also this region is not symmetric around the tamping point.This behavior has been observed in all slopes with different inclinations.As a result,it can be noticed that,one part of the compaction energy close to slope region increases the soil density and decreases the soil volume,and another part of the energy results in lateral slope displacement which is not appropriate in dynamic compaction operation.Also it can be noted that lateral displacement of slope results in the increase of soil volume and decrease of soil density.As it is clear,the dynamic compaction process is not effective close to the slopes,as it was not applicable before.Thus a distance where the slope stability preserved based on different slope stability criteria must be investigated in further studies.Also different slope geometry and compaction energy should be considered.

    6.Conclusions

    In this study,2D f nite element models are simulated in ABAQUS software to investigate the effects of slope on dynamic compaction parameters.By using SRM and applying gravity to the whole slope, the static factors of safety of all models were kept at 1.2.The factor of safety calculated by LEM was in good agreement with Morgenstern-Price method.After tamping of 10 blow counts adjacent to the slope heel,when compared with f at models,the following results can be drawn:

    (1)At near distances of compaction from the slope heel,crater depth values are much higher than those at far distances.As the distance from slope heel increases,crater depth values approach to the values in f at models.

    (2)It is observed that in steeper slopes,crater depth values become higher.Also,a great difference between the values of f at models and slope models at near distances is observed clearly.

    (3)Comparing the relative density contours at distance of 1 m from slope heel and f at model,it can be seen that the contours are not created completely and the improved region is narrower.At distance of 11 m,only a small region of 80%-85%relative density is created,whereas at f at models these contours appropriately reach 100%.As a result,dynamic compaction is not effective adjacent to the slopes.Hence for determining a safe distance from slope heel,more investigations shall be performed and different slope stability criteria shall be considered.

    Con f ict of interest

    The authors wish to con f rm that there are no known con f icts of interest associated with this publication and there has been no signi f cant f nancial support for this work that could have in f uenced its outcome.

    Ghanbari E,Hamidi A.Numerical modeling of rapid impact compaction in loose sands.Geomechanics and Engineering 2014;6(5):487-502.

    Ghassemi A,Pak A,Shahir H.Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils.Computers and Geotechnics 2010;37(1-2):10-24.

    Grif f ths DV,Lane PA.Slope stability analysis by f nite elements.Geotechnique 1999;49(3):387-403.

    Gu Q,Lee FH.Ground response to dynamic compaction.Geotechnique 2002;52(7): 481-93.

    Khosravi M,Khabbazian M.Presentation of critical failure surface of slopes based on the f nite element technique.In:Proceedings of geocongress:state of the art and practice in geotechnical engineering.Reston,Virginia,USA:American Society of Civil Engineers;2012.p.536-45.

    Lee FH,Gu Q.Method for estimating dynamic compaction effect on sand.Journal of Geotechnical and Geoenvironmental Engineering 2004;130(2):139-52.

    Lukas RG.Geotechnical engineering circular no.1-dynamic compaction.1995. Publication No.FHWA-SA-95-037.

    Matsui T,San KC.Finite element slope stability analysis by shear strength reduction technique.Soils and Foundations 1992;32(1):59-70.

    Mayne PW,Jones JS,Dumas JC.Ground response to dynamic compaction.Journal of Geotechnical Engineering 1984;110(6):757-74.

    Menard L,Broise Y.Theoretical and practical aspects of dynamic consolidation. Geotechnique 1975;25(1):3-16.

    Morgenstern NR,Price VE.The analysis of the stability of general slip surfaces. Geotechnique 1965;15(1):79-93.

    Mostafa K.Numerical modeling of dynamic compaction in cohesive soils.PhD Thesis.Akron,OH,USA:University of Akron;2010.

    Oshima A,Takada N.Relation between compacted area and ram momentum by heavy tamping.In:Proceedings of the 14th international conference on soil mechanics and foundation engineering(ICSMFE).Rotterdam,Netherland:A.A. Balkema;1997.p.1641-4.

    Pak A,Shahir H,Ghassemi A.Behavior of dry and saturated soils under impact load during dynamic compaction.In:Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical engineering(ICSMGE).Rotterdam, Netherland:Millpress Science Publishers;2005.p.1245-8.

    Pan JL,Selby AR.Simulation of dynamic compaction of loose granular soils.Advances in Engineering Software 2002;33(7-10):631-40.

    Pourjenabi M,Ghanbari E,Hamidi A.Numerical modeling of dynamic compaction in dry sand using different constitutive models.In:Proceedings of the 4th ECCOMAS Conference on Computational Methods in Structural Dynamics and Earthquake Engineering,Kos Island,Greece;2013.

    Rollins KM,Jorgensen SJ,Ross TE.Optimum moisture content for dynamic compaction of collapsible soils.Journal of Geotechnical and Geoenvironmental Engineering 1998;124(8):699-708.

    Rollins KM,Kim J.Dynamic compaction of collapsible soils based on U.S.case histories.Geotechnical and Geoenvironmental Engineering 2010;136(9):1178-86.

    Thilakasiri HS,Gunaratne M,Mullins G,Stinnette P,Kuo C.Implementation aid for dynamic replacement of organic soils with sand.Journal of Geotechnical and Geoenvironmental Engineering 2001;127(1):25-35.

    Vahidipour A.Experimental study of dynamic compaction adjacent to the slope.MS Thesis.Tehran,Iran:Kharazmi University;2014.

    Zekkos D,Kabalan M,Flanagan M.Lessons learned from case histories of dynamic compaction at municipal solid waste sites.Journal of Geotechnical and Geoenvironmental Engineering 2013;139(5):735-51.

    Zhou Z,Chao WL,Liu BC.Model test study on dynamic responses of step-shaped loess slope with dynamic compaction.In:Proceedings of the 10th International Conference of Chinese Transportation Professionals.Reston,VA,USA: American Society of Civil Engineers;2010.p.3227-37.

    Zou WL,Wang Z,Yao ZF.Effect of dynamic compaction on placement of high-road embankment.Performance of Constructed Facilities 2005;19(4):316-23.

    Amir Hamidiis an Associate Professor in the School of Engineering at Kharazmi University of Tehran since 2006. He has obtained his B.Sc.and M.Sc.degrees from Civil Engineering Department of Sharif University of Technology in 1997 and 1999,respectively.He has also received his Ph.D.degree in Geotechnical Engineering from Department of Civil Engineering,Sharif University of Technology in 2005 working on experimental behavior and constitutive modeling of cemented gravely sands.His research interests include experimental soil mechanics, plasticity concepts and constitutive modeling and ground improvement.Dr.Hamidi has been professionally working in a variety of ground improvement projects especially dynamic compaction and land reclamation.

    *Corresponding author.Tel.:+98 21 88830891.

    E-mail address:hamidi@khu.ac.ir(A.Hamidi).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.02.002

    国产精品99久久99久久久不卡| 女人被狂操c到高潮| 亚洲美女黄片视频| 欧美一区二区精品小视频在线| 在线观看66精品国产| 国产熟女xx| 可以在线观看毛片的网站| 日本在线视频免费播放| 国产精品秋霞免费鲁丝片| 人成视频在线观看免费观看| 欧美午夜高清在线| 12—13女人毛片做爰片一| 国产男靠女视频免费网站| 日韩欧美一区二区三区在线观看| 宅男免费午夜| 88av欧美| 久久久久久国产a免费观看| 99国产综合亚洲精品| 亚洲av第一区精品v没综合| 长腿黑丝高跟| 国产精品98久久久久久宅男小说| 久久婷婷成人综合色麻豆| 欧美在线黄色| 久久亚洲精品不卡| 一二三四社区在线视频社区8| 日韩视频一区二区在线观看| 18美女黄网站色大片免费观看| 久久香蕉激情| 非洲黑人性xxxx精品又粗又长| 咕卡用的链子| 久久中文字幕人妻熟女| 99久久综合精品五月天人人| 91麻豆av在线| 夜夜躁狠狠躁天天躁| 50天的宝宝边吃奶边哭怎么回事| 两个人看的免费小视频| 不卡av一区二区三区| 欧美人与性动交α欧美精品济南到| 成人亚洲精品一区在线观看| 国产av精品麻豆| 嫁个100分男人电影在线观看| 久久久国产成人精品二区| 正在播放国产对白刺激| 日韩欧美国产在线观看| 欧美日韩一级在线毛片| 夜夜爽天天搞| 国产一区二区在线av高清观看| 亚洲第一av免费看| 色综合亚洲欧美另类图片| 日本 av在线| 国产免费av片在线观看野外av| 欧美激情极品国产一区二区三区| 国产亚洲精品久久久久5区| 真人一进一出gif抽搐免费| 亚洲精品国产一区二区精华液| 免费观看精品视频网站| 老司机深夜福利视频在线观看| 久久久久国产精品人妻aⅴ院| 国产精品国产高清国产av| 亚洲一区二区三区色噜噜| 午夜福利18| 自线自在国产av| 啦啦啦免费观看视频1| 精品一区二区三区av网在线观看| 久久精品影院6| 日韩欧美一区视频在线观看| 18禁观看日本| 欧美日本亚洲视频在线播放| 中文字幕人成人乱码亚洲影| 一a级毛片在线观看| or卡值多少钱| 国产欧美日韩一区二区精品| 美女扒开内裤让男人捅视频| 精品一区二区三区av网在线观看| 欧美 亚洲 国产 日韩一| 国产精华一区二区三区| 久久久久九九精品影院| 免费不卡黄色视频| 欧美大码av| 中文字幕精品免费在线观看视频| 久热爱精品视频在线9| 此物有八面人人有两片| 久久久久久免费高清国产稀缺| 91麻豆av在线| 欧美黄色淫秽网站| 日本在线视频免费播放| 久久人人爽av亚洲精品天堂| 色播在线永久视频| 久热爱精品视频在线9| 日韩精品青青久久久久久| 欧美黑人精品巨大| 91成年电影在线观看| 日韩高清综合在线| 欧美中文日本在线观看视频| 色尼玛亚洲综合影院| 久久 成人 亚洲| 两性夫妻黄色片| 最新在线观看一区二区三区| 久久人妻av系列| 免费在线观看视频国产中文字幕亚洲| 少妇粗大呻吟视频| 欧美在线黄色| 一二三四在线观看免费中文在| 亚洲精品一卡2卡三卡4卡5卡| 黄色 视频免费看| 亚洲精品国产色婷婷电影| 国产精品一区二区三区四区久久 | 成人手机av| 国产极品粉嫩免费观看在线| 国产精品久久电影中文字幕| 国产亚洲欧美98| 人妻丰满熟妇av一区二区三区| 又黄又粗又硬又大视频| 老熟妇乱子伦视频在线观看| 国产精品一区二区精品视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 88av欧美| 亚洲男人天堂网一区| 国产精品av久久久久免费| 大香蕉久久成人网| 国产精品永久免费网站| 韩国av一区二区三区四区| 999精品在线视频| 日本欧美视频一区| 叶爱在线成人免费视频播放| 18禁黄网站禁片午夜丰满| 日本在线视频免费播放| 日日夜夜操网爽| 精品福利观看| 18禁黄网站禁片午夜丰满| 亚洲国产欧美日韩在线播放| 国产精品一区二区精品视频观看| 我的亚洲天堂| av电影中文网址| 亚洲国产高清在线一区二区三 | 如日韩欧美国产精品一区二区三区| 精品国产一区二区久久| 午夜免费激情av| 99精品久久久久人妻精品| 老汉色av国产亚洲站长工具| 亚洲av美国av| 亚洲熟妇中文字幕五十中出| 天堂动漫精品| 色综合站精品国产| 日本 欧美在线| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 亚洲一区二区三区不卡视频| 身体一侧抽搐| 一a级毛片在线观看| 亚洲七黄色美女视频| x7x7x7水蜜桃| 看免费av毛片| 午夜视频精品福利| 精品国产美女av久久久久小说| 制服丝袜大香蕉在线| 免费看十八禁软件| 精品一品国产午夜福利视频| 波多野结衣巨乳人妻| 中文字幕精品免费在线观看视频| 一进一出抽搐gif免费好疼| 国产精品久久久人人做人人爽| 成在线人永久免费视频| 亚洲性夜色夜夜综合| 男人操女人黄网站| 黄片播放在线免费| 久久精品91蜜桃| 18禁国产床啪视频网站| 给我免费播放毛片高清在线观看| 中文字幕人妻熟女乱码| xxx96com| 久久精品91蜜桃| 婷婷六月久久综合丁香| 国产精品日韩av在线免费观看 | 亚洲人成电影免费在线| 久久午夜亚洲精品久久| 精品一区二区三区四区五区乱码| 国产av一区在线观看免费| 欧美日韩亚洲国产一区二区在线观看| 搡老妇女老女人老熟妇| 一级片免费观看大全| 亚洲五月婷婷丁香| 欧美中文日本在线观看视频| 亚洲欧美日韩高清在线视频| 精品福利观看| 精品久久久久久,| 国产黄a三级三级三级人| 欧美av亚洲av综合av国产av| 亚洲欧洲精品一区二区精品久久久| 国产成人av激情在线播放| 午夜日韩欧美国产| 妹子高潮喷水视频| 在线观看免费视频网站a站| 亚洲五月婷婷丁香| 久久久久久久久中文| 中文字幕人成人乱码亚洲影| 国产极品粉嫩免费观看在线| 久热爱精品视频在线9| 国产一区二区激情短视频| 极品人妻少妇av视频| 久久精品亚洲熟妇少妇任你| 99在线人妻在线中文字幕| 亚洲欧美激情综合另类| 国产精品1区2区在线观看.| 91精品三级在线观看| 桃色一区二区三区在线观看| 悠悠久久av| 久久中文字幕人妻熟女| 91老司机精品| av欧美777| 69精品国产乱码久久久| 又黄又粗又硬又大视频| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 亚洲午夜精品一区,二区,三区| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| 少妇 在线观看| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 少妇熟女aⅴ在线视频| 国产欧美日韩一区二区三| 在线观看日韩欧美| 亚洲欧美精品综合一区二区三区| 一区二区日韩欧美中文字幕| 嫩草影院精品99| 亚洲欧美日韩无卡精品| 午夜福利免费观看在线| 18禁黄网站禁片午夜丰满| 一级,二级,三级黄色视频| 精品欧美国产一区二区三| 夜夜夜夜夜久久久久| 最近最新中文字幕大全电影3 | tocl精华| 亚洲情色 制服丝袜| 在线观看66精品国产| 亚洲久久久国产精品| 高清毛片免费观看视频网站| 真人一进一出gif抽搐免费| 亚洲一区高清亚洲精品| 亚洲欧美日韩高清在线视频| 不卡av一区二区三区| 国产男靠女视频免费网站| 一个人免费在线观看的高清视频| 精品国产一区二区久久| 国产成人免费无遮挡视频| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 成人国产一区最新在线观看| 成年人黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产欧美日韩在线播放| 少妇被粗大的猛进出69影院| 久久中文看片网| 精品少妇一区二区三区视频日本电影| 色在线成人网| 精品人妻在线不人妻| 90打野战视频偷拍视频| 热99re8久久精品国产| 咕卡用的链子| 国产精品久久久av美女十八| 99国产精品免费福利视频| 亚洲人成电影观看| 亚洲成a人片在线一区二区| 怎么达到女性高潮| 亚洲精品一卡2卡三卡4卡5卡| 一区二区日韩欧美中文字幕| 99国产精品一区二区蜜桃av| 精品久久久精品久久久| 欧美老熟妇乱子伦牲交| 亚洲avbb在线观看| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区| 国产精品精品国产色婷婷| 最新美女视频免费是黄的| 免费少妇av软件| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 免费高清在线观看日韩| 99精品在免费线老司机午夜| 宅男免费午夜| 色av中文字幕| av天堂在线播放| 嫁个100分男人电影在线观看| 欧美日本视频| 亚洲精品美女久久av网站| 校园春色视频在线观看| av中文乱码字幕在线| a在线观看视频网站| 一本综合久久免费| АⅤ资源中文在线天堂| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 国产熟女午夜一区二区三区| 变态另类成人亚洲欧美熟女 | 欧美日韩福利视频一区二区| 一级a爱视频在线免费观看| 国产一区二区三区在线臀色熟女| 精品国产乱子伦一区二区三区| 久久久久亚洲av毛片大全| 女性生殖器流出的白浆| 午夜老司机福利片| 男男h啪啪无遮挡| 国产精品久久久av美女十八| 天天添夜夜摸| 99久久精品国产亚洲精品| 真人一进一出gif抽搐免费| av在线天堂中文字幕| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久中文| 纯流量卡能插随身wifi吗| 亚洲成av片中文字幕在线观看| x7x7x7水蜜桃| 一级黄色大片毛片| 露出奶头的视频| 国产激情久久老熟女| 亚洲欧美激情在线| 成人免费观看视频高清| 欧美另类亚洲清纯唯美| 久久人人97超碰香蕉20202| 少妇裸体淫交视频免费看高清 | 正在播放国产对白刺激| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清 | 亚洲精品粉嫩美女一区| 操美女的视频在线观看| 欧美精品亚洲一区二区| 国产精品久久久久久精品电影 | 欧美在线一区亚洲| 夜夜夜夜夜久久久久| 真人做人爱边吃奶动态| 91字幕亚洲| 久久中文字幕一级| 亚洲avbb在线观看| 亚洲精品中文字幕在线视频| 午夜福利免费观看在线| 精品午夜福利视频在线观看一区| av中文乱码字幕在线| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 久久亚洲真实| 757午夜福利合集在线观看| 免费高清在线观看日韩| 一级毛片高清免费大全| 国产成年人精品一区二区| 久久伊人香网站| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 久久精品91蜜桃| 亚洲黑人精品在线| www日本在线高清视频| 精品久久久久久久毛片微露脸| 淫妇啪啪啪对白视频| 久久天堂一区二区三区四区| 久久伊人香网站| 亚洲片人在线观看| 校园春色视频在线观看| avwww免费| 桃色一区二区三区在线观看| 国产精品影院久久| 一级作爱视频免费观看| 不卡一级毛片| 给我免费播放毛片高清在线观看| 国产午夜福利久久久久久| 高清毛片免费观看视频网站| 亚洲五月色婷婷综合| 久久中文字幕人妻熟女| 91在线观看av| 99久久精品国产亚洲精品| 亚洲成人久久性| 成年人黄色毛片网站| 亚洲 欧美 日韩 在线 免费| 高清毛片免费观看视频网站| 国产亚洲av高清不卡| 国产成人精品无人区| 亚洲午夜理论影院| 亚洲性夜色夜夜综合| 99国产精品99久久久久| 黄色视频,在线免费观看| 91精品国产国语对白视频| 亚洲第一青青草原| 正在播放国产对白刺激| 国产精品免费一区二区三区在线| 91大片在线观看| 亚洲视频免费观看视频| 日韩欧美国产在线观看| 99热只有精品国产| 国产精品一区二区免费欧美| 啦啦啦免费观看视频1| 女人精品久久久久毛片| 亚洲成人精品中文字幕电影| 亚洲第一欧美日韩一区二区三区| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 日韩精品免费视频一区二区三区| 欧美色欧美亚洲另类二区 | 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 校园春色视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久国产精品男人的天堂亚洲| 麻豆av在线久日| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩黄片免| 亚洲精品中文字幕一二三四区| 九色国产91popny在线| 久久人人97超碰香蕉20202| 一级,二级,三级黄色视频| 看免费av毛片| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 国产成+人综合+亚洲专区| 午夜福利一区二区在线看| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 国产高清videossex| 亚洲精品在线观看二区| 青草久久国产| 在线十欧美十亚洲十日本专区| 91精品三级在线观看| 成人国语在线视频| 国产xxxxx性猛交| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 久久影院123| 少妇被粗大的猛进出69影院| 久久人人爽av亚洲精品天堂| 亚洲无线在线观看| 99久久99久久久精品蜜桃| 天天添夜夜摸| 手机成人av网站| av超薄肉色丝袜交足视频| 国产精品1区2区在线观看.| 一区二区三区精品91| 丝袜在线中文字幕| 精品无人区乱码1区二区| 村上凉子中文字幕在线| svipshipincom国产片| 国产精品久久久久久精品电影 | 在线观看66精品国产| 亚洲七黄色美女视频| 激情在线观看视频在线高清| 丝袜人妻中文字幕| 黄色 视频免费看| 在线观看免费午夜福利视频| 亚洲伊人色综图| 性欧美人与动物交配| 中文字幕人成人乱码亚洲影| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 免费在线观看日本一区| 亚洲狠狠婷婷综合久久图片| 丁香六月欧美| 免费高清视频大片| 18禁黄网站禁片午夜丰满| 黄网站色视频无遮挡免费观看| 国产亚洲欧美在线一区二区| 国产精品九九99| 欧美中文日本在线观看视频| 国产精品爽爽va在线观看网站 | 久久人妻福利社区极品人妻图片| 一级毛片女人18水好多| 在线视频色国产色| 成人手机av| 一级a爱视频在线免费观看| 91av网站免费观看| 一级毛片精品| 成人三级黄色视频| 三级毛片av免费| 亚洲精品在线美女| 视频在线观看一区二区三区| 美女国产高潮福利片在线看| 满18在线观看网站| 亚洲三区欧美一区| 国产成人一区二区三区免费视频网站| 国产在线观看jvid| 日韩欧美国产在线观看| 视频区欧美日本亚洲| 欧美绝顶高潮抽搐喷水| 1024视频免费在线观看| 精品电影一区二区在线| 可以免费在线观看a视频的电影网站| 中文字幕人成人乱码亚洲影| 最新美女视频免费是黄的| 成人免费观看视频高清| 久久精品亚洲熟妇少妇任你| 电影成人av| 99久久久亚洲精品蜜臀av| 日本撒尿小便嘘嘘汇集6| 日韩 欧美 亚洲 中文字幕| 黑人欧美特级aaaaaa片| 亚洲狠狠婷婷综合久久图片| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 最好的美女福利视频网| 成人18禁在线播放| 久久久久久久午夜电影| 亚洲va日本ⅴa欧美va伊人久久| 中国美女看黄片| 大型黄色视频在线免费观看| 大码成人一级视频| 免费在线观看完整版高清| 精品高清国产在线一区| 亚洲国产精品成人综合色| 精品国产超薄肉色丝袜足j| 亚洲人成伊人成综合网2020| 成人三级做爰电影| 亚洲视频免费观看视频| 免费一级毛片在线播放高清视频 | 国产精品1区2区在线观看.| 久久午夜亚洲精品久久| 国产亚洲精品第一综合不卡| 国产成人啪精品午夜网站| 国产精品久久久久久精品电影 | 亚洲 国产 在线| 成人国语在线视频| 美女高潮喷水抽搐中文字幕| netflix在线观看网站| 日韩av在线大香蕉| 免费在线观看影片大全网站| 少妇的丰满在线观看| 亚洲成人国产一区在线观看| 真人做人爱边吃奶动态| 亚洲aⅴ乱码一区二区在线播放 | 国产精品亚洲一级av第二区| 一进一出抽搐动态| 久久国产精品男人的天堂亚洲| 可以免费在线观看a视频的电影网站| 午夜福利一区二区在线看| 国产激情欧美一区二区| 极品教师在线免费播放| 女同久久另类99精品国产91| 欧美色欧美亚洲另类二区 | 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 不卡av一区二区三区| 18禁裸乳无遮挡免费网站照片 | 搡老岳熟女国产| 国产精品一区二区在线不卡| 亚洲人成77777在线视频| 国产精品一区二区精品视频观看| 三级毛片av免费| 精品人妻在线不人妻| 一级毛片精品| 一个人观看的视频www高清免费观看 | 18禁国产床啪视频网站| 欧美日本视频| 久久久久九九精品影院| 亚洲欧美日韩无卡精品| 亚洲情色 制服丝袜| 欧美日韩亚洲综合一区二区三区_| 日韩中文字幕欧美一区二区| 黄色片一级片一级黄色片| 日韩精品免费视频一区二区三区| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 免费在线观看影片大全网站| 99久久综合精品五月天人人| 亚洲精品粉嫩美女一区| 美女国产高潮福利片在线看| 在线观看日韩欧美| 久久精品aⅴ一区二区三区四区| 免费一级毛片在线播放高清视频 | 成人av一区二区三区在线看| 午夜福利成人在线免费观看| 在线天堂中文资源库| 色老头精品视频在线观看| 18禁黄网站禁片午夜丰满| 国产高清激情床上av| 久久久久久久久中文| 麻豆av在线久日| 国产av在哪里看| 精品久久久久久久久久免费视频| 性色av乱码一区二区三区2| 国产一区二区三区视频了| 成熟少妇高潮喷水视频| 亚洲精品国产精品久久久不卡| 亚洲色图av天堂| 精品熟女少妇八av免费久了| 色综合亚洲欧美另类图片| 91在线观看av| 国产精华一区二区三区| 国产一区在线观看成人免费| 日日爽夜夜爽网站| 99国产精品一区二区蜜桃av| 韩国精品一区二区三区| 日韩欧美国产在线观看| 精品免费久久久久久久清纯| 亚洲全国av大片| 多毛熟女@视频| 日韩视频一区二区在线观看| 国产一级毛片七仙女欲春2 | 在线十欧美十亚洲十日本专区| 久久香蕉激情| 久热这里只有精品99| 国产熟女xx| 国产成人影院久久av| 国产亚洲精品第一综合不卡| 精品国内亚洲2022精品成人| cao死你这个sao货| 亚洲 国产 在线| 欧美久久黑人一区二区| 午夜亚洲福利在线播放| 亚洲专区中文字幕在线| 天堂影院成人在线观看| 叶爱在线成人免费视频播放| 女人被躁到高潮嗷嗷叫费观| 日本在线视频免费播放| 丝袜美腿诱惑在线| 国产欧美日韩一区二区三区在线|